Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
Bioorg Chem ; 146: 107245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484587

RESUMO

The overuse of antibiotics has led to the enhanced resistance of many pathogenic bacteria, posing a threat to human health. Therefore, there is a need to develop green and safe alternatives to antibiotics. Beta-defensins play a crucial role in host defense against pathogens and have multifunctional properties, exerting key roles in innate and adaptive immunity, as well as non-immune processes. In this study, a 210 bp long cDNA sequence of yak DEFB114 gene was amplified and successfully expressed in a prokaryotic system. The DEFB114 protein exhibited significant inhibitory effects on the growth of Aspergillus fumigatus in vitro. When co-cultured with yak macrophages, DEFB114 protein enhanced macrophage phagocytic activity and increased nucleic acid fluorescence intensity (P < 0.05). DEFB114 protein also enhanced the activity of yak macrophages stimulated by inactivated Aspergillus fumigatus spores, increased the release of nitric oxide (NO), and promoted the expression of genes such as γ-actin, Lgals, Man2b, and Capg (P < 0.05). In mice experiments, DEFB114 protein promoted resistance against Aspergillus fumigatus infection, by regulating the NOD1/2-ATG16L1-NF-κB pathway to modulate the host immune response and exert its anti-infective effects. In summary, the yak DEFB114 protein could inhibit the growth of Aspergillus fumigatus and enhance the animal's resistance to pathogenic microorganisms, thereby having significant implications in the treatment and prevention of fungal infections.


Assuntos
Aspergilose , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Aspergilose/tratamento farmacológico , Aspergillus fumigatus , Antibacterianos , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo
2.
J Med Chem ; 67(4): 3004-3017, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38301029

RESUMO

NOD1 and NOD2 are members of the pattern recognition receptors involved in the innate immune response. Overactivation of NOD1 is implicated in inflammatory disorders, multiple sclerosis, and cancer cell metastases. NOD1 antagonists would represent valuable pharmacological tools to gain further insight into protein roles, potentially leading to new therapeutic strategies. We herein report the expansion of the chemical space of NOD1 antagonists via a multicomponent synthetic approach affording a novel chemotype, namely, 2,3-diaminoindoles. These efforts resulted in compound 37, endowed with low micromolar affinity toward NOD1. Importantly, a proof-of-evidence of direct binding to NOD1 of Noditinib-1 and derivative 37 is provided here for the first time. Additionally, the combination of computational studies and NMR-based displacement assays enabled the characterization of the binding modality of 37 to NOD1, thus providing key unprecedented knowledge for the design of potent and selective NOD1 antagonists.


Assuntos
Imunidade Inata , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2/metabolismo , Indóis/química , Indóis/metabolismo
3.
Stem Cell Res Ther ; 15(1): 38, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336763

RESUMO

BACKGROUND: Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) plays a pivotal role in inducing metabolic inflammation in diabetes. Additionally, the NOD1 ligand disrupts the equilibrium of bone marrow-derived hematopoietic stem/progenitor cells, a process that has immense significance in the development of diabetic retinopathy (DR). We hypothesized that NOD1 depletion impedes the advancement of DR by resolving bone marrow dysfunction. METHODS: We generated NOD1-/--Akita double-mutant mice and chimeric mice with hematopoietic-specific NOD1 depletion to study the role of NOD1 in the bone marrow-retina axis. RESULTS: Elevated circulating NOD1 activators were observed in Akita mice after 6 months of diabetes. NOD1 depletion partially restored diabetes-induced structural changes and retinal electrical responses in NOD1-/--Akita mice. Loss of NOD1 significantly ameliorated the progression of diabetic retinal vascular degeneration, as determined by acellular capillary quantification. The preventive effect of NOD1 depletion on DR is linked to bone marrow phenotype alterations, including a restored HSC pool and a shift in hematopoiesis toward myelopoiesis. We also generated chimeric mice with hematopoietic-specific NOD1 ablation, and the results further indicated that NOD1 had a protective effect against DR. Mechanistically, loss of hematopoietic NOD1 resulted in reduced bone marrow-derived macrophage infiltration and decreased CXCL1 and CXCL2 secretion within the retina, subsequently leading to diminished neutrophil chemoattraction and NETosis. CONCLUSIONS: The results of our study unveil, for the first time, the critical role of NOD1 as a trigger for a hematopoietic imbalance toward myelopoiesis and local retinal inflammation, culminating in DR progression. Targeting NOD1 in bone marrow may be a potential strategy for the prevention and treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Proteína Adaptadora de Sinalização NOD1 , Degeneração Retiniana , Animais , Camundongos , Medula Óssea/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/terapia , Células-Tronco Hematopoéticas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo
4.
Fish Shellfish Immunol ; 146: 109407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281612

RESUMO

As an ancient species with both conservation and commercial value, Sturgeon's inflammatory regulation mechanism is a research point. Nucleotide-binding and oligomerization domain-containing proteins 1 and 2 (NOD1/2) are classical intracellular pattern recognition receptors (PRRs) in immunity of anti-bacterial infection. However, the characterization and function of NOD1/2 in Sturgeon are still unclear. In this study, we analyzed the synteny relationship of NOD1/2 genes between Acipenser ruthenus and representative fishes at the genome-level. Results showed that the ArNOD2 collinear genes pair was present in all representative fishes. The duplicated ArNOD1/2 genes were under purifying selection during evolution as indicated by their Ka/Ks values. To explore the function of NOD1/2, we further investigated their expression patterns and the effects of pathogenic infection, PAMPs treatment, and siRNA interference in Acipenser baerii, the sibling species of A. ruthenus. Results showed that both AbNOD1/2 were expressed at early developmental stages and in different tissues. Pathogenic infection in vivo and PAMPs treatment in vitro demonstrated that AbNOD1/2 could respond to pathogen stimulation. siRNA interference with AbNOD1/2 inhibited expression levels of RIPK2 and inflammatory cytokines compared to the control group after iE-DAP or MDP treatment. This study hinted that the AbNOD1/2 could stimulate the inflammatory cytokines response during evolutionary processes.


Assuntos
Infecções Bacterianas , Moléculas com Motivos Associados a Patógenos , Animais , Peixes/genética , Citocinas , RNA Interferente Pequeno , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética
5.
Front Immunol ; 14: 1242659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869013

RESUMO

Nucleotide-binding oligomerization domain-containing proteins, NOD1 and NOD2, are cytosolic receptors that recognize dipeptides and tripeptides derived from the bacterial cell wall component peptidoglycan (PGN). During the past two decades, studies have revealed several roles for NODs beyond detecting PGN fragments, including activation of an innate immune anti-viral response, NOD-mediated autophagy, and ER stress induced inflammation. Recent studies have also clarified the dynamic regulation of NODs at cellular membranes to generate specific and balanced immune responses. This review will describe how NOD1 and NOD2 detect microbes and cellular stress and detail the molecular mechanisms that regulate activation and signaling while highlighting new evidence and the impact on inflammatory disease pathogenesis.


Assuntos
Proteínas Adaptadoras de Sinalização NOD , Proteína Adaptadora de Sinalização NOD1 , Humanos , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Inflamação , Nucleotídeos/metabolismo
6.
J Med Chem ; 66(21): 14391-14410, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37857324

RESUMO

Receptor interacting serine/threonine protein kinase 2 (RIPK2) is a downstream signaling molecule essential for the activation of several innate immune receptors, including the NOD-like receptors (NOD1 and NOD2). Recognition of pathogen-associated molecular pattern proteins by NOD1/2 leads to their interaction with RIPK2, which induces release of pro-inflammatory cytokines through the activation of NF-κB and MAPK pathways, among others. Thus, RIPK2 has emerged as a key mediator of intracellular signal transduction and represents a new potential therapeutic target for the treatment of various conditions, including inflammatory diseases and cancer. In this Perspective, first, an overview of the mechanisms that underlie RIPK2 function will be presented along with its role in several diseases. Then, the existing inhibitors that target RIPK2 and different therapeutic strategies will be reviewed, followed by a discussion on current challenges and outlook.


Assuntos
Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Transdução de Sinais , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , NF-kappa B/metabolismo , Citocinas/metabolismo , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2/metabolismo
7.
Innate Immun ; 29(8): 186-200, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828863

RESUMO

NOD1 and NOD2 sense small bacterial peptidoglycan fragments, often called muropeptides, that access the cytosol. These muropeptides include iE-DAP and MDP, the minimal agonists for NOD1 and NOD2, respectively. Here, we synthesized and validated alkyne-modified muropeptides, iE-DAP-Alk and MDP-Alk, for use in click-chemistry reactions. While it has long been known that many cell types respond to extracellular exposure to muropeptides, it is unclear how these innate immune activators access their cytosolic innate immune receptors, NOD1 and NOD2. The subcellular trafficking and transport mechanisms by which muropeptides access these cytosolic innate immune receptors are a major gap in our understanding of these critical host responses. The click-chemistry-enabled agonists developed here will be particularly powerful to decipher the underlying cell biology and biochemistry of NOD1 and NOD2 innate immune sensing.


Assuntos
Proteína Adaptadora de Sinalização NOD1 , Receptores Proteína Tirosina Quinases , Ácido Diaminopimélico/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo
8.
Int J Mol Med ; 52(4)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37654182

RESUMO

Fine particulate matter (PM2.5) is a type of small particle that is <2.5 µm in diameter that may cause airway inflammation. Thus, the present study aimed to explore the effects of PM2.5 on endoplasmic reticulum (ER) stress and airway inflammation in human airway epithelial cells. For this purpose, HBE135­E6E7 airway epithelial cells were cultured and exposed to specific concentrations of PM2.5 for various periods of time, and cell viability was determined using a Cell Counting Kit­8 assay. The results of the present study demonstrated that exposure to PM2.5 increased the mRNA and protein expression levels of interleukin (IL)­6, tumor necrosis factor (TNF)­α and mucin 5AC (MUC5AC). Moreover, the expression levels of ER stress­related proteins, such as glucose­regulated protein 78, CCAAT­enhancer binding protein homologous protein, activating transcription factor 6, protein kinase R­like ER kinase (PERK), phosphorylated (p­)PERK, inositol­requiring enzyme 1α (IRE1α) and p­IRE1α, and nucleotide­binding oligomerization domain 1 (NOD1) expression levels were increased following exposure to PM2.5. Transfection with IRE1α small interfering RNA (siRNA) led to the increased production of IL­6, TNF­α and MUC5AC. Moreover, the expression of NOD1 and the translocation of NF­κB p65 were inhibited following transfection with IRE1α siRNA. In addition, the results of the present study demonstrated that transfection with NOD1 siRNA decreased the production of IL­6, TNF­α and MUC5AC, and decreased the translocation of NF­κB p65. The expression levels of IL­6, TNF­α and MUC5AC were increased in the HBE135­E6E7 cells following treatment with C12­iE­DAP, a NOD1 agonist. Moreover, treatment with C12­iE­DAP led to the activation of NF­κB p65. Collectively, the results of the present study suggest that PM2.5 promotes airway inflammation and mucin production by activating ER stress in HBE135­E6E7 airway epithelial cells, and that the IRE1α/NOD1/NF­κB pathway may be involved in this process.


Assuntos
Mucinas , NF-kappa B , Humanos , Endorribonucleases/genética , Interleucina-6/genética , Fator de Necrose Tumoral alfa/genética , Proteínas Serina-Treonina Quinases/genética , Inflamação , RNA Interferente Pequeno , Proteína Adaptadora de Sinalização NOD1
9.
J Exp Clin Cancer Res ; 42(1): 236, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37684625

RESUMO

BACKGROUND: Fusobacterium nucleatum (Fn) acts as a procarcinogenic bacterium in colorectal carcinoma (CRC) by regulating the inflammatory tumor microenvironment (TME). Neutrophil extracellular traps (NETs), which can be generated by persistent inflammation, have been recently considered to be significant contributors in promoting cancer progression. However, whether NETs are implicated in Fn-related carcinogenesis is still poorly characterized. Here, we explored the role of NETs in Fn-related CRC as well as their potential clinical significance. METHODS: Fn was measured in tissue specimens and feces samples from CRC patients. The expression of NET markers were also detected in tissue specimens, freshly isolated neutrophils and blood serum from CRC patients, and the correlation of circulating NETs levels with Fn was evaluated. Cell-based experiments were conducted to investigate the mechanism by which Fn modulates NETs formation. In addition, we clarified the functional mechanism of Fn-induced NETs on the growth and metastasis of CRC in vitro and in vivo experiments. RESULTS: Tissue and blood samples from CRC patients, particularly those from Fn-infected CRC patients, exhibited greater neutrophil infiltration and higher NETs levels. Fn infection induced abundant NETs production in in vitro studies. Subsequently, we demonstrated that Fn-induced NETs indirectly accelerated malignant tumor growth through angiopoiesis, and facilitated tumor metastasis, as manifested by epithelial-mesenchymal transition (EMT)-related cell migration, matrix metalloproteinase (MMP)-mediated basement membrane protein degradation, and trapping of CRC cells. Mechanistically, the Toll-like receptor (TLR4)-reactive oxygen species (ROS) signaling pathway and NOD-like receptor (NOD1/2)-dependent signaling were responsible for Fn-stimulated NETs formation. More importantly, circulating NETs combined with carcinoembryonic antigen (CEA) could predict CRC occurrence and metastasis, with areas under the ROC curves (AUCs) of 0.92 and 0.85, respectively. CONCLUSIONS: Our findings indicated that Fn-induced NETs abundance by activating TLR4-ROS and NOD1/2 signalings in neutrophils facilitated CRC progression. The combination of circulating NETs and CEA was identified as a novel screening strategy for predicting CRC occurrence and metastasis.


Assuntos
Neoplasias Colorretais , Armadilhas Extracelulares , Fusobacterium nucleatum , Neutrófilos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Progressão da Doença , Humanos , Microambiente Tumoral , Inflamação , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Antígeno Carcinoembrionário/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Animais , Camundongos , Metástase Neoplásica
10.
FEBS J ; 290(22): 5292-5294, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37735823

RESUMO

NOD1 is a cytosolic immune receptor well known for recognizing intracellular bacteria and inducing innate immune responses. Upon ligand binding, it usually forms a complex with the serine/threonine kinase RIPK2 to activate the transcription factor NF-κB. Next to its role in pathogen recognition, NOD1 has been associated with cancer progression. In this regard, Hezinger et al. investigated a non-canonical role of NOD1 in cell migration. They discovered that NOD1 is crucial for the migration and chemotaxis of HeLa cells and identified HAX-1 as a novel interaction partner.


Assuntos
NF-kappa B , Transdução de Sinais , Humanos , Células HeLa , NF-kappa B/genética , NF-kappa B/metabolismo , Imunidade Inata , Movimento Celular , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo
11.
FEBS J ; 290(22): 5295-5312, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37488967

RESUMO

The human Nod-like receptor protein NOD1 is a well-described pattern-recognition receptor (PRR) with diverse functions. NOD1 associates with F-actin and its protein levels are upregulated in metastatic cancer cells. A hallmark of cancer cells is their ability to migrate, which involves actin remodelling. Using chemotaxis and wound healing assays, we show that NOD1 expression correlated with the migration rate and chemotactic index in the cervical carcinoma cell line HeLa. The effect of NOD1 in cell migration was independent of the downstream kinase RIPK2 and NF-ĸB activity. Additionally, NOD1 negatively regulated the phosphorylation status of cofilin, which inhibits actin turnover. Co-immunoprecipitation assays identified HCLS1-associated protein X-1 (HAX-1) as a previously unknown interaction partner of NOD1. Silencing of HAX-1 expression reduced the migration behaviour to similar levels as NOD1 knockdown, and simultaneous knockdown of NOD1 and HAX-1 showed no additive effect, suggesting that both proteins act in the same pathway. In conclusion, our data revealed an important role of the PRR NOD1 in regulating cell migration as well as chemotaxis in human cervical cancer cells and identified HAX-1 as a protein that interacts with NOD1 and is involved in this signalling pathway.


Assuntos
Actinas , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Actinas/metabolismo , Transdução de Sinais , Movimento Celular , Células HeLa , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo
12.
Helicobacter ; 28(5): e13002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37350445

RESUMO

BACKGROUND: Functional dyspepsia (FD) is a multifactorial disorder. Helicobacter pylori (H. pylori)-related dyspepsia (HpD) may be considered a separate entity. Duodenal eosinophilia is a potential pathogenic mechanism in FD. However, the impact of duodenal eosinophilia and host genetic polymorphism of innate and pro-inflammatory cascade, nucleotide-binding oligomerization domain 1 (NOD-1), and interleukin-1 beta (IL-1ß) in HpD was not explored. AIM: To evaluate the association of NOD1-796G>A and IL-1B-511C>T gene variants and low-grade duodenal eosinophilia in HpD. METHODS: A multicenter cross-sectional study was conducted. A total of 253 patients who met Rome-IV criteria were selected before upper endoscopy and 98 patients were included after unremarkable upper endoscopy and positive H. pylori in gastric biopsies were assessed. Clinical parameters, H. pylori cagA and duodenal histology, were evaluated. RESULTS: Sixty-four (65%) patients had epigastric pain syndrome (EPS), 24 (25%) postprandial distress syndrome (PDS), and 10 (10%) EPS/PDS overlap. FD subtypes were not associated with NOD1-796G>A and IL-1B-511C>T gene variants. Low-grade duodenal eosinophilia was significantly increased in NOD1-796 GG versus single A-allele, but not in IL-1B-511 single T-allele or CC-allele. This association is dependent of cagA infection, since harboring cagA strain was significantly associated with low-grade duodenal eosinophilia with isolated variants NOD1-796 GG and IL-1B-511 single T-allele, but not without cagA. When we performed combined polymorphism analysis with NOD1-796 GG/IL-1B-511 single T-allele, a synergistic effect on low-grade duodenal eosinophilia was found between these two loci irrespective of cagA strain status in HpD. CONCLUSION: Our findings suggest that low-grade duodenal eosinophilia is significantly associated with NOD1-796 GG allele specially in cagA strain and with allelic combination NOD1-796 GG/IL-1B-511 single T-allele independent of cagA strain infection in HpD patients.


Assuntos
Dispepsia , Eosinofilia , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Estudos Transversais , Dispepsia/genética , Dispepsia/complicações , Eosinofilia/complicações , Gastrite/complicações , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Polimorfismo Genético
13.
Nat Commun ; 14(1): 3804, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365163

RESUMO

The interleukin-1 family members, IL-1ß and IL-18, are processed into their biologically active forms by multi-protein complexes, known as inflammasomes. Although the inflammasome pathways that mediate IL-1ß processing in myeloid cells have been defined, those involved in IL-18 processing, particularly in non-myeloid cells, are still not well understood. Here we report that the host defence molecule NOD1 regulates IL-18 processing in mouse epithelial cells in response to the mucosal pathogen, Helicobacter pylori. Specifically, NOD1 in epithelial cells mediates IL-18 processing and maturation via interactions with caspase-1, instead of the canonical inflammasome pathway involving RIPK2, NF-κB, NLRP3 and ASC. NOD1 activation and IL-18 then help maintain epithelial homoeostasis to mediate protection against pre-neoplastic changes induced by gastric H. pylori infection in vivo. Our findings thus demonstrate a function for NOD1 in epithelial cell production of bioactive IL-18 and protection against H. pylori-induced pathology.


Assuntos
Células Epiteliais , Infecções por Helicobacter , Interleucina-18 , Proteína Adaptadora de Sinalização NOD1 , Animais , Camundongos , Células Epiteliais/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Proteína Adaptadora de Sinalização NOD1/metabolismo
14.
Immunity ; 56(5): 897-900, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37163988

RESUMO

How pattern recognition receptors NOD1 and NOD2 sense bacterial muropeptides from extracellular bacteria to drive keratinocyte inflammation remains unclear. In this issue of Immunity, Bharadwaj et al. show that the solute carrier 46A2 (SLC46A2) delivers DAP-muropeptides into the cytosol to drive NOD1 activation in keratinocytes and elicit skin inflammation during psoriasis.


Assuntos
Inflamação , Receptores de Reconhecimento de Padrão , Humanos , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo
15.
Immunobiology ; 228(3): 152394, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37224660

RESUMO

BACKGROUND: Dermatophagoides pteronyssinus (D. pteronyssinus) is the main cause of allergic airway inflammation. As the earliest intracytoplasmic pathogen recognition receptors (PRR), NOD1 has been identified as key inflammatory mediator in NOD-like receptor (NLR) family. OBJECTIVE: Our primary aim is to elucidate whether NOD1 and its downstream regulatory proteins mediate D. pteronyssinus-induced allergic airway inflammation. METHODS: Mouse and cell models of D. pteronyssinus-induced allergic airway inflammation were established. NOD1 was inhibited in bronchial epithelium cells (BEAS-2B cells) and mice by cell transfection or application of inhibitor. The change of downstream regulatory proteins was detected by quantitative real-time PCR (qRT-PCR) and Western blot. The relative expression of inflammatory cytokines was evaluated by ELISA. RESULTS: The expression level of NOD1 and its downstream regulatory proteins increased in BEAS-2B cells and mice after treating with D. pteronyssinus extract, followed by the aggravation of inflammatory response. Moreover, inhibition of NOD1 decreased the inflammatory response, which also downregulated the expression of downstream regulatory proteins and inflammatory cytokines. CONCLUSIONS: NOD1 involves in the development of D. pteronyssinus-induced allergic airway inflammation. Inhibition of NOD1 reduces D. pteronyssinus-induced airway inflammation.


Assuntos
Inflamação , NF-kappa B , Proteína Adaptadora de Sinalização NOD1 , Animais , Camundongos , Alérgenos , Citocinas/metabolismo , Células Epiteliais/metabolismo , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Humanos
16.
Immunity ; 56(5): 998-1012.e8, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37116499

RESUMO

Cytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms. We previously implicated SLC46 transporters in muropeptide transport in Drosophila immunity. Here, we focused on Slc46a2, which was highly expressed in mammalian epidermal keratinocytes, and showed that it was critical for the delivery of diaminopimelic acid (DAP)-muropeptides and activation of NOD1 in keratinocytes, whereas the related transporter Slc46a3 was critical for delivering the NOD2 ligand MDP to keratinocytes. In a mouse model, Slc46a2 and Nod1 deficiency strongly suppressed psoriatic inflammation, whereas methotrexate, a commonly used psoriasis therapeutic, inhibited Slc46a2-dependent transport of DAP-muropeptides. Collectively, these studies define SLC46A2 as a transporter of NOD1-activating muropeptides, with critical roles in the skin barrier, and identify this transporter as an important target for anti-inflammatory intervention.


Assuntos
Dermatite , Metotrexato , Camundongos , Animais , Metotrexato/farmacologia , Inflamação , Peptidoglicano/metabolismo , Células Epiteliais/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Imunidade Inata , Mamíferos
17.
Front Endocrinol (Lausanne) ; 14: 1136067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923216

RESUMO

Background: The most aggressive subtype of breast cancer, triple-negative breast cancer (TNBC), has a worse prognosis and a higher probability of relapse since there is a narrow range of treatment options. Identifying and testing potential therapeutic targets for the treatment of TNBC is of high priority. Methods: Using a transcriptional signature of triple-negative breast cancer collected from Gene Expression Omnibus (GEO), CMap was utilized to reposition compounds for the treatment of TNBC. CCK8 and colony formation experiments were performed to detect the effect of the candidate drug on the proliferation of TNBC cells. Meanwhile, transwell and wound healing assay were implemented to detect cell metastasis change caused by the candidate drug. Moreover, the proteomic approach was presently ongoing to evaluate the underlying mechanism of the candidate drug in TNBC. Furthermore, drug affinity responsive target stability (DARTS) coupled with LC-MS/MS was carried out to explore the potential drug target candidate in TNBC cells. Results: We found that the most widely used medication, eugenol, reduced the growth and metastasis of TNBC cells. According to the underlying mechanism revealed by proteomics, eugenol could inhibit TNBC cell proliferation and metastasis via the NOD1-NF-κB signaling pathway. DARTS experiment further revealed that eugenol may bind to NF-κB in TNBC cells. Concludes: Our findings pointed out that eugenol was a potential candidate drug for the treatment of TNBC.


Assuntos
NF-kappa B , Neoplasias de Mama Triplo Negativas , Humanos , NF-kappa B/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Eugenol/farmacologia , Eugenol/uso terapêutico , Proteômica , Cromatografia Líquida , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Espectrometria de Massas em Tandem , Transdução de Sinais , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD1/farmacologia
18.
Life Sci ; 316: 121400, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657640

RESUMO

AIMS: Activation of specific innate immune receptors has been characterized to modulate nutrient metabolism in individual metabolic tissue directly or indirectly via secretory molecules. Activation of the nucleotide-binding oligomerization domain-containing protein 1 (NOD1) in adipocytes has been reported to induce lipolysis linked with insulin resistance and inflammatory response. These cues are positioned to modulate metabolic action in distal organs through paracrine/endocrine signaling. Here, we assessed the role of NOD1-mediated lipolysis and inflammatory response in adipocytes to affect lipid metabolism in hepatocytes. MAIN METHODS: Human hepatoma cells (HepG2) were exposed to conditioned medium obtained from 3 T3-L1 adipocytes pretreated with NOD1 ligand (iE-DAP) and the effects on lipid accumulation, inflammation and insulin response were assessed. Activation of mechanisms leading to hepatic lipid accumulation was investigated by gene expression analysis. KEY FINDINGS: The conditioned medium from NOD1-activated 3 T3-L1 adipocytes (CM-DAP) induced lipid accumulation in HepG2 cells, driven by both lipolysis and inflammatory responses. The CM-DAP-induced lipid accumulation was independent to de novo lipogenesis and resulted from the enhanced transport of fatty acids inside and consequent increase in rate of triglycerides synthesis in hepatocytes. Moreover, CM-DAP-induced lipid accumulation instigated the expression of the markers of fatty acid oxidation and VLDL assembly for the export of triglycerides from hepatocyte. Furthermore, CM-DAP-induced lipid accumulation was associated with induction of inflammatory response and impairment of insulin signaling in HepG2 cells. SIGNIFICANCE: Beyond showing liver-specific mechanisms to adipocytes-derived factors, our findings support the involvement of adipose tissue as a mediator in NOD1-mediated biological responses to modulate hepatic metabolism.


Assuntos
Adipócitos , Insulina , Animais , Camundongos , Humanos , Células Hep G2 , Células 3T3-L1 , Meios de Cultivo Condicionados/metabolismo , Adipócitos/metabolismo , Insulina/metabolismo , Triglicerídeos/metabolismo , Lipídeos , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo
19.
J Child Neurol ; 38(1-2): 38-43, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36544356

RESUMO

Background: Subacute sclerosing panencephalitis is a progressive neurodegenerative disease that is a late complication of measles infection. However, to date, the pathogenesis of subacute sclerosing panencephalitis is still not explained; both viral and host factors seem to be associated. The present study aimed to investigate the relationship between NOD1 and NOD2 gene variants and subacute sclerosing panencephalitis. Methods: The gene variants of NOD1 (rs2075820 and rs2075818) and NOD2 (R334Q and R334W) were explored in 64 subacute sclerosing panencephalitis patients and 70 controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: The frequencies of the AA genotype and A allele of rs2075820 (NOD1; c.796G>A) polymorphism were lower in patients compared with controls (P = .022 and .014, respectively). The presence of the A allele of rs2075820 may be considered as a protective factor for subacute sclerosing panencephalitis. There was a significant difference between the groups in rs2075818 (NOD1 G/C) polymorphism, and the CC genotype increased the risk of subacute sclerosing panencephalitis by 3.471-fold. The carriers of the C allele of rs2075818 (G/C) had a 1.855-fold susceptibility to subacute sclerosing panencephalitis (P = .018). The GC genotype might be associated with subacute sclerosing panencephalitis susceptibility in the patients compared with patients without having that haplotype (P = .03). Conclusions: Thus, we identified an association between subacute sclerosing panencephalitis and the rs2075820 (NOD1 G/A) and rs2075818 (NOD1 G/C) polymorphisms. These findings implicate a possible effect of this genetic polymorphism in susceptibility to subacute sclerosing panencephalitis, which needs to be confirmed in bigger populations.


Assuntos
Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Panencefalite Esclerosante Subaguda/genética , Polimorfismo Genético , Genótipo , Reação em Cadeia da Polimerase , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética
20.
Front Immunol ; 13: 1004439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268029

RESUMO

Hepatocytes and liver-resident antigen-presenting cells are exposed to microbe-associated molecular patterns (MAMPs) and microbial metabolites, which reach the liver from the gut via the portal vein. MAMPs induce innate immune responses via the activation of pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), nucleotide-binding oligomerization domain 1 (NOD1), and NOD2. Such proinflammatory cytokine responses mediated by PRRs likely contribute to the development of chronic liver diseases and hepatocellular carcinoma (HCC), as shown by the fact that activation of TLRs and subsequent production of IL-6 and TNF-α is required for the generation of chronic fibroinflammatory responses and hepatocarcinogenesis. Similar to TLRs, NOD1 and NOD2 recognize MAMPs derived from the intestinal bacteria. The association between the activation of NOD1/NOD2 and chronic liver diseases is poorly understood. Given that NOD1 and NOD2 can regulate proinflammatory cytokine responses mediated by TLRs both positively and negatively, it is likely that sensing of MAMPs by NOD1 and NOD2 affects the development of chronic liver diseases, including HCC. Indeed, recent studies have highlighted the importance of NOD1 and NOD2 activation in chronic liver disorders. Here, we summarize the roles of NOD1 and NOD2 in hepatocarcinogenesis and liver injury.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Citocinas/metabolismo , Nucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...