Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 907
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1336854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370359

RESUMO

Diabetic Peripheral Neuropathy (DPN) poses an escalating threat to public health, profoundly impacting well-being and quality of life. Despite its rising prevalence, the pathogenesis of DPN remains enigmatic, and existing clinical interventions fall short of achieving meaningful reversals of the condition. Notably, neurostimulation techniques have shown promising efficacy in alleviating DPN symptoms, underscoring the imperative to elucidate the neurobiochemical mechanisms underlying DPN. This study employs an integrated multi-omics approach to explore DPN and its response to neurostimulation therapy. Our investigation unveiled a distinctive pattern of vesicular glutamate transporter 2 (VGLUT2) expression in DPN, rigorously confirmed through qPCR and Western blot analyses in DPN C57 mouse model induced by intraperitoneal Streptozotocin (STZ) injection. Additionally, combining microarray and qPCR methodologies, we revealed and substantiated variations in the expression of the Amyloid Precursor Protein (APP) family in STZ-induced DPN mice. Analyzing the transcriptomic dataset generated from neurostimulation therapy for DPN, we intricately explored the differential expression patterns of VGLUT2 and APPs. Through correlation analysis, protein-protein interaction predictions, and functional enrichment analyses, we predicted the key biological processes involving VGLUT2 and the APP family in the pathogenesis of DPN and during neurostimulation therapy. This comprehensive study not only advances our understanding of the pathogenesis of DPN but also provides a theoretical foundation for innovative strategies in neurostimulation therapy for DPN. The integration of multi-omics data facilitates a holistic view of the molecular intricacies of DPN, paving the way for more targeted and effective therapeutic interventions.


Assuntos
Precursor de Proteína beta-Amiloide , Diabetes Mellitus Experimental , Proteína Vesicular 2 de Transporte de Glutamato , Animais , Camundongos , Precursor de Proteína beta-Amiloide/metabolismo , Western Blotting , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Qualidade de Vida , Estreptozocina , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
2.
Nat Commun ; 15(1): 1160, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326327

RESUMO

The cuneiform nucleus (CnF) regulates locomotor activity, which is canonically viewed as being primarily involved in initiating locomotion and regulating speed. Recent research shows greater context dependency in the locomotor functions of this nucleus. Glutamatergic neurons, which contain vesicular glutamate transporter 2 (vGLUT2), regulate context-dependent locomotor speed in the CnF and play a role in defensive behavior. Here, we identify projections from the medial zona incerta (mZI) to CnF vGLUT2 neurons that promote exploratory behavior. Using fiber photometry recordings in male mice, we find that mZI gamma-aminobutyric acid (GABA) neurons increase activity during periods of exploration. Activation of mZI GABAergic neurons is associated with reduced spiking of CnF neurons. Additionally, activating both retrogradely labeled mZI-CnF GABAergic projection neurons and their terminals in the CnF increase exploratory behavior. Inhibiting CnF vGLUT2 neuronal activity also increases exploratory behavior. These findings provide evidence for the context-dependent dynamic regulation of CnF vGLUT2 neurons, with the mZI-CnF circuit shaping exploratory behavior.


Assuntos
Zona Incerta , Camundongos , Animais , Masculino , Zona Incerta/metabolismo , Comportamento Exploratório , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Locomoção , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
3.
Neuron ; 112(3): 488-499.e5, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38086374

RESUMO

Ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) drive reward-related motivation. Although dopamine neurons are predominant, a substantial glutamatergic projection is also present, and a subset of these co-release both dopamine and glutamate. Optogenetic stimulation of VTA glutamate neurons not only supports self-stimulation but can also induce avoidance behavior, even in the same assay. Here, we parsed the selective contribution of glutamate or dopamine co-release from VTA glutamate neurons to reinforcement and avoidance. We expressed channelrhodopsin-2 (ChR2) in mouse VTA glutamate neurons in combination with CRISPR-Cas9 to disrupt either the gene encoding vesicular glutamate transporter 2 (VGLUT2) or tyrosine hydroxylase (Th). Selective disruption of VGLUT2 abolished optogenetic self-stimulation but left real-time place avoidance intact, whereas CRISPR-Cas9 deletion of Th preserved self-stimulation but abolished place avoidance. Our results demonstrate that glutamate release from VTA glutamate neurons is positively reinforcing but that dopamine release from VTA glutamate neurons can induce avoidance behavior.


Assuntos
Dopamina , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/fisiologia , Recompensa , Área Tegmentar Ventral/fisiologia , Neurônios Dopaminérgicos/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Nat Commun ; 14(1): 2723, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169755

RESUMO

Vesicular glutamate transporters accumulate glutamate in synaptic vesicles, where they also function as a major Cl- efflux pathway. Here we combine heterologous expression and cellular electrophysiology with mathematical modeling to understand the mechanisms underlying this dual function of rat VGLUT1. When glutamate is the main cytoplasmic anion, VGLUT1 functions as H+-glutamate exchanger, with a transport rate of around 600 s-1 at -160 mV. Transport of other large anions, including aspartate, is not stoichiometrically coupled to H+ transport, and Cl- permeates VGLUT1 through an aqueous anion channel with unitary transport rates of 1.5 × 105 s-1 at -160 mV. Mathematical modeling reveals that H+ coupling is sufficient for selective glutamate accumulation in model vesicles and that VGLUT Cl- channel function increases the transport efficiency by accelerating glutamate accumulation and reducing ATP-driven H+ transport. In summary, we provide evidence that VGLUT1 functions as H+-glutamate exchanger that is partially or fully uncoupled by other anions.


Assuntos
Vesículas Sinápticas , Proteínas Vesiculares de Transporte de Glutamato , Ratos , Animais , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Vesículas Sinápticas/metabolismo , Ânions/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ácido Glutâmico/metabolismo
5.
J Alzheimers Dis ; 94(1): 227-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212097

RESUMO

BACKGROUND: Altered glutamatergic neurotransmission may contribute to impaired default mode network (DMN) function in Alzheimer's disease (AD). Among the DMN hub regions, frontal cortex (FC) was suggested to undergo a glutamatergic plasticity response in prodromal AD, while the status of glutamatergic synapses in the precuneus (PreC) during clinical-neuropathological AD progression is not known. OBJECTIVE: To quantify vesicular glutamate transporter VGluT1- and VGluT2-containing synaptic terminals in PreC and FC across clinical stages of AD. METHODS: Unbiased sampling and quantitative confocal immunofluorescence of cortical VGluT1- and VGluT2-immunoreactive profiles and spinophilin-labeled dendritic spines were performed in cases with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild-moderate AD (mAD), or moderate-severe AD (sAD). RESULTS: In both regions, loss of VGluT1-positive profile density was seen in sAD compared to NCI, MCI, and mAD. VGluT1-positive profile intensity in PreC did not differ across groups, while in FC it was greater in MCI, mAD, and sAD compared to NCI. VGluT2 measures were stable in PreC while FC had greater VGluT2-positive profile density in MCI compared to sAD, but not NCI or mAD. Spinophilin measures in PreC were lower in mAD and sAD compared to NCI, while in FC they were stable across groups. Lower VGluT1 and spinophilin measures in PreC, but not FC, correlated with greater neuropathology. CONCLUSION: Frank loss of VGluT1 in advanced AD relative to NCI occurs in both DMN regions. In FC, an upregulation of VGluT1 protein content in remaining glutamatergic terminals may contribute to this region's plasticity response in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Rede de Modo Padrão , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
6.
Anat Histol Embryol ; 52(4): 531-537, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36825501

RESUMO

The present study aimed to investigate the immunolocalization of vesicular glutamate transporter (VGLUT) 1 and 2, and proteins associated with exocytosis, i.e., core components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex (synaptosomal-associated protein of 25 kDa, syntaxin 1, and vesicle-associated membrane protein 2) and synaptotagmin-1 (Syt1), in incisive papillary taste buds of rats using double-indirect immunofluorescence. No VGLUT1 immunoreactivity was observed, whereas VGLUT2-immunoreactive punctate products were closely associated with guanine nucleotide-binding protein G(t) subunit α3-immmunoreactive cells in taste buds. VGLUT2 was immunolocalized in P2X3 purinoceptor-expressing afferent nerve endings. Synaptosomal-associated protein of 25 kDa, syntaxin 1, and vesicle-associated membrane protein 2 were immunolocalized in nerve endings containing VGLUT2-immunoreactive products as well as a few cells in taste buds. VGLUT2 was co-immunolocalized in some intragemmal nerve endings immunoreactive for Syt1, a calcium sensor implicated in vesicle membrane fusion. The present results suggest that afferent nerve endings innervating incisive taste buds release glutamate by exocytosis to modulate taste cell function.


Assuntos
Papilas Gustativas , Ratos , Animais , Papilas Gustativas/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Sintaxina 1/metabolismo , Terminações Nervosas/metabolismo , Exocitose/fisiologia
7.
Synapse ; 77(1): e22250, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36085433

RESUMO

The suprachiasmatic nucleus (SCN) is the most important circadian clock in mammals. The SCN synchronizes to environmental light via the retinohypothalamic tract (RHT), which is an axon cluster derived from melanopsin-expressing intrinsic photosensitive retinal ganglion cells. Investigations on the development of the nonimage-forming pathway and the RHT are scarce. Previous studies imply that light stimulation during postnatal development is not needed to make the RHT functional at adult stages. Here, we examined the effects of light deprivation (i.e., constant darkness (DD) rearing) during postnatal development on the expression in the ventral SCN of two crucial proteins for the synchronization of circadian rhythms to light: the presynaptic vesicular glutamate transporter type 2 (vGluT2) and the GluN2B subunit of the postsynaptic NMDA receptor. We found that animals submitted to DD conditions exhibited a transitory reduction in the expression of vGluT2 (at P12-19) and of GluN2B (at P7-9) that was compensated at older stages. These findings support the hypothesis that visual stimulation during early ages is not decisive for normal development of the RHT-SCN pathway.


Assuntos
Receptores de N-Metil-D-Aspartato , Núcleo Supraquiasmático , Proteína Vesicular 2 de Transporte de Glutamato , Animais , Ratos , Ritmo Circadiano/fisiologia , Mamíferos/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares da Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
8.
J Neuroendocrinol ; 35(1): e13222, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529144

RESUMO

Melanin-concentrating hormone (MCH) neurons within the hypothalamus are heterogeneous and can coexpress additional neuropeptides and transmitters. The majority of MCH neurons express vesicular transporters to package glutamate for synaptic release, and MCH neurons can directly innervate downstream neurons via glutamate release. Although glutamatergic signalling from MCH neurons may support physiological and behavioural roles that are independent of MCH (e.g., in glucose homeostasis and nutrient-sensing), it can also mediate similar roles to MCH in the regulation of energy balance. In addition to energy balance, the MCH system has also been implicated in mood disorders, as MCH receptor antagonists have anxiolytic and anti-depressive effects. However, the contribution of glutamatergic signalling from MCH neurons to mood-related functions have not been investigated. We crossed Mch-cre mice with floxed-Vglut2 mice to delete the expression of the vesicular glutamate transporter 2 (Vglut2) and disable glutamatergic signalling specifically from MCH neurons. The resulting Mch-Vglut2-KO mice showed Vglut2 deletion from over 75% of MCH neurons, and although we did not observe changes in depressive-like behaviours, we found that Mch-Vglut2-KO mice displayed anxiety-like behaviours. Mch-Vglut2-KO mice showed reduced exploratory activity when placed in a new cage and were quicker to consume food placed in the centre of a novel open arena. These findings showed that Vglut2 deletion from MCH neurons resulted in anxiolytic actions and suggested that the anxiogenic effects of glutamate are similar to those of the MCH peptide. Taken together, these findings suggest that glutamate and MCH may synergize to regulate and promote anxiety-like behaviour.


Assuntos
Ansiolíticos , Camundongos , Animais , Ansiolíticos/metabolismo , Ansiolíticos/farmacologia , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ansiedade
9.
J Neurosci Res ; 101(3): 338-353, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36517461

RESUMO

The sensory nervous system is critical to maintain cardiac function. As opposed to efferent innervation, less is known about cardiac afferents. For this, we mapped the VGLUT2-expressing cardiac afferent fibers of spinal and vagal origin by using the VGLUT2::tdTomato double transgenic mouse as an approach to visualize the whole hearts both at the dorsal and ventral sides. For comparison, we colabeled mixed-sex transgenic hearts with either TUJ1 protein for global cardiac innervation or tyrosine hydroxylase for the sympathetic network at the healthy state or following ischemic injury. Interestingly, the nerve density for global and VGLUT2-expressing afferents was found significantly higher on the dorsal side compared to the ventral side. From the global nerve innervation detected by TUJ1 immunoreactivity, VGLUT2 afferent innervation was detected to be 15-25% of the total network. The detailed characterization of both the atria and the ventricles revealed a remarkable diversity of spinal afferent nerve ending morphologies of flower sprays, intramuscular endings, and end-net branches that innervate distinct anatomical parts of the heart. Using this integrative approach in a chronic myocardial infarct model, we showed a significant increase in hyperinnervation in the form of axonal sprouts for cardiac afferents at the infarct border zone, as well as denervation at distal sites of the ischemic area. The functional and physiological consequences of the abnormal sensory innervation remodeling post-ischemic injury should be further evaluated in future studies regarding their potential contribution to cardiac dysfunction.


Assuntos
Infarto do Miocárdio , Células Receptoras Sensoriais , Animais , Camundongos , Axônios , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Nervo Vago , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
10.
Biol Pharm Bull ; 45(9): 1385-1388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047209

RESUMO

Docosahexaenoic acid (DHA; 22:6n-3), which is enriched in the neuronal membrane, plays a variety of roles in the brain. Vesicular glutamate transporters (VGLUTs) are responsible for incorporating glutamine into synaptic vesicles. We investigated the influence of DHA on the fatty acid profile and the levels of VGLUT1 and VGLUT2 proteins in differentiated NG108-15 cells, a neuroblastoma-glioma hybrid cell line. NG108-15 cells were plated and 24 h later the medium was replaced with Dulbecco's modified Eagle's medium supplemented with 1% fetal bovine serum, 0.2 mM dibutyryl cAMP, and 100 nM dexamethasone, which was added to induce differentiation. After 6 d, the amount of DHA in the cells was increased by addition of DHA to the medium. VGLUT2 levels were increased by the addition of DHA. These data indicate that DHA affected the levels of VGLUT2 in NG108-15 cells under differentiation-promoting conditions, suggesting that DHA affects brain functions involving VGLUT2.


Assuntos
Ácidos Docosa-Hexaenoicos , Vesículas Sinápticas , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
11.
Neuro Endocrinol Lett ; 43(2): 88-98, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933616

RESUMO

OBJECTIVE: To investigate the effects of estrogen on the threshold and temperature of orofacial pain and explore the influence on the function of glutamate and GABA neurons in the orofacial pain temperature perception pathway by observing the expression of vesicular glutamate transporter 2 (Vglut2) and vesicular GABA transporter 1 (Vgat1). METHODS: A total of 24 adult female Sprague-Dawley rats were divided into three groups: sham operation (SHAM), ovariectomized (OVX) and ovariectomized plus estrogen intervention (OVX+E) (n = 8 per group). The threshold of mechanical pain of the orofacial region was assessed with von Frey filaments, and the temperature of the rat orofacial region was monitored by infrared thermography. Changes in the expression of Vglut2 and Vgat1 in glutamatergic and GABAergic neurons in the trigeminal ganglion (TG), spinal trigeminal nucleus (Sp5C), lateral parabrachial nucleus (LPB) and ventral posteromedial nucleus of the thalamus (VPM) were assessed by immunostaining and Western blotting. RESULTS: Under low-estrogen conditions, the mechanical pain threshold of the orofacial region of rats decreased significantly, and the temperature of the orofacial region increased significantly. The expression of Vglut2 and Vgat1 in the TG and Sp5C showed a downward trend, and the decline in Vgat1 was greater than that in Vglut2. Conversely, both proteins were upregulated in the LPB and VPM, and the magnitude of the changes in Vglut2 was greater than that in Vgat1. Estrogen therapy reversed these changes. CONCLUSION: Under low-estrogen conditions, the proportion of glutamate and GABA neurons in the orofacial pain and temperature sensation pathway changes, which leads to the imbalance of neurotransmission function and the enhancement of excitatory transmission of these two kinds of neurons and finally leads to a decrease in the orofacial pain threshold and an increase in temperature.


Assuntos
Dor Facial , Sensação , Animais , Feminino , Ratos , Estrogênios/farmacologia , Glutamatos , Ratos Sprague-Dawley , Temperatura , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores
12.
J Endod ; 48(11): 1407-1413, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35952898

RESUMO

INTRODUCTION: Information on the type of vesicular glutamate transporter (VGLUT) that is expressed in the Piezo2-positive (Piezo2+) neurons in the trigeminal ganglion (TG) and on the type of Piezo2+ axons and their distribution in the dental pulp is important for understanding dental pain elicited by mechanical stimuli and developing new therapeutic strategies. METHODS: We examined the expression of Piezo2 and its coexpression with VGLUT1 and VGLUT2 in rat TG, the sensory root, and human dental pulp using light and electron microscopic immunohistochemistry and quantitative analysis. RESULTS: VGLUT1 and VGLUT2 were expressed in the TG neurons. Piezo2 was expressed in axons of all types but primarily in small myelinated (Aδ) axons in the sensory root. In the dental pulp, Piezo2 was expressed densely in the numerous axons that form a plexus in the peripheral pulp. Piezo2+ axons in the peripheral pulp were mostly unmyelinated, and Piezo2 immunoreactivity was often concentrated near the axolemma, suggesting that it may represent functional receptors. CONCLUSIONS: These findings suggest that VGLUT1 and VGLUT2 are involved in the glutamate signaling in Piezo2+ neurons, Piezo2 may be primarily activated by noxious mechanical stimuli, and Piezo2-mediated dental mechanotransduction may be primarily elicited in the peripheral pulp.


Assuntos
Gânglio Trigeminal , Proteínas Vesiculares de Transporte de Glutamato , Ratos , Humanos , Animais , Gânglio Trigeminal/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Polpa Dentária/metabolismo , Mecanotransdução Celular , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Ratos Sprague-Dawley , Glutamatos/metabolismo , Canais Iônicos/metabolismo
13.
Mol Psychiatry ; 27(12): 5213-5226, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36028572

RESUMO

The excitatory neurotransmitter glutamate shapes learning and memory, but the underlying epigenetic mechanism of glutamate regulation in neuron remains poorly understood. Here, we showed that lysine demethylase KDM6B was expressed in excitatory neurons and declined in hippocampus with age. Conditional knockout of KDM6B in excitatory neurons reduced spine density, synaptic vesicle number and synaptic activity, and impaired learning and memory without obvious effect on brain morphology in mice. Mechanistically, KDM6B upregulated vesicular glutamate transporter 1 and 2 (VGLUT1/2) in neurons through demethylating H3K27me3 at their promoters. Tau interacted and recruited KDM6B to the promoters of Slc17a7 and Slc17a6, leading to a decrease in local H3K27me3 levels and induction of VGLUT1/2 expression in neurons, which could be prevented by loss of Tau. Ectopic expression of KDM6B, VGLUT1, or VGLUT2 restored spine density and synaptic activity in KDM6B-deficient cortical neurons. Collectively, these findings unravel a fundamental mechanism underlying epigenetic regulation of synaptic plasticity and cognition.


Assuntos
Epigênese Genética , Histona Desmetilases com o Domínio Jumonji , Plasticidade Neuronal , Proteínas tau , Animais , Camundongos , Cognição/fisiologia , Ácido Glutâmico/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas tau/metabolismo
14.
Proteins ; 90(12): 2045-2057, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35799372

RESUMO

Vesicular glutamate transporters (VGLUTs) are essential components of synaptic transmission in the brain. Synaptic vesicles' luminal chloride and low pH regulate VGLUTs allosterically in a cooperative way. The luminal allosteric regulation of VGLUTs by chloride (Cl- ) and proton (H+ ) is possible through the collective work of luminal Cl- and H+ binding site residues. However, precise atomistic details about the luminal Cl- binding to the luminal Cl- binding site and the role of allosteric activation by H+ in VGLUTs are unknown. Using all-atom molecular dynamics simulations, this study demonstrates the critical role of Cl- binding site residues, details about Cl- binding to the luminal Cl- binding site, and the role of allosteric regulation of VGLUT2 by H+ at an atomistic level. By point mutations, we found out that Arginine (R184), Histidine (H128), and Glutamate (E191) are critical residues in the allosteric regulation of VGLUT2, R184 is the luminal Cl- binding site residue, and H128 and R88 support Cl- binding to R184. Furthermore, we found out that the protonation of H128 and E191 is important in Cl- binding to the luminal Cl- binding site. Furthermore, we investigated the essential interactions between Cl- and H+ binding site residues. Our results can give atomistic evidence for a previous experimental hypothesis about the VGLUTs luminal allosteric regulation by H+ and Cl- .


Assuntos
Cloretos , Prótons , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Cloretos/metabolismo , Regulação Alostérica , Simulação de Dinâmica Molecular , Ácido Glutâmico/metabolismo
15.
Neurosci Bull ; 38(12): 1439-1456, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35644002

RESUMO

The lateral habenula (LHb), which is a critical neuroanatomical hub and a regulator of midbrain monoaminergic centers, is activated by events resulting in negative valence and contributes to the expression of both appetitive and aversive behaviors. However, whole-brain cell-type-specific monosynaptic inputs to the LHb in both sexes remain incompletely elucidated. In this study, we used viral tracing combined with in situ hybridization targeting vesicular glutamate transporter 2 (vGlut2) and glutamic acid decarboxylase 2 (Gad2) to generate a comprehensive whole-brain atlas of inputs to glutamatergic and γ-aminobutyric acid (GABA)ergic neurons in the LHb. We found >30 ipsilateral and contralateral brain regions that projected to the LHb. Of these, there were significantly more monosynaptic LHb-projecting neurons from the lateral septum, anterior hypothalamus, dorsomedial hypothalamus, and ventromedial hypothalamus in females than in males. More interestingly, we found a stronger GABAergic projection from the medial septum to the LHb in males than in females. Our results reveal a comprehensive connectivity atlas of glutamatergic and GABAergic inputs to the LHb in both sexes, which may facilitate a better understanding of sexual dimorphism in physiological and pathological brain functions.


Assuntos
Habenula , Animais , Masculino , Camundongos , Ácido Glutâmico/metabolismo , Habenula/metabolismo , Hipotálamo/metabolismo , Vias Neurais/fisiologia , Caracteres Sexuais , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Feminino
16.
Brain ; 145(3): 879-886, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35258081

RESUMO

Loss of midbrain dopamine neurons causes the cardinal symptoms of Parkinson's disease. However, not all dopamine neurons are equally vulnerable and a better understanding of the cell-type specific properties relating to selective dopamine neuron degeneration is needed. Most midbrain dopamine neurons express the vesicular glutamate transporter VGLUT2 during development and a subset continue to express low levels of VGLUT2 in adulthood, enabling the co-release of glutamate. Moreover, VGLUT2 expression in dopamine neurons can be neuroprotective since its genetic disruption was shown to sensitize dopamine neurons to neurotoxins. Here, we show that in response to toxic insult, and in two distinct models of alpha-synuclein stress, VGLUT2 dopamine neurons were resilient to degeneration. Dopamine neurons expressing VGLUT2 were enriched whether or not insult induced dopamine neuron loss, suggesting that while VGLUT2 dopamine neurons are more resilient, VGLUT2 expression can also be transcriptionally upregulated by injury. Finally, we observed that VGLUT2 expression was enhanced in surviving dopamine neurons from post-mortem Parkinson's disease individuals. These data indicate that emergence of a glutamatergic identity in dopamine neurons may be part of a neuroprotective response in Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Adulto , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Mesencéfalo , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
17.
Brain Res ; 1782: 147842, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192848

RESUMO

Motor learning induces plasticity in multiple brain regions involving the cerebellum as a crucial player. Synaptic plasticity in the excitatory collaterals to the cerebellar output, the deep cerebellar nuclei (DCN), have recently been shown to be an important part of motor learning. These synapses are composed of climbing fiber (CF) and mossy fiber synapses, with the former conveying unconditioned and the latter conditioned responses in classical conditioning paradigms. The CF synapse on to the cerebellar cortex and the DCN express vesicular transporter 2 (vGluT2), whereas mossy fibers express vGluT1 and /or vGluT2 in their terminals. However, the underlying regulatory mechanism of vGluT expression in the DCN remains unknown. Here we confirm the increase of vGluT2 in a specific part of the DCN during the acquisition of a skilled reaching task in mice. Furthermore, our findings show that this is due to an increase in co-expression of vGluT2 in vGluT1 presynapses instead of the formation of new vGluT2 synapses. Our data indicate that remodeling of synapses - in contrast to synaptogenesis - also plays an important role in motor learning and may explain the presence of both vGluT's in some mossy fiber synapses.


Assuntos
Núcleos Cerebelares , Cerebelo , Aprendizagem , Proteína Vesicular 2 de Transporte de Glutamato , Animais , Córtex Cerebelar/metabolismo , Núcleos Cerebelares/metabolismo , Cerebelo/metabolismo , Camundongos , Sinapses/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
18.
Biochem Biophys Res Commun ; 591: 102-109, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35007833

RESUMO

The parafascicular nucleus (Pf) in medial thalamus is interconnected with prefrontal cortex and basal ganglia. Though much research has determined its importance in cognitive regulation of behaviour, its projections to regions in subthalamus remain less known. Such connections include those to zona incerta (ZI), located immediately dorsal to subthalamic nuclei (STN) regulating motor output, and whose role in a motor context is only beginning to be investigated. We thus examined circuits from parafascicular (Pf) thalamus to ZI, and its activity during locomotion and spontaneous behaviours in mice. We found that a distinct group of CaMKIIα-positive excitatory parafascicular neurons, separated from VGLUT2-positive excitatory neurons, project widely into ZI, more than adjacent STN. Our results from fibre photometry and decoding with general linear model (GLM) indicate that PF-ZI pathways do not specifically correlate with amount of locomotion or movement velocity, but instead show more specified activity during relative directional changes of movements observed in turning, sniffing behaviours. These results hint at the PF-ZI pathway having a distinct role in directing action specificity and have implications for subcortical bases in dimensional control of behaviours.


Assuntos
Núcleos Intralaminares do Tálamo/fisiologia , Atividade Motora/fisiologia , Vias Neurais/fisiologia , Zona Incerta/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Subtalâmico/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
19.
ACS Chem Neurosci ; 13(2): 187-193, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34994539

RESUMO

Growing evidence has established that a subset of dopamine (DA) neurons co-release glutamate and express vesicular glutamate transporter 2 (VGLUT2). VGLUT2 expression in DA neurons plays a key role in selective vulnerability to DA neurodegeneration in Parkinson's disease (PD). In this review, we summarize recent findings on impacts of VGLUT2 expression and glutamate co-release from DA neurons on selective DA neuron vulnerability. We present evidence that DA neuron VGLUT2 expression may be neuroprotective, boosting DA neuron resilience in the context of ongoing neurodegenerative processes in PD. We highlight genetic and pesticide models of PD that have provided mechanistic insights into selective DA neuron vulnerability. Finally, we discuss potential neuroprotective mechanisms, focusing on roles of VGLUT2 and glutamate in promoting mitochondrial health and diminishing oxidative stress and excitotoxicity. Elucidating these mechanisms may ultimately lead to more effective treatments to boost DA neuron resilience that can slow or even prevent DA neurodegeneration.


Assuntos
Dopamina , Doença de Parkinson , Neurônios Dopaminérgicos , Ácido Glutâmico , Humanos , Proteína Vesicular 2 de Transporte de Glutamato
20.
Neurosci Bull ; 38(6): 565-575, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35080731

RESUMO

Licking behavior is important for water intake. The deep mesencephalic nucleus (DpMe) has been implicated in instinctive behaviors. However, whether the DpMe is involved in licking behavior and the precise neural circuit behind this behavior remains unknown. Here, we found that the activity of the DpMe decreased during water intake. Inhibition of vesicular glutamate transporter 2-positive (VGLUT2+) neurons in the DpMe resulted in increased water intake. Somatostatin-expressing (SST+), but not protein kinase C-δ-expressing (PKC-δ+), GABAergic neurons in the central amygdala (CeA) preferentially innervated DpMe VGLUT2+ neurons. The SST+ neurons in the CeA projecting to the DpMe were activated at the onset of licking behavior. Activation of these CeA SST+ GABAergic neurons, but not PKC-δ+ GABAergic neurons, projecting to the DpMe was sufficient to induce licking behavior and promote water intake. These findings redefine the roles of the DpMe and reveal a novel CeASST-DpMeVGLUT2 circuit that regulates licking behavior and promotes water intake.


Assuntos
Núcleo Central da Amígdala , Animais , Comportamento Animal , Neurônios GABAérgicos/fisiologia , Mesencéfalo/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...