Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612670

RESUMO

We aimed to identify serum exosomal microRNAs (miRNAs) associated with the transition from atrial fibrillation (AF) to sinus rhythm (SR) and investigate their potential as biomarkers for the early recurrence of AF within three months post-treatment. We collected blood samples from eight AF patients at Chang Gung Memorial Hospital in Taiwan both immediately before and within 14 days following rhythm control treatment. Exosomes were isolated from these samples, and small RNA sequencing was performed. Using DESeq2 analysis, we identified nine miRNAs (16-2-3p, 22-3p, 23a-3p, 23b-3p, 125a-5p, 328-3p, 423-5p, 504-5p, and 582-3p) associated with restoration to SR. Further analysis using the DIABLO model revealed a correlation between the decreased expression of miR-125a-5p and miR-328-3p and the early recurrence of AF. Furthermore, early recurrence is associated with a longer duration of AF, presumably indicating a more extensive state of underlying cardiac remodeling. In addition, the reads were mapped to mRNA sequences, leading to the identification of 14 mRNAs (AC005041.1, ARHGEF12, AMT, ANO8, BCL11A, DIO3OS, EIF4ENIF1, G2E3-AS1, HERC3, LARS, NT5E, PITX1, SLC16A12, and ZBTB21) associated with restoration to SR. Monitoring these serum exosomal miRNA and mRNA expression patterns may be beneficial for optimizing treatment outcomes in AF patients.


Assuntos
Fibrilação Atrial , Exossomos , MicroRNAs , Humanos , Fibrilação Atrial/genética , MicroRNAs/genética , Coração , Exossomos/genética , RNA Mensageiro , Anoctaminas
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612382

RESUMO

A neurological condition called dystonia results in abnormal, uncontrollable postures or movements because of sporadic or continuous muscular spasms. Several varieties of dystonia can impact people of all ages, leading to severe impairment and a decreased standard of living. The discovery of genes causing variations of single or mixed dystonia has improved our understanding of the disease's etiology. Genetic dystonias are linked to several genes, including pathogenic variations of VPS16, TOR1A, THAP1, GNAL, and ANO3. Diagnosis of dystonia is primarily based on clinical symptoms, which can be challenging due to overlapping symptoms with other neurological conditions, such as Parkinson's disease. This review aims to summarize recent advances in the genetic origins and management of focal dystonia.


Assuntos
Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Distonia/diagnóstico , Distonia/genética , Distonia/terapia , Movimento , Chaperonas Moleculares/genética , Proteínas de Ligação a DNA , Proteínas Reguladoras de Apoptose , Anoctaminas
3.
BMC Neurol ; 24(1): 96, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491364

RESUMO

BACKGROUND: The Limb Girdle Muscular Dystrophies (LGMDs) are characterized by progressive weakness of the shoulder and hip girdle muscles as a result of over 30 different genetic mutations. This study is designed to develop clinical outcome assessments across the group of disorders. METHODS/DESIGN: The primary goal of this study is to evaluate the utility of a set of outcome measures on a wide range of LGMD phenotypes and ability levels to determine if it would be possible to use similar outcomes between individuals with different phenotypes. We will perform a multi-center, 12-month study of 188 LGMD patients within the established Genetic Resolution and Assessments Solving Phenotypes in LGMD (GRASP-LGMD) Research Consortium, which is comprised of 11 sites in the United States and 2 sites in Europe. Enrolled patients will be clinically affected and have mutations in CAPN3 (LGMDR1), ANO5 (LGMDR12), DYSF (LGMDR2), DNAJB6 (LGMDD1), SGCA (LGMDR3), SGCB (LGMDR4), SGCD (LGMDR6), or SGCG (LGMDR5, or FKRP-related (LGMDR9). DISCUSSION: To the best of our knowledge, this will be the largest consortium organized to prospectively validate clinical outcome assessments (COAs) in LGMD at its completion. These assessments will help clinical trial readiness by identifying reliable, valid, and responsive outcome measures as well as providing data driven clinical trial decision making for future clinical trials on therapeutic agents for LGMD. The results of this study will permit more efficient clinical trial design. All relevant data will be made available for investigators or companies involved in LGMD therapeutic development upon conclusion of this study as applicable. TRIAL REGISTRATION: Clinicaltrials.gov NCT03981289; Date of registration: 6/10/2019.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Humanos , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Fenótipo , Músculo Esquelético , Mutação/genética , Proteínas do Tecido Nervoso/genética , Chaperonas Moleculares/genética , Proteínas de Choque Térmico HSP40/genética , Pentosiltransferases/genética , Anoctaminas/genética
6.
Biophys Chem ; 308: 107194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401241

RESUMO

The TMEM16/Anoctamin protein family (TMEM16x) is composed of members with different functions; some members form Ca2+-activated chloride channels, while others are lipid scramblases or combine the two functions. TMEM16x proteins are typically activated in response to agonist-induced rises of intracellular Ca2+; thus, they couple Ca2+-signalling with cell electrical activity or plasmalemmal lipid homeostasis. The structural domains underlying these functions are not fully defined. We used a Naïve Bayes classifier to gain insights into these domains. The method enabled identification of regions involved in either ion or lipid transport, and suggested domains for possible pharmacological exploitation. The method allowed the prediction of the transport property of any given TMEM16x. We envisage this strategy could be exploited to illuminate the structure-function relationship of any protein family composed of members playing different molecular roles.


Assuntos
Anoctaminas , Lipídeos , Anoctaminas/metabolismo , Teorema de Bayes , Anoctamina-1/metabolismo , Transporte de Íons , Cálcio/metabolismo
7.
Mov Disord Clin Pract ; 11(3): 289-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38284143

RESUMO

BACKGROUND: Mutations in ANO3 are a rare cause of autosomal dominant isolated or combined dystonia, mainly presenting in adulthood. CASES: We extensively characterize a new, large ANO3 family with six affected carriers. The proband is a young girl who had suffered from tremor and painful dystonic movements in her right arm since the age of 11 years. She later developed a diffuse dystonic tremor and mild extrapyramidal signs (ie, rigidity and hypodiadochokinesis) in her right arm. She also suffered from psychomotor delay and learning difficulties. Repeated structural and functional neuroimaging were unremarkable. A dystonic tremor was also present in her two sisters. Her paternal aunt, father, and a third older sister presented episodic postural tremor in the arms. The father and one sister also presented learning difficulties. The heterozygous p.G6V variant in ANO3 was identified in all affected subjects. LITERATURE REVIEW: Stratification by age at onset divided ANO3 cases into two major groups, where younger patients displayed a more severe phenotype, probably due to variants near the scrambling domain. CONCLUSIONS: We describe the phenotype of a new ANO3 family and highlight the need for functional studies to explore the impact of ANO3 variants on its phospholipid scrambling activity.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Feminino , Criança , Tremor/diagnóstico , Distúrbios Distônicos/genética , Distonia/genética , Mutação , Fenótipo , Anoctaminas/genética
8.
Nat Commun ; 15(1): 110, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167485

RESUMO

Transmembrane protein 16 F (TMEM16F) is a Ca2+-activated homodimer which functions as an ion channel and a phospholipid scramblase. Despite the availability of several TMEM16F cryogenic electron microscopy (cryo-EM) structures, the mechanism of activation and substrate translocation remains controversial, possibly due to restrictions in the accessible protein conformational space. In this study, we use atomic force microscopy under physiological conditions to reveal a range of structurally and mechanically diverse TMEM16F assemblies, characterized by variable inter-subunit dimerization interfaces and protomer orientations, which have escaped prior cryo-EM studies. Furthermore, we find that Ca2+-induced activation is associated to stepwise changes in the pore region that affect the mechanical properties of transmembrane helices TM3, TM4 and TM6. Our direct observation of membrane remodelling in response to Ca2+ binding along with additional electrophysiological analysis, relate this structural multiplicity of TMEM16F to lipid and ion permeation processes. These results thus demonstrate how conformational heterogeneity of TMEM16F directly contributes to its diverse physiological functions.


Assuntos
Anoctaminas , Canais Iônicos , Anoctaminas/metabolismo , Canais Iônicos/metabolismo , Fenômenos Eletrofisiológicos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Lipídeos , Cálcio/metabolismo
9.
Pflugers Arch ; 476(2): 211-227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979051

RESUMO

Inflammatory airway diseases like cystic fibrosis, asthma and COVID-19 are characterized by high levels of pulmonary cytokines. Two well-established antiparasitic drugs, niclosamide and ivermectin, are intensively discussed for the treatment of viral inflammatory airway infections. Here, we examined these repurposed drugs with respect to their anti-inflammatory effects in airways in vivo and in vitro. Niclosamide reduced mucus content, eosinophilic infiltration and cell death in asthmatic mouse lungs in vivo and inhibited release of interleukins in the two differentiated airway epithelial cell lines CFBE and BCi-NS1.1 in vitro. Cytokine release was also inhibited by the knockdown of the Ca2+-activated Cl- channel anoctamin 1 (ANO1, TMEM16A) and the phospholipid scramblase anoctamin 6 (ANO6, TMEM16F), which have previously been shown to affect intracellular Ca2+ levels near the plasma membrane and to facilitate exocytosis. At concentrations around 200 nM, niclosamide inhibited inflammation, lowered intracellular Ca2+, acidified cytosolic pH and blocked activation of ANO1 and ANO6. It is suggested that niclosamide brings about its anti-inflammatory effects at least in part by inhibiting ANO1 and ANO6, and by lowering intracellular Ca2+ levels. In contrast to niclosamide, 1 µM ivermectin did not exert any of the effects described for niclosamide. The present data suggest niclosamide as an effective anti-inflammatory treatment in CF, asthma, and COVID-19, in addition to its previously reported antiviral effects. It has an advantageous concentration-response relationship and is known to be well tolerated.


Assuntos
Asma , COVID-19 , Camundongos , Animais , Anoctamina-1/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Anoctaminas/metabolismo , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cálcio/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Canais de Cloreto/metabolismo
10.
Neuromuscul Disord ; 34: 54-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007344

RESUMO

The identification of disease-characteristic patterns of muscle fatty replacement in magnetic resonance imaging (MRI) is helpful for diagnosing neuromuscular diseases. In the Clinical Outcome Study of Dysferlinopathy, eight diagnostic rules were described based on MRI findings. Our aim is to confirm that they are useful to differentiate dysferlinopathy (DYSF) from other genetic muscle diseases (GMD). The rules were applied to 182 MRIs of dysferlinopathy patients and 1000 MRIs of patients with 10 other GMD. We calculated sensitivity (S), specificity (Sp), positive and negative predictive values (PPV/NPV) and accuracy (Ac) for each rule. Five of the rules were more frequently met by the DYSF group. Patterns observed in patients with FKRP, ANO5 and CAPN3 myopathies were similar to the DYSF pattern, whereas patterns observed in patients with OPMD, laminopathy and dystrophinopathy were clearly different. We built a model using the five criteria more frequently met by DYSF patients that obtained a S 95.9%, Sp 46.1%, Ac 66.8%, PPV 56% and NPV 94% to distinguish dysferlinopathies from other diseases. Our findings support the use of MRI in the diagnosis of dysferlinopathy, but also identify the need to externally validate "disease-specific" MRI-based diagnostic criteria using MRIs of other GMD patients.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/genética , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/genética , Imageamento por Ressonância Magnética , Disferlina/genética , Pentosiltransferases , Anoctaminas
12.
Mol Genet Genomic Med ; 12(1): e2277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649308

RESUMO

BACKGROUND: Familial gigantiform cementoma (FGC) is a rare tumor characterized by the early onset of multi-quadrant fibro-osseous lesions in the jaws, causing severe maxillofacial deformities. Its clinicopathological features overlap with those of other benign fibro-osseous lesions. FGC eventually exhibits progressively rapid growth, but no suspected causative gene has been identified. METHODS: In this study, three patients with FGC were recruited, and genomic DNA from the tumor tissue and peripheral blood was extracted for whole-exome sequencing. RESULTS: Results showed that all three patients harbored the heterozygous mutation c.1067G > A (p.Cys356Tyr) in the ANO5 gene. Furthermore, autosomal dominant mutations in ANO5 at this locus have been identified in patients with gnathodiaphyseal dysplasia (GDD) and are considered a potential causative agent, suggesting a genetic association between FGC and GDD. In addition, multifocal fibrous bone lesions with similar clinical presentations were detected, including five cases of florid cemento-osseous dysplasia, five cases of polyostotic fibrous dysplasia, and eight cases of juvenile ossifying fibromas; however, none of them harbored mutations in the ANO5 gene. CONCLUSION: Our findings indicate that FGC may be an atypical variant of GDD, providing evidence for the feasibility of ANO5 gene testing as an auxiliary diagnostic method for complex cases with multiple quadrants.


Assuntos
Cementoma , Neoplasias Maxilomandibulares , Osteogênese Imperfeita , Humanos , Cementoma/genética , Cementoma/patologia , Mutação , Neoplasias Maxilomandibulares/patologia , Anoctaminas/genética
13.
Annu Rev Pathol ; 19: 99-131, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37738511

RESUMO

Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Dopamina , Chaperonas Moleculares , Proteínas de Ligação a DNA/genética , Proteínas Reguladoras de Apoptose , Anoctaminas
15.
Am J Physiol Heart Circ Physiol ; 326(1): H270-H277, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999645

RESUMO

Endothelial insulin resistance represents a causal factor in the pathogenesis of type 2 diabetes (T2D) and vascular disease, thus the need to identify molecular mechanisms underlying defects in endothelial insulin signaling. We previously have shown that a disintegrin and metalloproteinase-17 (ADAM17) is increased while insulin receptor α-subunit (IRα) is decreased in the vasculature of patients with T2D, leading to impaired insulin-induced vasodilation. We have also demonstrated that ADAM17 sheddase activity targets IRα; however, the mechanisms driving endothelial ADAM17 activity in T2D are largely unknown. Herein, we report that externalization of phosphatidylserine (PS) to the outer leaflet of the plasma membrane causes ADAM17-mediated shedding of IRα and blunting of insulin signaling in endothelial cells. Furthermore, we demonstrate that endothelial PS externalization is mediated by the phospholipid scramblase anoctamin-6 (ANO6) and that this process can be stimulated by neuraminidase, a soluble enzyme that cleaves sialic acid residues. Of note, we demonstrate that men and women with T2D display increased levels of neuraminidase activity in plasma, relative to age-matched healthy individuals, and this occurs in conjunction with increased ADAM17 activity and impaired leg blood flow responses to endogenous insulin. Collectively, this work reveals the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.NEW & NOTEWORTHY This work provides the first evidence that neuraminidase, an enzyme increased in the circulation of men and women with type 2 diabetes (T2D), promotes anoctamin-6 (ANO6)-dependent externalization of phosphatidylserine in endothelial cells, which in turn leads to activation of a disintegrin and metalloproteinase-17 (ADAM17) and consequent shedding of the insulin receptor-α from the cell surface. Hence, this work supports that consideration should be given to the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Masculino , Humanos , Feminino , Células Endoteliais/metabolismo , Receptor de Insulina/metabolismo , Fosfatidilserinas/metabolismo , Neuraminidase/metabolismo , Insulina/metabolismo , Desintegrinas , Proteína ADAM17/metabolismo , Anoctaminas/metabolismo
16.
Medicine (Baltimore) ; 102(45): e36049, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37960776

RESUMO

To investigate the value of Anoctamin 6 (ANO6) in breast cancer (BC) by analyzing its expression, prognostic impact, biological function, and its association with immune characteristics. We initially performed the expression and survival analyses, followed by adopting restricted cubic spline to analyze the nonlinear relationship between ANO6 and overall survival (OS). Stratified and interaction analyses were conducted to further evaluate its prognostic value in BC. Next, we performed enrichment analyses to explore the possible pathways regulated by ANO6. Finally, the correlations between ANO6 and immune characteristics were analyzed to reveal its role in immunotherapy. Lower ANO6 expression was observed in BC than that in the normal breast group, but its overexpression independently predicted poor OS among BC patients (P < .05). Restricted cubic spline analysis revealed a linear relationship between ANO6 and OS (P-Nonlinear > 0.05). Interestingly, menopause status was an interactive factor in the correlation between ANO6 and OS (P for interaction = 0.016). Additionally, ANO6 was involved in stroma-associated pathways, and its elevation was significantly linked to high stroma scores and macrophage polarization (P < .05). Moreover, ANO6 was notably correlated with immune checkpoint expression levels, and scores of tumor mutation burden and microsatellite instability (all P < .05). ANO6 was an independent prognostic factor for BC, and might be a potential target for the BC treatment. Besides, ANO6 might affect BC progression via the regulation of stroma-related pathways and macrophage polarization.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Anoctaminas/genética , Biomarcadores , Neoplasias da Mama/genética , Macrófagos , Prognóstico
17.
Arq Neuropsiquiatr ; 81(10): 922-933, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37852290

RESUMO

Limb-girdle muscular dystrophy (LGMD) is a group of myopathies that lead to progressive muscle weakness, predominantly involving the shoulder and pelvic girdles; it has a heterogeneous genetic etiology, with variation in the prevalence of subtypes according to the ethnic backgrounds and geographic origins of the populations. The aim of the present study was to analyze a series of patients with autosomal recessive LGMD (LGMD-R) to contribute to a better characterization of the disease and to find the relative proportion of the different subtypes in a Southern Brazil cohort. The sample population consisted of 36 patients with LGMD-R. A 9-gene targeted next-generation sequencing panel revealed variants in 23 patients with LGMD (64%), and it identified calpainopathy (LGMD-R1) in 26%, dysferlinopathy (LGMD-R2) in 26%, sarcoglycanopathies (LGMD-R3-R5) in 13%, telethoninopathy (LGMD-R7) in 18%, dystroglicanopathy (LGMD-R9) in 13%, and anoctaminopathy (LGMD-R12) in 4% of the patients. In these 23 patients with LGMD, there were 27 different disease-related variants in the ANO5, CAPN3, DYSF, FKRP, SGCA, SGCB, SGCG, and TCAP genes. There were different causal variants in different exons of these genes, except for the TCAP gene, for which all patients carried the p.Gln53* variant, and the FKRP gene, which showed recurrence of the p.Leu276Ile variant. We analyzed the phenotypic, genotypic and muscle immunohistochemical features of this Southern Brazilian cohort.


A distrofia muscular de cinturas (DMC) é um grupo de miopatias que leva à fraqueza muscular progressiva, e envolvendo predominante as cinturas escapular e pélvica. A DMCtem uma etiologia genética heterogênea, com variação na prevalência de subtipos de acordo com as origens étnicas e geográficas das populações. O objetivo deste estudo foi analisar uma série de pacientes com DMC do tipo autossômico recessivo (DMC-R) para contribuir para uma melhor caracterização da doença e encontrar a proporção relativa dos diferentes subtipos em uma coorte do Sul do Brasil. A população amostral foi composta por 36 pacientes com DMC-R. O painel de sequenciamento de nova geração com 9 genes revelou variantes em 23 pacientes com DMC (64%), e identificou calpainopatia (DMC-R1) em 26%, disferlinopatia (DMC-R2) em 26%, sarcoglicanopatias (DMC-R3­R5) em 13%, teletoninopatia (D-MCR7) em 18%, distroglicanopatia (D-MCR9) em 13%, e anoctaminopatia (DMC-R12) em 4% dos pacientes. Nesses 23 pacientes com DMC, havia 27 variantes diferentes nos genes ANO5, CAPN3, DYSF, FKRP, SGCA, SGCB, SGCG e TCAP. Foram encontradas diferentes variantes em diferentes éxons desses genes, com exceção do gene TCAP, para o qual todos os pacientes eram portadores da variante p.Gln53*, e do gene FKRP, que apresentou recorrência da variante p.Leu276Ile. As características fenotípicas, genotípicas e imuno-histoquímicas musculares desta coorte do Sul do Brasil foram analisadas.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Humanos , Anoctaminas/genética , Brasil , Debilidade Muscular , Distrofia Muscular do Cíngulo dos Membros/genética , Pentosiltransferases/genética
18.
Ann Clin Transl Neurol ; 10(11): 2092-2104, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37688281

RESUMO

OBJECTIVE: Clinical and genetic heterogeneities make diagnosis of limb-girdle muscular dystrophy (LGMD) and other overlapping disorders of muscle weakness complicated and expensive. We aimed to develop a comprehensive next generation sequence-based multi-gene panel ("The Lantern Focused Neuromuscular Panel") to detect both sequence variants and copy number variants in one assay. METHODS: Patients with clinical diagnosis of LGMD or other overlapping muscular dystrophies in the United States were tested by PerkinElmer Genomics in 2018-2021 via "The Lantern Project," a sponsored diagnostic testing program. Sixty-six genes related to LGMD subtypes- and other myopathies were investigated. Main outcomes were diagnostic yield, gene-variant spectrum, and LGMD subtypes' prevalence. RESULTS: Molecular diagnosis was established in 19.6% (1266) of 6473 cases. Major genes contributing to LGMD were identified including CAPN3 (5.4%, 68), DYSF (4.0%, 51), GAA (3.7%, 47), ANO5 (3.6%, 45), and FKRP (2.7%, 34). Genes of other overlapping MD subtypes identified included PABPN1 (10.5%, 133), VCP (2.2%, 28), MYOT (1.2% 15), LDB3 (1.0%, 13), COL6A1 (1.5%, 19), FLNC (1.1%, 14), and DNAJB6 (0.8%, 10). Different sizes of copy number variants including single exon, multi-exon, and whole genes were identified in 7.5% (95) cases in genes including DMD, EMD, CAPN3, ANO5, SGCG, COL6A2, DOK7, and LAMA2. INTERPRETATION: "The Lantern Focused Neuromuscular Panel" enables identification of LGMD subtypes and other myopathies with overlapping clinical features. Prevalence of some MD subtypes was higher than previously reported. Widespread deployment of this comprehensive NGS panel has the potential to ensure early, accurate diagnosis as well as re-define MD epidemiology.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Humanos , Estados Unidos , Variações do Número de Cópias de DNA/genética , Doenças Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Éxons , Proteínas do Tecido Nervoso/genética , Chaperonas Moleculares/genética , Proteínas de Choque Térmico HSP40/genética , Pentosiltransferases/genética , Anoctaminas/genética , Proteína I de Ligação a Poli(A)/genética
19.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686084

RESUMO

The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.


Assuntos
Fibrose Cística , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Anoctaminas , Proteínas de Membrana Transportadoras , Transportadores de Sulfato/genética , Antiporters
20.
Nat Commun ; 14(1): 4874, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573365

RESUMO

The dual functions of TMEM16F as Ca2+-activated ion channel and lipid scramblase raise intriguing questions regarding their molecular basis. Intrigued by the ability of the FDA-approved drug niclosamide to inhibit TMEM16F-dependent syncytia formation induced by SARS-CoV-2, we examined cryo-EM structures of TMEM16F with or without bound niclosamide or 1PBC, a known blocker of TMEM16A Ca2+-activated Cl- channel. Here, we report evidence for a lipid scrambling pathway along a groove harboring a lipid trail outside the ion permeation pore. This groove contains the binding pocket for niclosamide and 1PBC. Mutations of two residues in this groove specifically affect lipid scrambling. Whereas mutations of some residues in the binding pocket of niclosamide and 1PBC reduce their inhibition of TMEM16F-mediated Ca2+ influx and PS exposure, other mutations preferentially affect the ability of niclosamide and/or 1PBC to inhibit TMEM16F-mediated PS exposure, providing further support for separate pathways for ion permeation and lipid scrambling.


Assuntos
Anoctaminas , COVID-19 , Humanos , Anoctaminas/metabolismo , Cálcio/metabolismo , Canais de Cálcio , Niclosamida/farmacologia , SARS-CoV-2/metabolismo , Lipídeos , Proteínas de Transferência de Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...