Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.932
Filtrar
1.
Age Ageing ; 53(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615247

RESUMO

BACKGROUND: Lower skeletal muscle mitochondrial function is associated with future cognitive impairment and mobility decline, but the biological underpinnings for these associations are unclear. We examined metabolomic markers underlying skeletal muscle mitochondrial function, cognition and motor function. METHODS: We analysed data from 560 participants from the Baltimore Longitudinal Study of Aging (mean age: 68.4 years, 56% women, 28% Black) who had data on skeletal muscle oxidative capacity (post-exercise recovery rate of phosphocreatine, kPCr) via 31P magnetic resonance spectroscopy and targeted plasma metabolomics using LASSO model. We then examined which kPCr-related markers were also associated with cognition and motor function in a larger sample (n = 918, mean age: 69.4, 55% women, 27% Black). RESULTS: The LASSO model revealed 24 metabolites significantly predicting kPCr, with the top 5 being asymmetric dimethylarginine, lactic acid, lysophosphatidylcholine a C18:1, indoleacetic acid and triacylglyceride (17:1_34:3), also significant in multivariable linear regression. The kPCr metabolite score was associated with cognitive or motor function, with 2.5-minute usual gait speed showing the strongest association (r = 0.182). Five lipids (lysophosphatidylcholine a C18:1, phosphatidylcholine ae C42:3, cholesteryl ester 18:1, sphingomyelin C26:0, octadecenoic acid) and 2 amino acids (leucine, cystine) were associated with both cognitive and motor function measures. CONCLUSION: Our findings add evidence to the hypothesis that mitochondrial function is implicated in the pathogenesis of cognitive and physical decline with aging and suggest that targeting specific metabolites may prevent cognitive and mobility decline through their effects on mitochondria. Future omics studies are warranted to confirm these findings and explore mechanisms underlying mitochondrial dysfunction in aging phenotypes.


Assuntos
Disfunção Cognitiva , Lisofosfatidilcolinas , Feminino , Humanos , Idoso , Masculino , Estudos Longitudinais , Músculo Esquelético , Cognição
2.
Clin Interv Aging ; 19: 517-527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528884

RESUMO

Purpose: To investigate the clinical value of serum lysophosphatidylcholine (LPC) as a predictive biomarker for determining disease severity and mortality risk in hospitalized elderly patients with community-acquired pneumonia (CAP). Methods: This prospective, single-center study enrolled 208 elderly patients, including 67 patients with severe CAP (SCAP) and 141 with non-SCAP between November 1st, 2020, and November 30th, 2021 at the Qingdao Municipal Hospital, Shandong Province, China. The demographic and clinical parameters were recorded for all the included patients. Serum LPC levels were measured on day 1 and 6 after admission using ELISA. Propensity score matching (PSM) was used to balance the baseline variables between SCAP and non-SCAP patient groups. Receiver operative characteristic (ROC) curve analysis was used to compare the predictive performances of LPC and other clinical parameters in discriminating between SCAP and non-SCAP patients and determining the 30-day mortality risk of the hospitalized CAP patients. Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors associated with SCAP. Cox proportional hazard regression analysis was used to determine if serum LPC was an independent risk factor for the 30-day mortality of CAP patients. Results: The serum LPC levels at admission were significantly higher in the non-SCAP patients than in the SCAP patients (P = 0.011). Serum LPC level <24.36 ng/mL, and PSI score were independent risk factors for the 30-day mortality in the elderly patients with CAP. The risk of 30-day mortality in the elderly CAP patients with low serum LPC levels (< 24.36ng/mL) was >5-fold higher than in the patients with high serum LPC levels (≥ 24.36ng/mL). Conclusion: Low serum LPC levels were associated with significantly higher disease severity and 30-day mortality in the elderly patients with CAP. Therefore, serum LPC is a promising predictive biomarker for the early identification of elderly CAP patients with poor prognosis.


Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Humanos , Idoso , Lisofosfatidilcolinas , Estudos Prospectivos , Prognóstico , Biomarcadores , Índice de Gravidade de Doença , Gravidade do Paciente , Estudos Retrospectivos
3.
Mar Drugs ; 22(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535457

RESUMO

Low levels of docosahexaenoic acid (DHA) in the brain have been related to neurological disorders, like Alzheimer's disease (AD). After ingestion, dietary DHA must cross the blood-brain barrier, where it is absorbed as lysophosphatidylcholine (LPC), due to its role as a preferential DHA carrier in the brain. This work aimed at the production of LPC-DHA extracts to be used in supplementation/food fortification intended neural enrichment in DHA. As it is rich in DHA, especially its phospholipids (PL), Atlantic mackerel (Scomber scombrus, caught in Spring/2022) was used as a raw material. The polar lipids fraction was separated and hydrolysed with Rhizomucor miehei lipase, to enzymatically convert phosphatidylcholine (PC) into LPC. The fish (muscle and by-products) lipids fraction was used for total lipids (TL) content, lipid classes (LC) and fatty acid (FA) profile evaluation, whilst polar lipids extracts were studied for LC production and FA analysis. Muscle TL ranged between 1.45 and 4.64 g/100 g (WW), while by-products accounted for 7.56-8.96 g/100 g, with the highest contents being found in March. However, PL were more abundant in muscle (22.46-32.20% of TL). For polar lipids extracts, PL represented 50.79% of TL, among which PC corresponded to 57.76% and phosphatidylethanolamine to 42.24%. After hydrolysis, nearly half of this PC was converted into LPC. When compared to the initial PC, DHA relative content (33.6% of total FA) was significantly higher after hydrolysis: 55.6% in PC and 73.6% in LPC. Such extract, obtained from this undervalued species, may represent a promising strategy to increase DHA uptake into brain cells while allowing this species to upgrade.


Assuntos
Ácidos Docosa-Hexaenoicos , Fosfolipídeos , Animais , Encéfalo , Barreira Hematoencefálica , Fosfatidilcolinas , Ácidos Graxos , Lisofosfatidilcolinas
4.
Proc Natl Acad Sci U S A ; 121(8): e2320262121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349879

RESUMO

The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using an assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, constitute the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.


Assuntos
Malária Falciparum , Parasitos , Animais , Humanos , Plasmodium falciparum , Lisofosfatidilcolinas/metabolismo , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Malária Falciparum/parasitologia , Eritrócitos/metabolismo , Parasitos/metabolismo , Ácidos Graxos/metabolismo , Lipase/metabolismo , Proteínas de Protozoários/metabolismo
5.
J Lipid Res ; 65(3): 100516, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320654

RESUMO

The gold-standard diagnostic test for peroxisomal disorders (PDs) is plasma concentration analysis of very long-chain fatty acids (VLCFAs). However, this method's time-consuming nature and limitations in cases which present normal VLCFA levels necessitates alternative approaches. The analysis of C26:0-lysophosphatydylcholine (C26:0-LPC) in dried blood spot samples by tandem-mass spectrometry (MS/MS) has successfully been implemented in certain newborn screening programs to diagnose X-linked adrenoleukodystrophy (ALD). However, the diagnostic potential of very long-chain LPCs concentrations in plasma remains poorly understood. This study sought to evaluate the diagnostic performance of C26:0-LPC and other very long-chain LPCs, comparing them to VLCFA analysis in plasma. The study, which included 330 individuals affected by a peroxisomal ß-oxidation deficiency and 407 control individuals, revealed that C26:0- and C24:0-LPC concentrations demonstrated the highest diagnostic accuracy (98.8% and 98.4%, respectively), outperforming VLCFA when C26:0/C22:0 and C24:0/C22:0 ratios were combined (98.1%). Combining C24:0- and C26:0-LPC gave the highest sensitivity (99.7%), with ALD females exhibiting notably higher sensitivity compared with the VLCFA ratio combination (98.7% vs. 93.5%, respectively). In contrast, C22:0-LPC exhibited suboptimal performance, primarily due to its low sensitivity (75%), but we identified a potential use to help distinguish between ALD and Zellweger spectrum disorders. In summary, MS/MS analysis of plasma C24:0- and C26:0-LPC concentrations represents a rapid and straightforward approach to diagnose PDs, demonstrating superior diagnostic accuracy, particularly in ALD females, compared with conventional VLCFA biomarkers. We strongly recommend integrating very-long chain LPC plasma analysis in the diagnostic evaluation of individuals suspected of having a PD.


Assuntos
Adrenoleucodistrofia , Lisofosfatidilcolinas , Recém-Nascido , Feminino , Humanos , Espectrometria de Massas em Tandem , Adrenoleucodistrofia/diagnóstico , Triagem Neonatal/métodos , Biomarcadores , Ácidos Graxos não Esterificados , Ácidos Graxos
6.
World Neurosurg ; 183: e571-e575, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181872

RESUMO

BACKGROUND: Reoperation, sometimes multiple, is common with progressively worse outcomes in patients with degenerative lumbar spine diseases. Lysophosphatidylcholine (LPC), a precursor of lysophosphatidic acid, in the cerebrospinal fluid (CSF) is a possible biomarker for neuropathic pain and discriminating neuropathic pain caused by lumbar spinal canal stenosis (LSCS) from other etiologies. This study aimed to explore this possible use of LPC species in the CSF. METHODS: Patients with LSCS (n = 137) and persistent spinal pain syndrome (n = 22) were subjected in this multi-site observational study. The CSF was collected by lumbar puncture. Using liquid chromatography-tandem mass spectrometry, we measured 6 LPC species, (16:0), (18:0), (18:1), (18:2), (20:4), and (22:6), in the CSF. We compared the LPC values between the groups and determined the cutoff levels that could efficiently discriminate the groups with high accuracy. RESULTS: The levels of all measured LPC species were significantly higher in the LSCS group than the persistent spinal pain syndrome group. Four LPC species demonstrated more than 0.80 area under the curve obtained from the receiver operating characteristic curve analysis. Although the specificity of cutoff levels for the 6 LPC species was low to moderate, their sensitivity was consistently high. CONCLUSIONS: The existing diagnostic protocols combining physical examinations and morphological imaging studies for lumbar spinal pain have limited sensitivity. Measuring LPC species in the CSF is a promising objective laboratory test and could be suitable for detecting the presence of lumbar spinal stenosis and can help indications for surgery.


Assuntos
Dor Lombar , Neuralgia , Estenose Espinal , Humanos , Dor Lombar/complicações , Vértebras Lombares/cirurgia , Lisofosfatidilcolinas , Neuralgia/complicações , Estenose Espinal/etiologia
7.
Nutrients ; 16(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257167

RESUMO

Dysregulated transplacental lipid transfer and fetal-placental lipid metabolism affect birthweight, as does maternal hyperglycemia. As the mechanisms are unclear, we aimed to identify the lipids in umbilical cord plasma that were most associated with birthweight. Seventy-five Chinese women with singleton pregnancies recruited into the GUSTO mother-offspring cohort were selected from across the glycemic range based on a mid-gestation 75 g oral glucose tolerance test, excluding pre-existing diabetes. Cord plasma samples collected at term delivery were analyzed using targeted liquid-chromatography tandem mass-spectrometry to determine the concentrations of 404 lipid species across 17 lipid classes. The birthweights were standardized for sex and gestational age by local references, and regression analyses were adjusted for the maternal age, BMI, parity, mode of delivery, insulin treatment, and fasting/2 h glucose, with a false discovery-corrected p < 0.05 considered significant. Ten lysophosphatidylcholines (LPCs) and two lysophosphatidylethanolamines were positively associated with the birthweight percentiles, while twenty-four triacylglycerols were negatively associated with the birthweight percentiles. The topmost associated lipid was LPC 20:2 [21.28 (95%CI 12.70, 29.87) percentile increase in the standardized birthweight with each SD-unit increase in log10-transformed concentration]. Within these same regression models, maternal glycemia did not significantly associate with the birthweight percentiles. Specific fetal circulating lysophospholipids and triacylglycerols associate with birthweight independently of maternal glycemia, but a causal relationship remains to be established.


Assuntos
Lisofosfolipídeos , Placenta , Gravidez , Humanos , Feminino , Peso ao Nascer , Lisofosfatidilcolinas , Cordão Umbilical
8.
Placenta ; 147: 12-20, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38278000

RESUMO

INTRODUCTION: Placental phospholipid synthesis is critical for the expansion of the placental exchange surface area and for production of signaling molecules. Despite their importance, it is not yet established which enzymes involved in the de novo synthesis and remodeling of placental phospholipids are expressed and active in the human placenta. METHODS: We identified phospholipid synthesis enzymes by immunoblotting in placental homogenates and immunofluorescence in placenta tissue sections. Primary human trophoblast (PHT) cells from term healthy placentas (n = 10) were cultured and exposed to 13C labeled fatty acids (16:0, 18:1 and 18:2 n-6, 22:6 n-3) for 2 and 24 h. Three phospholipid classes; phosphatidic acid, phosphatidylcholine, and lysophosphatidylcholine containing 13C fatty acids were quantified by Liquid Chromatography with tandem mass spectrometry (LC/MS-MS). RESULTS: Acyl transferase and phospholipase enzymes were detected in human placenta homogenate and primarily expressed in the syncytiotrophoblast. Three representative 13C fatty acids (16:0, 18:1 and 18:2 n-6) were incorporated rapidly into phosphatidic acid in trophoblasts, but 13C labeled docosahexaenoic acid (DHA; 22:6 n-3) incorporation was not detected. 13C DHA was incorporated into phosphatidylcholine. Lysophosphatidylcholine containing all four 13C labeled fatty acids were found in high abundance. CONCLUSIONS: Phospholipid synthesis and remodeling enzymes are present in the syncytiotrophoblast. 13C labeled fatty acids were rapidly incorporated into cellular phospholipids. 13C DHA was incorporated into phospholipids through the remodeling pathway rather than by de novo synthesis. These understudied pathways are highly active and critical for structure and function of the placenta.


Assuntos
Fosfolipídeos , Placenta , Humanos , Gravidez , Feminino , Placenta/metabolismo , Fosfolipídeos/metabolismo , Lisofosfatidilcolinas/metabolismo , Ácidos Graxos/metabolismo , Fosfatidilcolinas/metabolismo
9.
Metabolomics ; 20(1): 17, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267619

RESUMO

INTRODUCTION: Psoriatic arthritis (PsA) is a heterogeneous inflammatory arthritis, affecting approximately a quarter of patients with psoriasis. Accurate assessment of disease activity is difficult. There are currently no clinically validated biomarkers to stratify PsA patients based on their disease activity, which is important for improving clinical management. OBJECTIVES: To identify metabolites capable of classifying patients with PsA according to their disease activity. METHODS: An in-house solid-phase microextraction (SPME)-liquid chromatography-high resolution mass spectrometry (LC-HRMS) method for lipid analysis was used to analyze serum samples obtained from patients classified as having low (n = 134), moderate (n = 134) or high (n = 104) disease activity, based on psoriatic arthritis disease activity scores (PASDAS). Metabolite data were analyzed using eight machine learning methods to predict disease activity levels. Top performing methods were selected based on area under the curve (AUC) and significance. RESULTS: The best model for predicting high disease activity from low disease activity achieved AUC 0.818. The best model for predicting high disease activity from moderate disease activity achieved AUC 0.74. The best model for classifying low disease activity from moderate and high disease activity achieved AUC 0.765. Compounds confirmed by MS/MS validation included metabolites from diverse compound classes such as sphingolipids, phosphatidylcholines and carboxylic acids. CONCLUSION: Several lipids and other metabolites when combined in classifying models predict high disease activity from both low and moderate disease activity. Lipids of key interest included lysophosphatidylcholine and sphingomyelin. Quantitative MS assays based on selected reaction monitoring, are required to quantify the candidate biomarkers identified.


Assuntos
Artrite Psoriásica , Humanos , Artrite Psoriásica/diagnóstico , Espectrometria de Massas em Tandem , Metabolômica , Lisofosfatidilcolinas , Aprendizado de Máquina , Biomarcadores
10.
Nat Cancer ; 5(2): 283-298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195933

RESUMO

Lipids and their modifying enzymes regulate diverse features of the tumor microenvironment and cancer progression. The secreted enzyme autotaxin (ATX) hydrolyzes extracellular lysophosphatidylcholine to generate the multifunctional lipid mediator lysophosphatidic acid (LPA) and supports the growth of several tumor types, including pancreatic ductal adenocarcinoma (PDAC). Here we show that ATX suppresses the accumulation of eosinophils in the PDAC microenvironment. Genetic or pharmacologic ATX inhibition increased the number of intratumor eosinophils, which promote tumor cell apoptosis locally and suppress tumor progression. Mechanistically, ATX suppresses eosinophil accumulation via an autocrine feedback loop, wherein ATX-LPA signaling negatively regulates the activity of the AP-1 transcription factor c-Jun, in turn suppressing the expression of the potent eosinophil chemoattractant CCL11 (eotaxin-1). Eosinophils were identified in human PDAC specimens, and rare individuals with high intratumor eosinophil abundance had the longest overall survival. Together with recent findings, this study reveals the context-dependent, immune-modulatory potential of ATX-LPA signaling in cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Eosinófilos/metabolismo , Quimiocina CCL11 , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Processos Neoplásicos , Lisofosfatidilcolinas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral
11.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256273

RESUMO

Hepatitis C virus (HCV) infection alters lysophosphatidylcholine (LPC) metabolism, enhancing viral infectivity and replication. Direct-acting antivirals (DAAs) effectively treat HCV and rapidly normalize serum cholesterol. In serum, LPC species are primarily albumin-bound but are also present in lipoprotein particles. This study aims to assess the impact of HCV eradication on serum LPC species levels in patients infected with HCV. Therefore, 12 different LPC species were measured by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the sera of 178 patients with chronic HCV infections at baseline, and in 176 of these patients after therapy with DAAs. All LPC species increased at 4 and 12 weeks post-initiation of DAA therapy. The serum profiles of the LPC species were similar before and after the viral cure. Patients with HCV and liver cirrhosis exhibited lower serum levels of all LPC species, except LPC 16:1, both before and after DAA treatment. Percentages of LPC 18:1 (relative to the total LPC level) were higher, and % LPC 22:5 and 22:6 were lower in cirrhotic compared to non-cirrhotic patients at baseline and at the end of therapy. LPC species levels inversely correlated with the model of end-stage liver disease score and directly with baseline and post-therapy albumin levels. Receiver operating characteristic curve analysis indicated an area under the curve of 0.773 and 0.720 for % LPC 18:1 (relative to total LPC levels) for classifying fibrosis at baseline and post-therapy, respectively. In summary, HCV elimination was found to increase all LPC species and elevated LPC 18:1 relative to total LPC levels may have pathological significance in HCV-related liver cirrhosis.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus , Antivirais/uso terapêutico , Lisofosfatidilcolinas , Espectrometria de Massas em Tandem , Hepatite C Crônica/tratamento farmacológico , Hepatite C/tratamento farmacológico , Albuminas , Cirrose Hepática/tratamento farmacológico
13.
Clin Chim Acta ; 552: 117653, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977233

RESUMO

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is a rare X-linked disease caused by mutations of the ABCD1 gene. C26:0-lysophosphatidylcholine (C26:0-LPC) has been proved to be an accurate biomarker for X-ALD. This study aims to propose an effective method for screening of X-ALD and to evaluate the performance of the newborn screening (NBS) assay for X-ALD in Guangzhou. METHODS: C26:0-LPC in dried blood spots (DBS) was extracted by methanol solution containing isotope-labelled internal standard (C26:0-d4-LPC) and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The sensitivity of the method was assessed in eight male X-ALD patients, two female carriers and 583 healthy controls. The method was conducted on 43,653 newborns. Next generation sequencing was performed on screen-positive samples. Plasma analysis of very long-chain fatty acids and genetic counselling were performed by way of follow-up. RESULTS: Elevated C26:0-LPC were 100% sensitive for screening of X-ALD. Of 43,653 newborns, 32 (18 males, 14 females) screened positive. Of these, 14 (43.7%) were identified ABCD1 variants, including seven hemizygous males and seven heterozygous females, and two (6.3%) were diagnosed with other peroxisomal disorders. CONCLUSION: The LC-MS/MS method for screening of X-ALD can identify males, heterozygous females and other peroxisomal disorders. The incidence of X-ALD in Guangzhou is not low.


Assuntos
Adrenoleucodistrofia , Transtornos Peroxissômicos , Humanos , Recém-Nascido , Masculino , Feminino , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Triagem Neonatal/métodos , Cromatografia Líquida , Lisofosfatidilcolinas , Projetos Piloto , Espectrometria de Massas em Tandem , Teste em Amostras de Sangue Seco/métodos , China , Ácidos Graxos
14.
Mol Biol Cell ; 35(3): ar25, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117591

RESUMO

Lysosomes are acidic organelles responsible for lipid catabolism, and their functions can be disrupted by cationic amphiphilic drugs that neutralize lumenal pH and thereby inhibit most lysosomal hydrolases. These drugs can also induce lysosomal membrane permeabilization and cancer cell death, but the underlying mechanism remains elusive. Here, we uncover that the cationic amphiphilic drugs induce a substantial accumulation of cytolytic lysoglycerophospholipids within the lysosomes of cancer cells, and thereby prevent the recycling of lysoglycerophospholipids to produce common membrane glycerophospholipids. Using quantitative mass spectrometry-based shotgun lipidomics, we demonstrate that structurally diverse cationic amphiphilic drugs, along with other types of lysosomal pH-neutralizing reagents, elevate the amounts of lysoglycerophospholipids in MCF7 breast carcinoma cells. Lysoglycerophospholipids constitute ∼11 mol% of total glycerophospholipids in lysosomes purified from MCF7 cells, compared with ∼1 mol% in the cell lysates. Treatment with cationic amphiphilic drug siramesine further elevates the lysosomal lysoglycerophospholipid content to ∼24 mol% of total glycerophospholipids. Exogenously added traceable lysophosphatidylcholine is rapidly acylated to form diacylphosphatidylcholine, but siramesine treatment sequesters the lysophosphatidylcholine in the lysosomes and prevents it from undergoing acylation. These findings shed light on the unexplored role of lysosomes in the recycling of lysoglycerophospholipids and uncover the mechanism of action of promising anticancer agents.


Assuntos
Glicerofosfolipídeos , Indóis , Neoplasias , Compostos de Espiro , Humanos , Glicerofosfolipídeos/metabolismo , Lisofosfatidilcolinas/metabolismo , Lisossomos/metabolismo , Morte Celular , Neoplasias/metabolismo
15.
Adv Nutr ; 15(2): 100164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128611

RESUMO

Choline is essential for proper liver, muscle, brain, lipid metabolism, cellular membrane composition, and repair. Understanding genetic determinants of circulating choline metabolites can help identify new determinants of choline metabolism, requirements, and their link to disease endpoints. We conducted a scoping review to identify studies assessing the association of genetic polymorphisms on circulating choline and choline-related metabolite concentrations and subsequent associations with health outcomes. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement scoping review extension. Literature was searched to September 28, 2022, in 4 databases: Embase, MEDLINE, Web of Science, and the Biological Science Index. Studies of any duration in humans were considered. Any genome-wide association study (GWAS) investigating genetic variant associations with circulating choline and/or choline-related metabolites and any Mendelian randomization (MR) study investigating the association of genetically predicted circulating choline and/or choline-related metabolites with any health outcome were considered. Qualitative evidence is presented in summary tables. From 1248 total reviewed articles, 53 were included (GWAS = 27; MR = 26). Forty-two circulating choline-related metabolites were tested in association with genetic variants in GWAS studies, primarily trimethylamine N-oxide, betaine, sphingomyelins, lysophosphatidylcholines, and phosphatidylcholines. MR studies investigated associations between 52 total unique choline metabolites and 66 unique health outcomes. Of these, 47 significant associations were reported between 16 metabolites (primarily choline, lysophosphatidylcholines, phosphatidylcholines, betaine, and sphingomyelins) and 27 health outcomes including cancer, cardiovascular, metabolic, bone, and brain-related outcomes. Some articles reported significant associations between multiple choline types and the same health outcome. Genetically predicted circulating choline and choline-related metabolite concentrations are associated with a wide variety of health outcomes. Further research is needed to assess how genetic variability influences choline metabolism and whether individuals with lower genetically predicted circulating choline and choline-related metabolite concentrations would benefit from a dietary intervention or supplementation.


Assuntos
Betaína , Colina , Humanos , Estudo de Associação Genômica Ampla , Esfingomielinas , Análise da Randomização Mendeliana , Lisofosfatidilcolinas , Fosfatidilcolinas , Polimorfismo de Nucleotídeo Único
16.
Poult Sci ; 103(2): 103345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157790

RESUMO

Supplementation of a combination of lysolecithin, a synthetic emulsifier, and monoglycerides (LEX) in liquid and dry form to broiler diets with different energy levels was investigated to determine their effect on performance, litter quality and subsequent occurrence of footpad lesions. One thousand two hundred and forty-eight-day-old Ross 308 broilers were assigned to 1 of 6 treatments for a 42-day study: a basal diet with a normal energy content (NE); NE + 300 g/t LEX in liquid form (LEL); NE + 500 g/t LEX in dry form (LED); a basal diet with low energy (LE, -90 kcal/kg starter, -100 kcal/kg grower, finisher), LE + 300 g/t LEL and a LE + 500 g/t LED. Each treatment consisted of 13 pens of 16 birds each. Diets were fed in 3 phases (starter d 0-10, grower d 11-21, finisher d 22-42). Feed intake and weight were measured on d 0, 10, 21, and 42. On d 42 a litter sample was collected from each pen and 2 birds per pen were assessed for footpad lesions and breast scald. Data were analyzed using JMP 16, with means separation achieved using Tukey's HSD; significance was assumed at P < 0.05. Results showed a higher (P < 0.05) cumulative bodyweight gain with LEX supplementation (NE CON = 2,718 g, NE+LED = 2,829, NE+LEL = 2,895, LE CON = 2,722, LE+LED = 2,787, LE+LEL = 2,893; P = 0.0027). An increased feed intake was observed for the LE diets, however cumulative FCR of LE+LED and LE+LEL remained equal to the NE control (1.657 NE CON, 1.657 LE+LED, 1.623 LE+LEL; P > 0.05), suggesting LEX enabled the birds to compensate for the energy gap. Litter dry matter was significantly improved with both LED and LEL supplementation compared to the control groups, and resulted in lower (P < 0.05) occurrence and severity of footpad lesions and breast scalds. Considering the income over feed cost (IOFC) of the NE treatment as the reference point for comparison, all other treatments improved profitability, with NE+LEL and LE+LEL achieving the greatest IOFC with 154.58 and 175.96 €/1,000 birds respectively. In conclusion, feeding broilers a combination of lysophospholipids, a synthetic emulsifier and monoglycerides resulted in improved bird performance. The use of the LEX also improved litter quality and footpad health, therefore improving animal welfare indicators such as breast scald and footpad measurements.


Assuntos
Suplementos Nutricionais , Lisofosfatidilcolinas , Animais , Galinhas , Monoglicerídeos/farmacologia , Dieta/veterinária , Nutrientes , Emulsificantes/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
17.
Nutrients ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068753

RESUMO

Multiple studies have indicated that distinct metabolites are involved in the occurrence and development of osteopenia (ON) and osteoporosis (OP); however, these metabolites in OP and ON have not yet been classified and standardized. This systematic review and meta-analysis included 21 articles aiming to investigate the distinct metabolites in patients with ON and OP. The quality of the included articles was generally high; seventeen studies had >7 stars, and the remaining four received 6 stars. This systematic review showed that three metabolites (phosphatidylcholine (PC) (lipid metabolites), galactose (carbohydrate metabolites), and succinic acid (other metabolites)) increased, four (glycylglycine (gly-gly), cystine (amino acids), sphingomyelin (SM) (lipid metabolites) and glucose (carbohydrate metabolites)) decreased, and five (glutamine, hydroxyproline, taurine (amino acids), lysophosphatidylcholine (LPC) (lipid metabolites), and lactate (other metabolites)) had conflicting directions in OP/ON. The results of the meta-analysis show that gly-gly (MD = -0.77, 95%CI -1.43 to -0.11, p = 0.02) and cystine (MD = -5.52, 95%CI -7.35 to -3.68, p < 0.00001) decreased in the OP group compared with the healthy control group. Moreover, LPC (MD = 1.48, 95%CI 0.11 to 2.86, p = 0.03) increased in the OP group compared with the healthy control group. These results indicate that distinct metabolites were associated with ON and OP, which could be considered a predictor for OP.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Humanos , Cistina , Osteoporose/epidemiologia , Doenças Ósseas Metabólicas/complicações , Aminoácidos , Lisofosfatidilcolinas , Carboidratos
18.
Mol Nutr Food Res ; 67(24): e2200525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37909476

RESUMO

SCOPE: Aged laying hen is recently suggested as a more attractive animal model than rodent for studying nonalcoholic fatty liver disease (NAFLD) of humans. This study aims to reveal effects and metabolic regulation mechanisms of taurine alleviating NAFLD by using the aged laying hen model. METHODS AND RESULTS: Liver histomorphology and biochemical indices show 0.02% taurine effectively alleviated fat deposition and liver damage. Comparative liver lipidomics and gene expressions analyses reveal taurine promoted lipolysis, fatty acids oxidation, lipids transport, and reduced oxidative stress in liver. Furthermore, comparative serum metabolomics screen six core metabolites negatively correlated with NAFLD, including linoleic acid, gamma-linolenic acid, pantothenate, L-methionine, 2-methylbutyroylcarnitine, L-carnitine; and two core metabolites positively correlated with NAFLD, including lysophosphatidylcholine (14:0/0:0) and lysophosphatidylcholine (16:0/0:0). Metabolic pathway analysis reveals taurine mainly regulated linoleic acid metabolism, cysteine and methionine metabolism, carnitine metabolism, pantothenic acid and coenzyme A biosynthesis metabolism, and glycerophospholipid metabolism to up-adjust levels of six negatively correlated metabolites and down-adjust two positively correlated metabolites for alleviating NAFLD of aged hens. CONCLUSION: This study firstly reveals underlying metabolic mechanisms of taurine alleviating NAFLD using the aged hen model, thereby laying the foundation for taurine's application in the prevention of NAFLD in both human and poultry.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Humanos , Idoso , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Galinhas , Lipidômica , Taurina/farmacologia , Lisofosfatidilcolinas , Fígado/metabolismo , Metabolômica/métodos
19.
Proc Natl Acad Sci U S A ; 120(44): e2310174120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883437

RESUMO

α-synuclein (α-Syn) is a presynaptic protein that is involved in Parkinson's and other neurodegenerative diseases and binds to negatively charged phospholipids. Previously, we reported that α-Syn clusters synthetic proteoliposomes that mimic synaptic vesicles. This vesicle-clustering activity depends on a specific interaction of α-Syn with anionic phospholipids. Here, we report that α-Syn surprisingly also interacts with the neutral phospholipid lysophosphatidylcholine (lysoPC). Even in the absence of anionic lipids, lysoPC facilitates α-Syn-induced vesicle clustering but has no effect on Ca2+-triggered fusion in a single vesicle-vesicle fusion assay. The A30P mutant of α-Syn that causes familial Parkinson disease has a reduced affinity to lysoPC and does not induce vesicle clustering. Taken together, the α-Syn-lysoPC interaction may play a role in α-Syn function.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Vesículas Sinápticas/metabolismo , Lisofosfatidilcolinas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosfolipídeos/metabolismo
20.
Exp Biol Med (Maywood) ; 248(20): 1887-1894, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37837357

RESUMO

Lysophosphatidylcholine (LPC) is a bioactive lipid that has been shown to attenuate endothelium-dependent vasorelaxation contributing to endothelial dysfunction; however, the underlying mechanisms are not well understood. In this study, we investigated the molecular mechanisms involved in the development of LPC-evoked impairment of endothelium-dependent vasorelaxation. In aortic rings isolated from wild-type (WT) mice, a 20-min exposure to LPC significantly reduced the acetylcholine chloride (ACh)-induced vasorelaxation indicating the impairment of normal endothelial function. Interestingly, pharmacological inhibition of autotaxin (ATX) by GLPG1690 partially reversed the endothelial dysfunction, suggesting that lysophosphatidic acid (LPA) derived from LPC may be involved in the effect. Therefore, the effect of LPC was also tested in aortic rings isolated from different LPA receptor knock-out (KO) mice. LPC evoked a marked reduction in ACh-dependent vasorelaxation in Lpar1, Lpar2, and Lpar4 KO, but its effect was significantly attenuated in Lpar5 KO vessels. Furthermore, addition of superoxide dismutase reduced the LPC-induced endothelial dysfunction in WT but not in the Lpar5 KO mice. In addition, LPC increased H2O2 release from WT vessels, which was significantly reduced in Lpar5 KO vessels. Our findings indicate that the ATX-LPA-LPA5 receptor axis is involved in the development of LPC-induced impairment of endothelium-dependent vasorelaxation via LPA5 receptor-mediated reactive oxygen species production. Taken together, in this study, we identified a new pathway contributing to the development of LPC-induced endothelial dysfunction.


Assuntos
Peróxido de Hidrogênio , Receptores de Ácidos Lisofosfatídicos , Animais , Camundongos , Endotélio/metabolismo , Lisofosfatidilcolinas/farmacologia , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...