Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Int J Biol Sci ; 20(10): 3923-3941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113695

RESUMO

About 20% of breast cancer patients are positive for HER2. The efficacy of current treatments is limited by primary and secondary resistance to trastuzumab. tRNA-derived fragments (tRFs) have shown crucial regulatory roles in various cancers. This study aimed to evaluate the role of tRF-27 in regulating the resistance of HER2-positive breast cancer against trastuzumab. tRF-27 was highly expressed in trastuzumab-resistant cells, and its expression level could predict the resistance to trastuzumab. High expression of tRF-27 promoted the growth and proliferation of trastuzumab-exposed cells. RNA-pulldown assay and mass spectrometry were performed to identify Ras GTPase-activating protein-binding proteins 1 and 2 (G3BPs) (two proteins targeted by tRF-27); RNA-immunoprecipitation (RIP) to confirm their bindings; co-immunoprecipitation (co-IP) and RNA-pulldown assay to determine the binding domains between G3BPs and tRF-27.tRF-27 bound to the nuclear transport factor 2 like domain(NTF2 domain) of G3BPs through a specific sequence. tRF-27 relied on G3BPs and NTF2 domain to increase trastuzumab tolerance. tRF-27 competed with lysosomal associated membrane protein 1(LAMP1) for NTF2 domain, thereby inhibiting lysosomal localization of G3BPs and tuberous sclerosis complex (TSC). Overexpression of tRF-27 inhibited phosphorylation of TSCs and promoted the activation of mechanistic target of rapamycin complex 1(MTORC1) to enhance cell proliferation and entice the resistance of HER2-positive breast cancer against trastuzumab.


Assuntos
Neoplasias da Mama , Alvo Mecanístico do Complexo 1 de Rapamicina , Trastuzumab , Humanos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2/metabolismo , Animais , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA de Transferência/metabolismo , Camundongos , RNA Helicases/metabolismo , Camundongos Nus , Proteínas com Motivo de Reconhecimento de RNA/metabolismo
2.
Virol J ; 21(1): 186, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135075

RESUMO

BACKGROUND: The global outbreak of COVID-19 caused by the SARS-CoV-2 has led to millions of deaths. This unanticipated emergency has prompted virologists across the globe to delve deeper into the intricate dynamicity of the host-virus interface with an aim to identify antiviral targets and elucidate host and viral determinants of severe disease. AIM: The present study was undertaken to analyse the role of histone deacetylase 6 (HDAC6) in regulating SARS-CoV-2 infection. RESULTS: Gradual increase in HDAC6 expression was observed in different SARS-CoV-2-permissive cell lines following SARS-CoV-2 infection. The SARS-CoV-2 nucleocapsid protein (N protein) was identified as the primary viral factor responsible for upregulating HDAC6 expression. Downregulation of HDAC6 using shRNA or a specific inhibitor tubacin resulted in reduced viral replication suggesting proviral role of its deacetylase activity. Further investigations uncovered the interaction of HDAC6 with stress granule protein G3BP1 and N protein during infection. HDAC6-mediated deacetylation of SARS-CoV-2 N protein was found to be crucial for its association with G3BP1. CONCLUSION: This study provides valuable insights into the molecular mechanisms underlying the disruption of cytoplasmic stress granules during SARS-CoV-2 infection and highlights the significance of HDAC6 in the process.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Desacetilase 6 de Histona , SARS-CoV-2 , Replicação Viral , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Humanos , SARS-CoV-2/fisiologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , COVID-19/virologia , COVID-19/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Acetilação , Linhagem Celular , Chlorocebus aethiops , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Células Vero , Animais , Interações Hospedeiro-Patógeno , Proteínas de Ligação a Poli-ADP-Ribose , DNA Helicases , RNA Helicases
3.
Nucleic Acids Res ; 52(16): 9745-9759, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39106168

RESUMO

Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Neurônios , Grânulos de Estresse , Animais , Grânulos de Estresse/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Humanos , Neurônios/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Camundongos , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Ataxia/genética , Ataxia/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Alphavirus/genética , Alphavirus/metabolismo , Ratos , Proteínas de Transporte/metabolismo , Drosophila/metabolismo , Grânulos Citoplasmáticos/metabolismo , Estresse Fisiológico , Proteínas de Ligação a DNA
4.
Cell Rep ; 43(8): 114617, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39120973

RESUMO

Liquid-liquid phase separation (LLPS) mediated by G3BP1/2 proteins and non-translating mRNAs mediates stress granule (SG) assembly. We investigated the phylogenetic evolution of G3BP orthologs from unicellular yeast to mammals and identified both conserved and divergent features. The modular domain organization of G3BP orthologs is generally conserved. However, invertebrate orthologs displayed reduced capacity for SG assembly in human cells compared to vertebrate orthologs. We demonstrated that the protein-interaction network facilitated by the NTF2L domain is a crucial determinant of this specificity. The evolution of the G3BP1 network coincided with its exploitation by certain viruses, as evident from the interaction between viral proteins and G3BP orthologs in insects and vertebrates. We revealed the importance and divergence of the G3BP interaction network in human SG formation. Leveraging this network, we established a 7-component in vitro SG reconstitution system for quantitative studies. These findings highlight the significance of G3BP network divergence in the evolution of biological processes.


Assuntos
DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose , Mapas de Interação de Proteínas , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Humanos , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Grânulos de Estresse/metabolismo , Animais , DNA Helicases/metabolismo , DNA Helicases/genética , Filogenia , Células HeLa , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Ligação a RNA , Proteínas Adaptadoras de Transdução de Sinal
6.
Protein J ; 43(4): 834-841, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009911

RESUMO

Coiled-coil domain-containing 124 protein is a multifunctional RNA-binding factor, and it was previously reported to interact with various biomolecular complexes localized at diverse subcellular locations, such as the ribosome, centrosome, midbody, and nucleoli. We aimed to better characterize the subcellular CCDC124 translocation by labelling this protein with a fluorescent tag, followed by laser scanning confocal microscopy methods. As traditional GFP-tagging of small proteins such as CCDC124 often faces limitations like potential structural perturbations of labeled proteins, and interference of the fluorescent-tag with their endogenous cellular functions, we aimed to label CCDC124 with the smallest possible split-GFP associated protein-tagging system (GFP11/GFP1-10) for better characterization of its subcellular localizations and its translocation dynamics. By recombinant DNA techniques we generated CCDC124-constructs labelled with either single of four tandem copies of GFP11 (GFP11 × 1::CCDC124, GFP11 × 4::CCDC124, or CCDC124::GFP11 × 4). We then cotransfected U2OS cells with these split-GFP constructs (GFP11 × 1(or X4)::CCDC124/GFP1-10) and analyzed subcellular localization of CCDC124 protein by laser scanning confocal microscopy. Tagging CCDC124 with four tandem copies of a 16-amino acid short GFP-derived peptide-tag (GFP11 × 4::CCDC124) allowed better characterization of the subcellular localization of CCDC124 protein in our model human bone osteosarcoma (U2OS) cells. Thus, by this novel methodology we successfully identified GFP11 × 4::CCDC124 molecules in G3BP1-overexpression induced stress-granules by live cell protein imaging for the first time. Our findings propose CCDC124 as a novel component of the stress granule which is a membraneless organelle involved in translational shut-down in response to cellular stress.


Assuntos
Grânulos Citoplasmáticos , Proteínas de Fluorescência Verde , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas com Motivo de Reconhecimento de RNA , Humanos , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/química , DNA Helicases , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Microscopia Confocal/métodos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química
7.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39007803

RESUMO

Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.


Assuntos
RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Humanos , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Corpos de Processamento/metabolismo , Corpos de Processamento/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Células HeLa , DNA Helicases/metabolismo , DNA Helicases/genética , Células HEK293 , Ligação Proteica , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas Proto-Oncogênicas
8.
J Mol Biol ; 436(19): 168727, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079611

RESUMO

Stress granules (SGs) are dynamic biomolecular condensates that form in the cytoplasm in response to cellular stress, encapsulating proteins and RNAs. Methylation is a key factor in the assembly of SGs, with PRMT1, which acts as an arginine methyltransferase, localizing to SGs. However, the precise mechanism of PRMT1 localization within SGs remains unknown. In this study, we identified that Caprin1 plays a primary role in the recruitment of PRMT1 to SGs, particularly through its C-terminal domain. Our findings demonstrate that Caprin1 serves a dual function as both a linker, facilitating the formation of a PRMT1-G3BP1 complex, and as a spacer, preventing the aberrant formation of SGs under non-stress conditions. This study sheds new lights on the regulatory mechanisms governing SG formation and suggests that Caprin1 plays a critical role in cellular responses to stress.


Assuntos
Proteínas de Ciclo Celular , DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose , Proteína-Arginina N-Metiltransferases , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Proteínas Repressoras , Grânulos de Estresse , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Humanos , DNA Helicases/metabolismo , DNA Helicases/genética , Grânulos de Estresse/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ligação Proteica , Metilação , Grânulos Citoplasmáticos/metabolismo , Células HeLa
9.
Biochem Soc Trans ; 52(3): 1393-1404, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38778761

RESUMO

Several biomolecular condensates assemble in mammalian cells in response to viral infection. The most studied of these are stress granules (SGs), which have been proposed to promote antiviral innate immune signaling pathways, including the RLR-MAVS, the protein kinase R (PKR), and the OAS-RNase L pathways. However, recent studies have demonstrated that SGs either negatively regulate or do not impact antiviral signaling. Instead, the SG-nucleating protein, G3BP1, may function to perturb viral RNA biology by condensing viral RNA into viral-aggregated RNA condensates, thus explaining why viruses often antagonize G3BP1 or hijack its RNA condensing function. However, a recently identified condensate, termed double-stranded RNA-induced foci, promotes the activation of the PKR and OAS-RNase L antiviral pathways. In addition, SG-like condensates known as an RNase L-induced bodies (RLBs) have been observed during many viral infections, including SARS-CoV-2 and several flaviviruses. RLBs may function in promoting decay of cellular and viral RNA, as well as promoting ribosome-associated signaling pathways. Herein, we review these recent advances in the field of antiviral biomolecular condensates, and we provide perspective on the role of canonical SGs and G3BP1 during the antiviral response.


Assuntos
RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , RNA Viral , Grânulos de Estresse , Humanos , Animais , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Helicases/metabolismo , RNA Viral/metabolismo , Grânulos de Estresse/metabolismo , SARS-CoV-2/fisiologia , Imunidade Inata , Transdução de Sinais , Condensados Biomoleculares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Viroses/tratamento farmacológico , Viroses/metabolismo , DNA Helicases/metabolismo , eIF-2 Quinase/metabolismo , Endorribonucleases/metabolismo , COVID-19/virologia , COVID-19/imunologia
10.
Nat Commun ; 15(1): 4127, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750080

RESUMO

Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.


Assuntos
Infecções por Vírus de RNA , Grânulos de Estresse , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Humanos , Grânulos Citoplasmáticos/metabolismo , Proteína DEAD-box 58/metabolismo , DNA Helicases/metabolismo , Células HEK293 , Células HeLa , Imunidade Inata , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Receptores Imunológicos/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Infecções por Vírus de RNA/virologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/imunologia , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais , Grânulos de Estresse/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
Toxicol Lett ; 397: 48-54, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734221

RESUMO

The skin, the organ with the largest surface area in the body, is the most susceptible to chemical exposure from the external environment. In this study, we aimed to establish an in vitro skin toxicity monitoring system that utilizes the mechanism of stress granule (SG) formation induced by various cellular stresses. In HaCaT cells, a keratinocyte cell line that comprises the human skin, a green fluorescent protein (GFP) was knocked in at the C-terminal genomic locus of Ras GTPase-activating protein-binding protein 1 (G3BP1), a representative component of SGs. The G3BP1-GFP knock-in HaCaT cells and wild-type (WT) HaCaT cells formed SGs containing G3BP1-GFP upon exposure to arsenite and household chemicals, such as bisphenol A (BPA) and benzalkonium chloride (BAC), in real-time. In addition, the exposure of G3BP1-GFP knock-in HaCaT cells to BPA and BAC promoted the phosphorylation of eukaryotic initiation factor 2 alpha and protein kinase R-like endoplasmic reticulum kinase, which are cell signaling factors involved in SG formation, similar to WT HaCaT cells. In conclusion, this novel G3BP1-GFP knock-in human skin cell system can monitor SG formation in real-time and be utilized to assess skin toxicity to various substances.


Assuntos
Grânulos Citoplasmáticos , DNA Helicases , Proteínas de Fluorescência Verde , Queratinócitos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Humanos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Arsenitos/toxicidade , Pele/efeitos dos fármacos , Pele/metabolismo , Técnicas de Introdução de Genes , Genes Reporter/efeitos dos fármacos , Fenóis/toxicidade , Células HaCaT , Fosforilação , Compostos Benzidrílicos/toxicidade , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Testes de Toxicidade/métodos
12.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791594

RESUMO

In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair Pik-H4 confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik1-H4 and Pik2-H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on Pik-H4-mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene ndhB. Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.


Assuntos
Cloroplastos , Regulação da Expressão Gênica de Plantas , Oryza , Imunidade Vegetal , Proteínas de Plantas , Cloroplastos/metabolismo , Cloroplastos/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/imunologia , Proteínas de Repetições Ricas em Leucina , Sítios de Ligação , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas NLR/metabolismo , Proteínas NLR/genética , Edição de RNA
13.
Chemosphere ; 361: 142485, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821132

RESUMO

Acute stress caused by short-term exposure to deleterious chemicals can induce the aggregation of RNA-binding proteins (RBPs) in the cytosol and the formation of stress granules (SGs). The cytoplasmic RBP, Ras GTPase-activating protein-binding protein 1 (G3BP1) is a critical organizer of SG, and its aggregation is considered a hallmark of cellular stress. However, assembly of SG is a highly dynamic process that involves RBPs; hence, existing methods based on fixation processes or overexpression of RBPs exhibit limited efficacy in detecting the assembly of SG under stress conditions. In this study, we established a G3BP1- Green fluorescent protein (GFP) reporter protein in a human neuroblastoma cell line to overcome these limitations. GFP was introduced into the G3BP1 genomic sequence via homologous recombination to generate a G3BP1-GFP fusion protein and further analyze the aggregation processes. We validated the assembly of SG under stress conditions using the G3BP1-GFP reporter system. Additionally, this system supported the evaluation of bisphenol A-induced SG response in the established human neuroblastoma cell line. In conclusion, the established G3BP1-GFP reporter system enables us to monitor the assembly of the SG complex in a human neuroblastoma cell line in real time and can serve as an efficient tool for assessing potential neurotoxicity associated with short-term exposure to chemicals.


Assuntos
DNA Helicases , Proteínas de Fluorescência Verde , Neuroblastoma , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Humanos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Linhagem Celular Tumoral , RNA Helicases/genética , RNA Helicases/metabolismo , Neuroblastoma/patologia , DNA Helicases/metabolismo , Grânulos de Estresse , Estresse Fisiológico , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
14.
Front Immunol ; 15: 1358036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690262

RESUMO

Background: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host's antiviral immunity to support its own survival. Methods: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication. Results: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression. Conclusion: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.


Assuntos
DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Replicação Viral , Animais , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Grânulos de Estresse/metabolismo , Bovinos , Fator de Iniciação 2 em Eucariotos/metabolismo , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Fosforilação , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo
15.
Vet Microbiol ; 293: 110070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593624

RESUMO

Stress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication. Moreover, PDCoV infected LLC-PK1 cells raise the phosphorylation level of G3BP1. By overexpression of the G3BP1 phosphorylated protein or the G3BP1 dephosphorylated protein, we found that phosphorylation of G3BP1 is involved in the regulation of PDCoV-induced inflammatory response. Taken together, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets for antiviral target.


Assuntos
DNA Helicases , Inflamação , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Animais , Suínos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/metabolismo , RNA Helicases/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Replicação Viral , Coronavirus/imunologia , Coronavirus/fisiologia , Linhagem Celular , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/genética , Imunidade Inata
16.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572740

RESUMO

The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.


Assuntos
Herpesvirus Humano 1 , Proteínas Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ribonucleases , DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Herpesvirus Humano 1/genética , Endorribonucleases/metabolismo , Estabilidade de RNA , Vírion/genética , Vírion/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Cancer Sci ; 115(6): 1851-1865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581120

RESUMO

Aberrant expression of forkhead box transcription factor 1 (FOXM1) plays critical roles in a variety of human malignancies and predicts poor prognosis. However, little is known about the crosstalk between FOXM1 and long noncoding RNAs (lncRNAs) in tumorigenesis. The present study identifies a previously uncharacterized lncRNA XLOC_008672 in gastric cancer (GC), which is regulated by FOXM1 and possesses multiple copies of tandem repetitive sequences. LncRNA microarrays are used to screen differentially expressed lncRNAs in FOXM1 knockdown GC cells, and then the highest fold downregulation lncRNA XLOC_008672 is screened out. Sequence analysis reveals that the new lncRNA contains 62 copies of 37-bp tandem repeats. It is transcriptionally activated by FOXM1 and functions as a downstream effector of FOXM1 in GC cells through in vitro and in vivo functional assays. Elevated expression of XLOC_008672 is found in GC tissues and indicates worse prognosis. Mechanistically, XLOC_008672 can bind to small nuclear ribonucleoprotein polypeptide A (SNRPA), thereby enhancing mRNA stability of Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and, consequently, facilitating GC cell proliferation and migration. Our study discovers a new uncharacterized lncRNA XLOC_008672 involved in GC carcinogenesis and progression. Targeting FOXM1/XLOC_008672/SNRPA/G3BP1 signaling axis might be a promising therapeutic strategy for GC.


Assuntos
Carcinogênese , Proliferação de Células , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Neoplasias Gástricas , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , DNA Helicases , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Camundongos Nus , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Prognóstico , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Sequências de Repetição em Tandem/genética
18.
Signal Transduct Target Ther ; 9(1): 98, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609366

RESUMO

Evidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes. Herein, we retrospectively analyzed pancreatic lesions in autopsy tissues from 67 SARS-CoV-2 infected non-human primates (NHPs) models and 121 vaccinated and infected NHPs from 2020 to 2023 and COVID-19 patients. Multi-label immunofluorescence revealed direct infection of both exocrine and endocrine pancreatic cells by the virus in NHPs and humans. Minor and limited phenotypic and histopathological changes were observed in adult models. Systemic proteomics and metabolomics results indicated metabolic disorders, mainly enriched in insulin resistance pathways, in infected adult NHPs, along with elevated fasting C-peptide and C-peptide/glucose ratio levels. Furthermore, in elder COVID-19 NHPs, SARS-CoV-2 infection causes loss of beta (ß) cells and lower expressed-insulin in situ characterized by islet amyloidosis and necrosis, activation of α-SMA and aggravated fibrosis consisting of lower collagen in serum, an increase of pancreatic inflammation and stress markers, ICAM-1 and G3BP1, along with more severe glycometabolic dysfunction. In contrast, vaccination maintained glucose homeostasis by activating insulin receptor α and insulin receptor ß. Overall, the cumulative risk of diabetes post-COVID-19 is closely tied to age, suggesting more attention should be paid to blood sugar management in elderly COVID-19 patients.


Assuntos
COVID-19 , Diabetes Mellitus , Adulto , Animais , Humanos , Idoso , SARS-CoV-2 , Receptor de Insulina , Peptídeo C , DNA Helicases , Estudos Retrospectivos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Glucose
19.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612449

RESUMO

Stress granules (SGs) are membraneless ribonucleoprotein (RNP)-based cellular foci formed in response to stress, facilitating cell survival by protecting against damage. Mammalian spermatogenesis should be maintained below body temperature for proper development, indicating its vulnerability to heat stress (HS). In this study, biotin tracer permeability assays showed that the inhibition of heat-induced SG assembly in the testis by 4-8 mg/kg cycloheximide significantly increased the percentage of seminiferous tubules with a damaged blood-testis barrier (BTB). Western blot results additionally revealed that the suppression of heat-induced SG assembly in Sertoli cell line, TM4 cells, by RNA inference of G3bp1/2 aggravated the decline in the BTB-related proteins ZO-1, ß-Catenin and Claudin-11, indicating that SGs could protect the BTB against damage caused by HS. The protein components that associate with SGs in Sertoli cells were isolated by sequential centrifugation and immunoprecipitation, and were identified by liquid chromatography with tandem mass spectrometry. Gene Ontology and KEGG pathway enrichment analysis revealed that their corresponding genes were mainly involved in pathways related to proteasomes, nucleotide excision repair, mismatch repair, and DNA replication. Furthermore, a new SG component, the ubiquitin associated protein 2 (UBAP2), was found to translocate to SGs upon HS in TM4 cells by immunofluorescence. Moreover, SG assembly was significantly diminished after UBAP2 knockdown by RNA inference during HS, suggesting the important role of UBAP2 in SG assembly. In addition, UBAP2 knockdown reduced the expression of ZO-1, ß-Catenin and Claudin-11, which implied its potential role in the function of the BTB. Overall, our study demonstrated the role of SGs in maintaining BTB functions during HS and identified a new component implicated in SG formation in Sertoli cells. These findings not only offer novel insights into the biological functions of SGs and the molecular mechanism of low fertility in males in summer, but also potentially provide an experimental basis for male fertility therapies.


Assuntos
Barreira Hematotesticular , DNA Helicases , Masculino , Animais , Camundongos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , beta Catenina , RNA , Claudinas , Mamíferos
20.
Cell Rep ; 43(3): 113965, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492217

RESUMO

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , DNA Helicases/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Virulência , RNA Guia de Sistemas CRISPR-Cas , Proteínas do Nucleocapsídeo , Replicação Viral , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA