Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474005

RESUMO

Perturbations in bilayer material properties (thickness, lipid intrinsic curvature and elastic moduli) modulate the free energy difference between different membrane protein conformations, thereby leading to changes in the conformational preferences of bilayer-spanning proteins. To further explore the relative importance of curvature and elasticity in determining the changes in bilayer properties that underlie the modulation of channel function, we investigated how the micelle-forming amphiphiles Triton X-100, reduced Triton X-100 and the HII lipid phase promoter capsaicin modulate the function of alamethicin and gramicidin channels. Whether the amphiphile-induced changes in intrinsic curvature were negative or positive, amphiphile addition increased gramicidin channel appearance rates and lifetimes and stabilized the higher conductance states in alamethicin channels. When the intrinsic curvature was modulated by altering phospholipid head group interactions, however, maneuvers that promote a negative-going curvature stabilized the higher conductance states in alamethicin channels but destabilized gramicidin channels. Using gramicidin channels of different lengths to probe for changes in bilayer elasticity, we found that amphiphile adsorption increases bilayer elasticity, whereas altering head group interactions does not. We draw the following conclusions: first, confirming previous studies, both alamethicin and gramicidin channels are modulated by changes in lipid bilayer material properties, the changes occurring in parallel yet differing dependent on the property that is being changed; second, isolated, negative-going changes in curvature stabilize the higher current levels in alamethicin channels and destabilize gramicidin channels; third, increases in bilayer elasticity stabilize the higher current levels in alamethicin channels and stabilize gramicidin channels; and fourth, the energetic consequences of changes in elasticity tend to dominate over changes in curvature.


Assuntos
Gramicidina , Bicamadas Lipídicas , Octoxinol , Gramicidina/farmacologia , Bicamadas Lipídicas/metabolismo , Elasticidade , Peptaibols
2.
J Agric Food Chem ; 72(12): 6315-6326, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470442

RESUMO

Eco-friendly bioherbicides are urgently needed for managing the problematic weed Amaranthus retroflexus. A mass spectrometry- and bioassay-guided screening approach was employed to identify phytotoxic secondary metabolites from fungi for the development of such bioherbicides. This effort led to the discovery of six phytotoxic 16-residue peptaibols, including five new compounds (2-6) and a known congener (1), from Emericellopsis sp. XJ1056. Their planar structures were elucidated through the analysis of tandem mass and NMR spectroscopic data. The absolute configurations of the chiral amino acids were determined by advanced Marfey's method and chiral-phase liquid chromatography-mass spectrometry (LC-MS) analysis. Bioinformatic analysis and targeted gene disruption identified the biosynthetic gene cluster for these peptaibols. Compounds 1 and 2 significantly inhibited the radicle growth of A. retroflexus seedlings, and 1 demonstrated potent postemergence herbicidal activity against A. retroflexus while exhibiting minimal toxicity to Sorghum bicolor. Structure-activity relationship analysis underscored the importance of trans-4-hydroxy-l-prolines at both the 10th and 13th positions for the herbicidal activities of these peptaibols.


Assuntos
Herbicidas , Hypocreales , Peptaibols/química , Peptaibols/farmacologia , Herbicidas/farmacologia , Aminoácidos/metabolismo , Espectrometria de Massas , Hypocreales/metabolismo
3.
Cell Chem Biol ; 31(2): 312-325.e9, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995692

RESUMO

Our previous study identified 52 antiplasmodial peptaibols isolated from fungi. To understand their antiplasmodial mechanism of action, we conducted phenotypic assays, assessed the in vitro evolution of resistance, and performed a transcriptome analysis of the most potent peptaibol, HZ NPDG-I. HZ NPDG-I and 2 additional peptaibols were compared for their killing action and stage dependency, each showing a loss of digestive vacuole (DV) content via ultrastructural analysis. HZ NPDG-I demonstrated a stepwise increase in DV pH, impaired DV membrane permeability, and the ability to form ion channels upon reconstitution in planar membranes. This compound showed no signs of cross resistance to targets of current clinical candidates, and 3 independent lines evolved to resist HZ NPDG-I acquired nonsynonymous changes in the P. falciparum multidrug resistance transporter, pfmdr1. Conditional knockdown of PfMDR1 showed varying effects to other peptaibol analogs, suggesting differing sensitivity.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Peptaibols/metabolismo , Peptaibols/farmacologia , Antimaláricos/farmacologia , Proteínas de Membrana Transportadoras , Permeabilidade da Membrana Celular
4.
Chin J Nat Med ; 21(11): 868-880, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035942

RESUMO

From the fungus Trichoderma sp., we isolated seven novel 18-residue peptaibols, neoatroviridins E-K (1-7), and six new 14-residue peptaibols, harzianins NPDG J-O (8-13). Additionally, four previously characterized 18-residue peptaibols neoatroviridins A-D (14-17) were also identified. The structural configurations of the newly identified peptaibols (1-13) were determined by comprehensive nuclear magnetic resonance (NMR) and high-resolution electrospray ionization tandem mass spectrometry (HR-ESI-MS/MS) data. Their absolute configurations were further determined using Marfey's method. Notably, compounds 12 and 13 represent the first 14-residue peptaibols containing an acidic amino acid residue. In antimicrobial assessments, all 18-residue peptaibols (1-7, 14-17) exhibited moderate inhibitory activities against Staphylococcus aureus 209P, with minimum inhibitory concentration (MIC) values ranging from 8-32 µg·mL-1. Moreover, compound 9 exhibited moderate inhibitory effect on Candida albicans FIM709, with a MIC value of 16 µg·mL-1.


Assuntos
Anti-Infecciosos , Trichoderma , Peptaibols/farmacologia , Peptaibols/química , Trichoderma/química , Trichoderma/metabolismo , Espectrometria de Massas em Tandem/métodos , Anti-Infecciosos/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
J Agric Food Chem ; 71(47): 18385-18394, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888752

RESUMO

Pseudodiploöspora longispora (previously known as Diploöspora longispora) is a pathogenic fungus of Morchella mushrooms. The molecular mechanism underlying the infection of P. longispora in fruiting bodies remains unknown. In this study, three known peptaibols, alamethicin F-50, polysporin B, and septocylindrin B (1-3), and a new analogue, longisporin A (4), were detected and identified in the culture of P. longispora and the fruiting bodies of M. sextelata infected by P. longispora. The primary amino sequence of longisporin A is defined as Ac-Aib1-Pro2-Aib3-Ala4-Aib5-Aib6-Gln7-Aib8-Val9-Aib10-Glu11-Leu12-Aib13-Pro14-Val15-Aib16-Aib17-Gln18-Gln19-Phaol20. The peptaibols 1-4 greatly suppressed the mycelial growth of M. sextelata. In addition, treatment with alamethicin F-50 produced damage on the cell wall and membrane of M. sextelata. Compounds 1-4 also exhibited inhibitory activities against human pathogens including Aspergillus fumigatus, Candida albicans, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, and plant pathogen Verticillium dahlia. Herein, peptaibols are confirmed as virulence factors involved in the invasion of P. longispora on Morchella, providing insights into the interaction between pathogenic P. longispora and mushrooms.


Assuntos
Agaricales , Ascomicetos , Staphylococcus aureus Resistente à Meticilina , Humanos , Peptaibols/farmacologia , Candida albicans , Antibacterianos/farmacologia
6.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686199

RESUMO

Peptaibols are proteolysis-resistant, membrane-active peptides. Their remarkably stable helical 3D-structures are key for their bioactivity. They can insert themselves into the lipid bilayer as barrel staves, or lay on its surface like carpets, depending on both their length and the thickness of the lipid bilayer. Medium-length peptaibols are of particular interest for studying the peptide-membrane interaction because their length allows them to adopt either orientation as a function of the membrane thickness, which, in turn, might even result in an enhanced selectivity. Electron paramagnetic resonance (EPR) is the election technique used to this aim, but it requires the synthesis of spin-labeled medium-length peptaibols, which, in turn, is hampered by the poor reactivity of the Cα-tetrasubstituted residues featured in their sequences. After several years of trial and error, we are now able to give state-of-the-art advice for a successful synthesis of nitroxide-containing peptaibols, avoiding deleted sequences, side reactions and difficult purification steps. Herein, we describe our strategy and itsapplication to the synthesis of spin-labeled analogs of the recently discovered, natural, medium-length peptaibol pentadecaibin. We studied the antitumor activity of pentadecaibin and its analogs, finding potent cytotoxicity against human triple-negative breast cancer and ovarian cancer. Finally, our analysis of the peptide conformational preferences and membrane interaction proved that pentadecaibinspin-labeling does not alter the biological features of the native sequence and is suitable for further EPR studies. The nitroxide-containing pentadecaibins, and their synthetic strategy described herein, will help to shed light on the mechanism of the peptide-membrane interaction of medium-length peptaibols.


Assuntos
Anti-Infecciosos , Peptaibols , Humanos , Peptaibols/farmacologia , Marcadores de Spin , Bicamadas Lipídicas , Anti-Infecciosos/farmacologia
7.
Drug Metab Bioanal Lett ; 16(2): 121-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37612873

RESUMO

BACKGROUND: Saccharolactone is used as a ß-glucuronidase inhibitor in in vitro microsomal and recombinant uridine diphosphoglucuronosyl transferases (rUGTs) incubations to enhance glucuronide pathway and, thereby, formation of glucuronide metabolites. We investigated its effect on CYP mediated metabolism of drugs (compound-174, phenacetin and quinidine) using human liver microsomes (HLM) supplemented with Phase-1 and Phase-2 co-factors. METHODS: Compounds were incubated in HLM supplemented with co-factors to assess Phase-1 (NADPH) and Phase-2 (NADPH, alamethicin, saccharolactone and UDPGA) metabolism. CYP phenotype assay for compound-174 was conducted in HLM (± 1-ABT) and human recombinant CYP isoforms. CYP inhibition profile of saccharolactone was also generated in HLM. RESULTS: The metabolism of compound-174, phenacetin and quinidine in HLM significantly decreased in reactions containing additional components like alamethicin, saccharolactone and UDPGA and indicated that the addition of saccharolactone inhibited the metabolism. Phenacetin and quinidine are known substrates of CYP1A2 and CYP3A4 isoforms. The metabolism of compound- 174 was significantly inhibited in the presence of 1-ABT in HLM, and CYP3A4 and CYP2C8 isoforms were found to be the predominant isoforms responsible for its metabolism. Further evaluation of CYP inhibition in HLM indicated saccharolactone to be a strong inhibitor of CYP1A2, 2D6, 3A4 and 2C8 isoforms with IC50 values of less than 4 mM. CONCLUSION: The findings indicated that saccharolactone being a strong inhibitor of CYP1A2, 2D6, 3A4 and 2C8 isoforms (IC50 < 4 mM), resulted in significant inhibition of the metabolism of compound-174, phenacetin and quinidine in HLM and caution should be exercised in using it with proper titration of the concentrations.


Assuntos
Citocromo P-450 CYP1A2 , Sistema Enzimático do Citocromo P-450 , Humanos , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP3A/metabolismo , Glucuronídeos/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo , Quinidina/farmacologia , Xenobióticos/farmacologia , NADP/metabolismo , Fenacetina/metabolismo , Microssomos Hepáticos , Isoformas de Proteínas/metabolismo , Peptaibols/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(25): e2219373120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37319116

RESUMO

Fungus-growing ants depend on a fungal mutualist that can fall prey to fungal pathogens. This mutualist is cultivated by these ants in structures called fungus gardens. Ants exhibit weeding behaviors that keep their fungus gardens healthy by physically removing compromised pieces. However, how ants detect diseases of their fungus gardens is unknown. Here, we applied the logic of Koch's postulates using environmental fungal community gene sequencing, fungal isolation, and laboratory infection experiments to establish that Trichoderma spp. can act as previously unrecognized pathogens of Trachymyrmex septentrionalis fungus gardens. Our environmental data showed that Trichoderma are the most abundant noncultivar fungi in wild T. septentrionalis fungus gardens. We further determined that metabolites produced by Trichoderma induce an ant weeding response that mirrors their response to live Trichoderma. Combining ant behavioral experiments with bioactivity-guided fractionation and statistical prioritization of metabolites in Trichoderma extracts demonstrated that T. septentrionalis ants weed in response to peptaibols, a specific class of secondary metabolites known to be produced by Trichoderma fungi. Similar assays conducted using purified peptaibols, including the two previously undescribed peptaibols trichokindins VIII and IX, suggested that weeding is likely induced by peptaibols as a class rather than by a single peptaibol metabolite. In addition to their presence in laboratory experiments, we detected peptaibols in wild fungus gardens. Our combination of environmental data and laboratory infection experiments strongly support that peptaibols act as chemical cues of Trichoderma pathogenesis in T. septentrionalis fungus gardens.


Assuntos
Formigas , Infecção Laboratorial , Trichoderma , Animais , Formigas/fisiologia , Jardins , Sinais (Psicologia) , Simbiose , Peptaibols
9.
Biophys J ; 122(12): 2531-2543, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37161094

RESUMO

Transmembrane assemblies of the peptaibol alamethicin (ALM) are among the most extensively studied ion channels not only because of their antimicrobial activity but also as models for channel structure and aggregation. In this study, several oligomeric states of ALM are investigated with molecular dynamics simulations to establish properties of the channel and obtain free energy profiles for ion transport and the corresponding values of conductance. The hexamer, heptamer, and octamer of ALM in phospholipid membrane are found to be stable but highly dynamic in barrel-stave structures, with calculated conductance equal to 18, 195, and 1270 pS, respectively, in 1 M KCl ion solution. The corresponding free energy profiles, reported for the first time, are reconstructed from simulations at applied voltage of 200 mV with the aid of the electrodiffusion model both with and without the knowledge of diffusivity. The calculated free energy barriers are equal to 2.5, 1.5, and 0.5 kcal/mol for K+ and 4.0, 2.2, and 1.5 kcal/mol for Cl-, for hexamer, heptamer, and octamer, respectively. The calculated conductance and the ratio between conductance in consecutive states are in good agreement with those measured experimentally. This suggests that the hexamer is the lowest conducting state, with measured conductance equal to 19 pS. The selectivity of K+ over Cl- is calculated as 1.5 and 2.3 for the octameric and heptameric channels, close to the selectivity measured for high-conductance states. Selectivity increases to 13 in the hexameric channel in which the narrowest Gln7 site has a pore radius of only ∼1.6 Å, again in accord with experiment. A good agreement found between calculated and measured conductance through a hexamer templated on cyclodextrin lands additional support for the results of our simulations, and the comparison with ALM reveals the dependence of conductance on the nature of phospholipid membrane.


Assuntos
Alameticina , Canais Iônicos , Alameticina/química , Simulação de Dinâmica Molecular , Peptaibols , Fosfolipídeos
10.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175704

RESUMO

New classes of antibacterial drugs are urgently needed to address the global issue of antibiotic resistance. In this context, peptaibols are promising membrane-active peptides since they are not involved in innate immunity and their antimicrobial activity does not involve specific cellular targets, therefore reducing the chance of bacterial resistance development. Trichogin GA IV is a nonhemolytic, natural, short-length peptaibol active against Gram-positive bacteria and resistant to proteolysis. In this work, we report on the antibacterial activity of cationic trichogin analogs. Several peptides appear non-hemolytic and strongly active against many clinically relevant bacterial species, including antibiotic-resistant clinical isolates, such as Staphylococcus aureus, Acinetobacter baumannii, and extensively drug-resistant Pseudomonas aeruginosa, against which there are only a limited number of antibiotics under development. Our results further highlight how the modification of natural peptides is a valuable strategy for obtaining improved antibacterial agents with potential therapeutic applications.


Assuntos
Acinetobacter baumannii , Peptaibols , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Farmacorresistência Bacteriana Múltipla
11.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982610

RESUMO

In the large field of bioactive peptides, peptaibols represent a unique class of compounds. They are membrane-active peptides, produced by fungi of the genus Trichoderma and known to elicit plant defenses. Among the short-length peptaibols, trichogin GA IV is nonhemolytic, proteolysis-resistant, antibacterial, and cytotoxic. Several trichogin analogs are endowed with potent activity against phytopathogens, thus representing a sustainable alternative to copper for plant protection. In this work, we tested the activity of trichogin analogs against a breast cancer cell line and a normal cell line of the same derivation. Lys-containing trichogins showed an IC50 below 12 µM, a peptide concentration not significantly affecting the viability of normal cells. Two analogs were found to be membrane-active but noncytotoxic. They were anchored to gold nanoparticles (GNPs) and further investigated for their ability to act as targeting agents. GNP uptake by cancer cells increased with peptide decoration, while it decreased in the corresponding normal epithelial cells. This work highlights the promising biological properties of peptaibol analogs in the field of cancer therapy either as cytotoxic molecules or as active targeting agents in drug delivery.


Assuntos
Hypocreales , Nanopartículas Metálicas , Trichoderma , Ouro/farmacologia , Ouro/metabolismo , Peptaibols/farmacologia , Peptaibols/metabolismo , Hypocreales/metabolismo , Trichoderma/metabolismo
12.
J Nat Prod ; 86(4): 994-1002, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36947873

RESUMO

Seven new 18-residue peptaibols, trichorzins A-G (1-7), were isolated from the sponge-derived fungus Trichoderma sp. GXIMD 01001. Their structures and configurations were characterized by a comprehensive interpretation of the NMR spectroscopic data, MS/MS fragmentation, Marfey's method, and ECD analysis. The general sequences of trichorzins A-G are as follows: Ac-Aib1-Ala/Ser2-Ala3-Aib/Iva4-Iva5-Gln6-Aib/Iva7-Val/allo-Ile8-Aib9-Gly10-Leu11-Aib12-Pro13-Leu14-Aib15-Aib16-Gln17-Trpol/Pheol18. The obtained compounds were assessed for their potential antiproliferative and antimicrobial activities. All obtained compounds did not show potent antibacterial activity but exhibited significant cytotoxicity, with the lowest IC50 values at 0.46-4.7 µM against four human carcinoma cell lines.


Assuntos
Peptaibols , Trichoderma , Humanos , Peptaibols/química , Trichoderma/química , Espectrometria de Massas em Tandem , Antibacterianos/química
13.
Plant Dis ; 107(9): 2643-2652, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36724095

RESUMO

Plasmopara viticola, the agent of grapevine downy mildew, causes enormous economic damage, and its control is primarily based on the use of synthetic fungicides. The European Union policies promote reducing reliance on synthetic plant protection products. Biocontrol agents such as Trichoderma spp. constitute a resource for the development of biopesticides. Trichoderma spp. produce secondary metabolites such as peptaibols, but the poor water solubility of peptaibols limits their practical use as agrochemicals. To identify new potential bio-inspired molecules effective against P. viticola, various water-soluble peptide analogs of the peptaibol trichogin were synthesized. In grapevine leaf disk assays, the peptides analogs at a concentration of 50 µM completely prevented P. viticola infection after zoosporangia inoculation. Microscopic observations of one of the most effective peptides showed that it causes membrane lysis and cytoplasmic granulation in both zoosporangia and zoospores. Among the effective peptides, 4r was selected for a 2-year field trial experiment. In the vineyard, the peptide administered at 100 µM (equivalent to 129.3 g/ha) significantly reduced the disease incidence and severity on both leaves and bunches, with protection levels similar to those obtained using a cupric fungicide. In the second-year field trial, reduced dosages of the peptide were also tested, and even at the peptide concentration reduced by 50 or 75%, a significant decrease in the disease incidence and severity was obtained at the end of the trial. The peptide did not show any phytotoxic effect. Previously, peptide 4r had been demonstrated to be active against other fungal pathogens, including the grapevine fungus Botrytis cinerea. Thus, this peptide may be a candidate for a broad-spectrum fungicide whose biological properties deserve further investigation.


Assuntos
Oomicetos , Peronospora , Trichoderma , Vitis , Peptaibols/metabolismo , Peptaibols/farmacologia , Fazendas , Vitis/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Água
14.
J Pept Sci ; 29(8): e3479, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36652104

RESUMO

Peptaibols are naturally occurring, antimicrobial peptides endowed with well-defined helical conformations and resistance to proteolysis. Both features stem from the presence in their sequence of several, Cα -tetrasubstituted, α-aminoisobutyric acid (Aib) residues. Peptaibols interact with biological membranes, usually causing their leakage. All of the peptaibol-membrane interaction mechanisms proposed so far begin with peptide aggregation or accumulation. The long-length alamethicin, the most studied peptaibol, acts by forming pores in the membranes. Conversely, the carpet mechanism has been claimed for short-length peptaibols, such as trichogin. The mechanism of medium-length peptaibols is far less studied, and this is partly due to the difficulties of their synthesis. They are believed to perturb membrane permeability in different ways, depending on the membrane properties. The present work focuses on pentadecaibin, a recently discovered, medium-length peptaibol. In contrast to the majority of its family members, its sequence does not comprise hydroxyprolines or prolines, and its helix is not kinked. A reliable and effective synthesis procedure is described that allowed us to produce also two shorter analogs. By a combination of techniques, we were able to establish a 3D-structure-activity relationship. In particular, the membrane activity of pentadecaibin heavily depends on the presence of three consecutive Aib residues that are responsible for the clear, albeit modest, amphiphilic character of its helix. The shortest analog, devoid of two of these three Aib residues, preserves a well-defined helical conformation, but not its amphipathicity, and loses almost completely the ability to cause membrane leakage. We conclude that pentadecaibin amphiphilicity is probably needed for the peptide ability to perturb model membranes.


Assuntos
Alameticina , Peptaibols , Peptaibols/análise , Peptaibols/química , Peptaibols/metabolismo , Alameticina/análise , Alameticina/química , Alameticina/metabolismo , Membrana Celular/química , Conformação Molecular , Transporte Biológico , Antibacterianos/farmacologia , Antibacterianos/química
15.
J Phys Chem B ; 126(50): 10712-10720, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36440848

RESUMO

We report total internal reflection (TIR)-Raman spectroscopy to study intermolecular interactions between membrane-binding peptides and lipid bilayer membranes. The method was applied to alamethicin (ALM), a model peptide for channel proteins, interacting with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer membranes at a silica/water interface. After a dimethyl sulfoxide (DMSO) solution of ALM was added into the water subphase of the DPPC/DPPC bilayer, Raman signals in the CH stretching region increased in intensity reflecting the appearance of the Raman bands due to ALM and DMSO. To identify ALM-dependent spectral changes, we removed DPPC and DMSO contributions from the Raman spectra. We first subtracted the spectrum of the DPPC bilayer from those after the addition of the ALM solution. The contribution of DMSO was then removed by subtracting a DMSO spectrum from the resultant spectra. The DMSO spectrum was obtained in a similar way from a control experiment where DMSO alone was added into the subphase. With the use of this double difference approach, the ALM-dependent changes were successfully obtained. Experiments with DPPC bilayers with deuterated acyl chains revealed that most of the spectral change observed after the addition of ALM was due to the vibrational bands of ALM, not originated from ALM-induced conformational changes of the lipid bilayers.


Assuntos
Bicamadas Lipídicas , Água , Bicamadas Lipídicas/química , Água/química , Dimetil Sulfóxido , Peptídeos , Peptaibols , 1,2-Dipalmitoilfosfatidilcolina/química , Alameticina
16.
Chem Biodivers ; 19(9): e202200627, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35921066

RESUMO

Total 23 eleven-residue peptaibols, including five reported ones (1-5) in our previous work, were isolated from the fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, which was obtained from the mushroom Clitocybe nebularis (Batsch) P. Kumm. The structures of the 13 new peptaibols (6-10 and 12-19) were determined by their NMR and MALDI-MS/MS data, their absolute structures were further determined by Marfey's analyses and their ECD data. Careful comparison of the structures of 1-23 showed that only seven residues varied including the 2nd (Gln2 /Asn2 ), 3rd (Ile3 /Val3 ), 4th (Ile4 /Val4 ), 6th (Pro6 /Hyp6 ), 8th (Leu8 /Val8 ), 10th (Pro10 /Hyp10 ) and 11th (Leuol11 /Ileol11 /Valol11 ) residues. Comparison of the IC50 s against the three tested cell lines of 1-23 indicated that 2nd, 3rd and 4th amino acid residues affected their cytotoxicities powerfully. Compounds 2, 5, 9, 11, 21 and 22 showed moderate antibacterial activities against Staphylococcus aureus MRSA T144, which also showed stronger cytotoxicities against BV2 and MCF-7 cells.


Assuntos
Peptaibols , Trichoderma , Aminoácidos/metabolismo , Antibacterianos/química , Hypocreales , Peptaibols/química , Peptaibols/farmacologia , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Trichoderma/química
17.
J Nat Prod ; 85(6): 1603-1616, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35696348

RESUMO

Seven new peptaibols named tolypocladamides A-G have been isolated from an extract of the fungus Tolypocladium inflatum, which inhibits the interaction between Raf and oncogenic Ras in a cell-based high-throughput screening assay. Each peptaibol contains 11 amino acid residues, an octanoyl or decanoyl fatty acid chain at the N-terminus, and a leucinol moiety at the C-terminus. The peptaibol sequences were elucidated on the basis of 2D NMR and mass spectral fragmentation analyses. Amino acid configurations were determined by advanced Marfey's analyses. Tolypocladamides A-G caused significant inhibition of Ras/Raf interactions with IC50 values ranging from 0.5 to 5.0 µM in a nanobioluminescence resonance energy transfer (NanoBRET) assay; however, no interactions were observed in a surface plasmon resonance assay for binding of the compounds to wild type or G12D mutant Ras constructs or to the Ras binding domain of Raf. NCI 60 cell line testing was also conducted, and little panel selectivity was observed.


Assuntos
Antineoplásicos , Hypocreales , Aminoácidos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Hypocreales/química , Peptaibols/farmacologia
18.
Chem Biodivers ; 19(6): e202200286, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35502602

RESUMO

Longibrachiamide A (1), a new 20-residue peptaibol, along with three known ones (2-4), were isolated from the fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, isolated from a mushroom Clitocybe nebularis (Batsch) P. Kumm, which was collected from coniferous forest of northeast China in our previous work. The structure of longibrachiamide A (1) was determined by its NMR and ESI-MS/MS data, the absolute configuration of 1 was further determined by Marfey's analyses. And the complete NMR data of 2-4 were also reported for the first time. The similar CD spectra of 1-4 showed that they all had mixed 310 -/α-helical conformations. Compounds 1-4 showed strong cytotoxicities against BV2, A549 and MCF-7 cells, and also showed moderate inhibitory effects against the tested Gram-positive bacteria, including MRSA T144 and VRE-10.


Assuntos
Hypocreales , Trichoderma , Peptaibols/química , Peptaibols/farmacologia , Espectrometria de Massas em Tandem , Trichoderma/química
19.
J Nat Prod ; 85(5): 1363-1373, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35500108

RESUMO

The genome of entomopathogenic fungus Tolypocladium inflatum Gams encodes 43 putative biosynthetic gene clusters for specialized metabolites, although genotype-phenotype linkages have been reported only for the cyclosporins and fumonisins. T. inflatum was cultured in defined minimal media, supplemented with or without one of nine different amino acids. Acquisition of LC-MS/MS data for molecular networking and manual analysis facilitated annotation of putative known and unknown metabolites. These data led us to target a family of peptaibols and guided the isolation and purification of tolypocladamide H (1), which showed modest antibacterial activity and toxicity to mammalian cells at micromolar concentrations. HRMS/MS, NMR, and advanced Marfey's analysis were used to assign the structure of 1 as a peptaibol containing 4-[(E)-2-butenyl]-4-methyl-l-threonine (Bmt), a hallmark structural motif of the cyclosporins. LC-MS detection of homologous tolypocladamide metabolites and phylogenomic analyses of peptaibol biosynthetic genes in other cultured Tolypocladium species allowed assignment of a putative tolypocladamide nonribosomal peptide synthetase gene.


Assuntos
Ciclosporinas , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Mamíferos , Estrutura Molecular , Família Multigênica , Peptaibols
20.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884518

RESUMO

Fungal species of genus Sepedonium are rich sources of diverse secondary metabolites (e.g., alkaloids, peptaibols), which exhibit variable biological activities. Herein, two new peptaibols, named ampullosporin F (1) and ampullosporin G (2), together with five known compounds, ampullosporin A (3), peptaibolin (4), chrysosporide (5), c(Trp-Ser) (6) and c(Trp-Ala) (7), have been isolated from the culture of Sepedonium ampullosporum Damon strain KSH534. The structures of 1 and 2 were elucidated based on ESI-HRMSn experiments and intense 1D and 2D NMR analyses. The sequence of ampullosporin F (1) was determined to be Ac-Trp1-Ala2-Aib3-Aib4-Leu5-Aib6-Gln7-Aib8-Aib9-Aib10-GluOMe11-Leu12-Aib13-Gln14-Leuol15, while ampullosporin G (2) differs from 1 by exchanging the position of Gln7 with GluOMe11. Furthermore, the total synthesis of 1 and 2 was carried out on solid-phase to confirm the absolute configuration of all chiral amino acids as L. In addition, ampullosporin F (1) and G (2) showed significant antifungal activity against B. cinerea and P. infestans, but were inactive against S. tritici. Cell viability assays using human prostate (PC-3) and colorectal (HT-29) cancer cells confirmed potent anticancer activities of 1 and 2. Furthermore, a molecular docking study was performed in silico as an attempt to explain the structure-activity correlation of the characteristic ampullosporins (1-3).


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Ésteres/química , Ácido Glutâmico/química , Hypocreales/fisiologia , Neoplasias/tratamento farmacológico , Peptaibols/farmacologia , Ascomicetos/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Humanos , Neoplasias/patologia , Peptaibols/química , Phytophthora infestans/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...