Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.550
Filtrar
1.
BMC Complement Med Ther ; 24(1): 149, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581015

RESUMO

BACKGROUND: Diabetes Mellitus is associated with disturbances in male reproductive function and fertility. Studies have shown that oxidative stress with the subsequent inflammation and apoptosis cause these complications in diabetes. Garlic (G) (Allium sativum L) and Citrullus colocynthis (L.) Schrad (C) both have antidiabetic and antioxidant properties. Recently, we demonstrated their synergistic effects in alleviating reproductive complications when administered concomitantly. However, as even medicinal plants in long term usage may lead to some unwanted side effects of their own, we examined whether with half the original doses of these two medicinal plants we could achieve the desired results. METHODS: Thirty-five male Wistar rats were divided into five groups (n = 7/group): Control, Diabetic, Diabetic + G (0.5 ml/100 g BW), Diabetic + C (5 mg/kg BW) and Diabetic + GC (0.5 ml/100 g BW of garlic and 5 mg/kg BW of C. colocynthis) groups. The experimental period was 30 days. RESULTS: Oxidative stress, advanced glycation end products (AGEs), immunoexpression of caspase-3, and expression of mRNAs for receptor for advanced glycation end products (RAGE), NADPH oxidase-4 (NOX-4) and nuclear factor kappa B increased in testis of diabetic rats. Treatment with garlic and C. colocynthis alone showed some beneficial effects, but in the combination form the effectiveness was more profound. CONCLUSIONS: We conclude that the combination therapy of diabetic rats with lower doses is still as efficient as higher doses; therefore, the way forward for reducing complications in long term consumption.


Assuntos
Citrullus colocynthis , Diabetes Mellitus Experimental , Alho , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Alho/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
2.
BMC Cancer ; 24(1): 472, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622523

RESUMO

BACKGROUND: Prostate cancer (PCa) is becoming the most common malignancy in men worldwide. We investigated the effect of astragaloside IV combined with PESV on the gut microbiota and metabolite of PCa mice and the process of treating PCa. METHODS: Nude mice were genetically modified to develop tumors characteristic of PCa. The treatment of PCa mice involved the administration of a combination of astragaloside IV and peptides derived from scorpion venom (PESV). Feces were collected for both 16 S rDNA and metabolic analysis. Fecal supernatant was extracted and used for fecal transplantation in PCa mice. Tumor development was observed in both PCa mice and nude mice. Tumor histopathology was examined, and the expression of inflammatory factors and the AGE-RAGE axis in PCa tissues were analyzed. RESULTS: PCa mice treated with Astragaloside IV in combination with PESV showed a significant reduction in tumor volume and weight, and stabilization of gut microbiota and metabolites. At the Genus level, significant differences were observed in Porphyromonas, Corynebacterium, Arthromitus and Blautia, and the differential metabolites were PA16_016_0, Astragaloside+, Vitamin A acid, Nardosinone, a-Nortestoster, D-Pantethine, Hypoxanthine, Pregnenolone, cinnamic acid, Pyridoxa, Cirtruline and Xanthurenate. There was a correlation between gut microbiota and metabolites. After the fecal transplantation, tumor growth was effectively suppressed in the PCa mice. Notably, both the mRNA and protein levels of the receptor for advanced glycation end products (RAGE) were significantly decreased. Furthermore, the expression of inflammatory factors, namely NF-κB, TNF-α, and IL-6, in the tumor tissues was significantly attenuated. Conversely, upregulation of RAGE led to increased inflammation and reversed tumor growth in the mice. CONCLUSION: Astragaloside IV combined with PESV could treat PCa by intervening in gut microbiota composition and metabolite by targeting RAGE.


Assuntos
Microbioma Gastrointestinal , Neoplasias Hepáticas , Neoplasias da Próstata , Saponinas , Triterpenos , Masculino , Humanos , Animais , Camundongos , Camundongos Nus , Receptor para Produtos Finais de Glicação Avançada , Neoplasias da Próstata/tratamento farmacológico , Homeostase
3.
Brain Behav ; 14(3): e3457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450910

RESUMO

INTRODUCTION: Repeated exposure to cocaine induces microglial activation. Cocaine exposure also induces a release of high mobility group box-1 (HMGB1) from neurons into the extracellular space in the nucleus accumbens (NAc). HMGB1 is an important late inflammatory mediator of microglial activation. However, whether the secretion of HMGB1 acts on microglia or contributes to cocaine addiction is largely unknown. METHODS: Rats were trained by intraperitoneal cocaine administration and cocaine-induced conditioned place preference (CPP). Expression of HMGB1 was regulated by viral vectors. Activation of microglia was inhibited by minocycline. Interaction of HMGB1 and the receptor for advanced glycation end products (RAGE) was disrupted by peptide. RESULTS: Cocaine injection facilitated HMGB1 signaling, together with the delayed activation of microglia concurrently in the NAc. Furthermore, the inhibition of HMGB1 or microglia activation attenuated cocaine-induced CPP. Box A, a specific antagonist to interrupt the interaction of HMGB1 and RAGE, abolished the expression of cocaine reward memory. Meanwhile, the inhibition of HMGB1-RAGE interaction suppressed cocaine-induced microglial activation, as well as the consolidation of cocaine-induced memory. CONCLUSION: All above results suggest that the neural HMGB1 induces activation of microglia through RAGE, which contributes to the consolidation of cocaine reward memory. These findings offer HMGB1-RAGE axis as a new target for the treatment of drug addiction.


Assuntos
Cocaína , Proteína HMGB1 , Animais , Ratos , Núcleo Accumbens , Microglia , Receptor para Produtos Finais de Glicação Avançada , Cocaína/farmacologia
4.
Nat Immunol ; 25(4): 671-681, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448779

RESUMO

Cognitive impairment is a frequent manifestation of neuropsychiatric systemic lupus erythematosus, present in up to 80% of patients and leading to a diminished quality of life. In the present study, we used a model of lupus-like cognitive impairment that is initiated when antibodies that crossreact with excitatory neuronal receptors penetrate the hippocampus, causing immediate, self-limited, excitotoxic death of hippocampal neurons, which is then followed by a significant loss of dendritic complexity in surviving neurons. This injury creates a maladaptive equilibrium that is sustained in mice for at least 1 year. We identified a feedforward loop of microglial activation and microglia-dependent synapse elimination dependent on neuronal secretion of high mobility group box 1 protein (HMGB1) which binds the receptor for advanced glycation end products (RAGE) and leads to microglial secretion of C1q, upregulation of interleukin-10 with consequent downregulation of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), an inhibitory receptor for C1q. Treatment with a centrally acting angiotensin-converting enzyme inhibitor or with an angiotensin-receptor blocker restored a healthy equilibrium, microglial quiescence and intact spatial memory.


Assuntos
Autoanticorpos , Proteína HMGB1 , Animais , Camundongos , Complemento C1q , Proteína HMGB1/metabolismo , Doenças Neuroinflamatórias , Qualidade de Vida , Receptor para Produtos Finais de Glicação Avançada/metabolismo
5.
Glycoconj J ; 41(1): 35-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38498243

RESUMO

Advanced glycation end products (AGE) in complex with their receptors (RAGE) cause a chronic inflammatory state in the body, which is the major mechanism in cancer development. This study aimed to conduct a systematic review and meta-analysis on the observational studies investigating the association between AGEs / sRAGE and cancer incidence. The PubMed, Scopus, and Web of Science databases were comprehensively searched to identify papers focused on the associations of sRAGE and AGEs with cancer incidence up to May 2023. Eight studies with a total of 7690 participants were included in the analysis to evaluate the association between circulating sRAGE and cancer incidence. The results indicated that circulating sRAGE (per 100 ng/L) had a significant inverse association with cancer incidence (RR 0.977; 95% CI 0.956, 0.999; p = 0.036; I 2 = 73.3%). The association between AGEs and cancer incidence was evaluated in 8 studies with a total of 3718 individuals. Serum concentrations of AGEs (per 100 µg/L) were not associated with the risk of cancer incidence (RR 0.988; 95% CI 0.974, 1.002; p = 0.08; I2 = 78.8%). Our findings revealed that a higher circulating sRAGE may have a protective effect against cancer incidence.


Assuntos
Produtos Finais de Glicação Avançada , Neoplasias , Humanos , Biomarcadores , Inflamação , Neoplasias/epidemiologia , Estudos Observacionais como Assunto , Receptor para Produtos Finais de Glicação Avançada
6.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542178

RESUMO

In mammals, glycated serum albumin (gSA) contributes to the pathogenesis of many metabolic diseases by activating the receptors (RAGE) for advanced glycation end products (AGEs). Many aspects of the gSA-RAGE interaction remain unknown. The purpose of the present paper was to study the interaction of glycated human albumin (gHSA) with RAGE using molecular modeling methods. Ten models of gHSA modified with different lysine residues to carboxymethyl-lysines were prepared. Complexes of gHSA-RAGE were obtained by the macromolecular docking method with subsequent molecular dynamics simulation (MD). According to the MD, the RAGE complexes with gHSA glycated at Lys233, Lys64, Lys525, Lys262 and Lys378 are the strongest. Three-dimensional models of the RAGE dimers with gHSA were proposed. Additional computational experiments showed that the binding of fatty acids (FAs) to HSA does not affect the ability of Lys525 (the most reactive lysine) to be glycated. In contrast, modification of Lys525 reduces the affinity of albumin for FA. The interspecies differences in the molecular structure of albumin that may affect the mechanism of the gSA-RAGE interaction were discussed. The obtained results will help us to learn more about the molecular basis for the involvement of serum albumin in the AGE/RAGE axis and improve the methodology for studying cellular signaling pathways involving RAGE.


Assuntos
Lisina , Albumina Sérica , Animais , Humanos , Albumina Sérica/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Mamíferos/metabolismo , Modelos Moleculares , Albumina Sérica Humana , Receptor para Produtos Finais de Glicação Avançada
7.
Shock ; 61(3): 465-476, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517246

RESUMO

ABSTRACT: Background: Chronic critical illness (CCI), which was characterized by persistent inflammation, immunosuppression, and catabolism syndrome (PICS), often leads to muscle atrophy. Serum amyloid A (SAA), a protein upregulated in critical illness myopathy, may play a crucial role in these processes. However, the effects of SAA on muscle atrophy in PICS require further investigation. This study aims to develop a mouse model of PICS combined with bone trauma to investigate the mechanisms underlying muscle weakness, with a focus on SAA. Methods: Mice were used to examine the effects of PICS after bone trauma on immune response, muscle atrophy, and bone healing. The mice were divided into two groups: a bone trauma group and a bone trauma with cecal ligation and puncture group. Tibia fracture surgery was performed on all mice, and PICS was induced through cecal ligation and puncture surgery in the PICS group. Various assessments were conducted, including weight change analysis, cytokine analysis, hematological analysis, grip strength analysis, histochemical staining, and immunofluorescence staining for SAA. In vitro experiments using C2C12 cells (myoblasts) were also conducted to investigate the role of SAA in muscle atrophy. The effects of inhibiting receptor for advanced glycation endproducts (RAGE) or JAK2 on SAA-induced muscle atrophy were examined. Bioinformatic analysis was conducted using a dataset from the GEO database to identify differentially expressed genes and construct a coexpression network. Results: Bioinformatic analysis confirmed that SAA was significantly upregulated in muscle tissue of patients with intensive care unit-induced muscle atrophy. The PICS animal models exhibited significant weight loss, spleen enlargement, elevated levels of proinflammatory cytokines, and altered hematological profiles. Evaluation of muscle atrophy in the animal models demonstrated decreased muscle mass, grip strength loss, decreased diameter of muscle fibers, and significantly increased expression of SAA. In vitro experiment demonstrated that SAA decreased myotube formation, reduced myotube diameter, and increased the expression of muscle atrophy-related genes. Furthermore, SAA expression was associated with activation of the FOXO signaling pathway, and inhibition of RAGE or JAK2/STAT3-FOXO signaling partially reversed SAA-induced muscle atrophy. Conclusions: This study successfully develops a mouse model that mimics PICS in CCI patients with bone trauma. Serum amyloid A plays a crucial role in muscle atrophy through the JAK2/STAT3-FOXO signaling pathway, and targeting RAGE or JAK2 may hold therapeutic potential in mitigating SAA-induced muscle atrophy.


Assuntos
Doenças Musculares , Proteína Amiloide A Sérica , Animais , Humanos , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Estado Terminal , Atrofia Muscular/metabolismo , Doença Crônica , Modelos Animais de Doenças , Citocinas
8.
J Clin Hypertens (Greenwich) ; 26(4): 431-440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523455

RESUMO

We measured the levels of High-Mobility Group Box 1 (HMGB1), Receptor for Advanced Glycation Endproducts (RAGE), T Helper 17 cells (Th17), Regulatory T cells (Treg), and related cytokines in the peripheral blood of patients with severe preeclampsia (SPE) complicated with acute heart failure (AHF) to explore the expression changes in these indicators. In total, 96 patients with SPE admitted to Gansu Provincial Maternity and Child-care Hospital between June 2020 and June 2022 were included in the study. The patients were divided into SPE+AHF (40 patients) and SPE (56 patients) groups based on whether they suffered from AHF. Additionally, 56 healthy pregnant women who either received prenatal examinations or were admitted to our hospital for delivery during the same period were selected as the healthy control group. An enzyme-linked immunosorbent assay was performed to detect the expression levels of HMGB1, RAGE, interleukin (IL)-17, IL-6, transforming growth factor ß (TGF-ß), IL-10, and NT-proBNP in plasma. Flow cytometry was employed to determine the percentages of Th17 and Treg cells. Compared to the healthy control group, the SPE+AHF and SPE groups had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage. Compared to the SPE group, the SPE+AHF group had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage (P < .05). In patients with SPE with AHF, plasma HMGB1 was positively correlated with RAGE, Th17, Th17/Treg, IL-17, and IL-6 and was negatively correlated with TGF-ß and IL-10 (P < .05). Our findings revealed that patients with SPE with AHF had elevated levels of HMGB1 and RAGE while exhibiting Th17/Treg immune imbalance, suggesting that the abnormal expression of these indicators may be involved in the pathogenesis of SPE with AHF.


Assuntos
Proteína HMGB1 , Hipertensão , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Interleucina-6 , Interleucina-10/metabolismo , Pré-Eclâmpsia/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Proteína HMGB1/metabolismo , Hipertensão/metabolismo , Citocinas , Fator de Crescimento Transformador beta/metabolismo , Linfócitos T Reguladores/metabolismo
9.
Clin Immunol ; 262: 110178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460892

RESUMO

Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Benzamidas/farmacologia
10.
PLoS One ; 19(3): e0299567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457412

RESUMO

Amyotrophic lateral sclerosis (ALS) is neurodegenerative disease characterized by a progressive loss of motor neurons resulting in paralysis and muscle atrophy. One of the most prospective hypothesis on the ALS pathogenesis suggests that excessive inflammation and advanced glycation end-products (AGEs) accumulation play a crucial role in the development of ALS in patients and SOD1 G93A mice. Hence, we may speculate that RAGE, receptor for advanced glycation end-products and its proinflammatory ligands such as: HMGB1, S100B and CML contribute to ALS pathogenesis. The aim of our studies was to decipher the role of RAGE as well as provide insight into RAGE signaling pathways during the progression of ALS in SOD1 G93A and RAGE-deficient SOD1 G93A mice. In our study, we observed alternations in molecular pattern of proinflammatory RAGE ligands during progression of disease in RAGE KO SOD1 G93A mice compared to SOD1 G93A mice. Moreover, we observed that the amount of beta actin (ACTB) as well as Glial fibrillary acidic protein (GFAP) was elevated in SOD1 G93A mice when compared to mice with deletion of RAGE. These data contributes to our understanding of implications of RAGE and its ligands in pathogenesis of ALS and highlight potential targeted therapeutic interventions at the early stage of this devastating disease. Moreover, inhibition of the molecular cross-talk between RAGE and its proinflammatory ligands may abolish neuroinflammation, gliosis and motor neuron damage in SOD1 G93A mice. Hence, we hypothesize that attenuated interaction of RAGE with its proinflammatory ligands may improve well-being and health status during ALS in SOD1 G93A mice. Therefore, we emphasize that the inhibition of RAGE signaling pathway may be a therapeutic target for neurodegenerative diseases.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Superóxido Dismutase-1 , Animais , Humanos , Camundongos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Modelos Animais de Doenças , Progressão da Doença , Camundongos Transgênicos , Estudos Prospectivos , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
11.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488691

RESUMO

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Assuntos
Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Cobaias , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Encéfalo/metabolismo , Envelhecimento , Colesterol/metabolismo
12.
Respir Res ; 25(1): 93, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378600

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease and represents the third leading cause of death worldwide. This study aimed to investigate miRNA regulation of Receptor for Advanced Glycation End-products (RAGE), a causal receptor in the pathogenesis of cigarette smoke (CS)-related COPD, to guide development of therapeutic strategies. METHODS: RAGE expression was quantified in lung tissue of COPD patients and healthy controls, and in mice with CS-induced COPD. RNA-sequencing of peripheral blood from COPD patients with binding site prediction was used to screen differentially expressed miRNAs that may interact with RAGE. Investigation of miR-23a-5p as a potential regulator of COPD progression was conducted with miR-23a-5p agomir in COPD mice in vivo using histology and SCIREQ functional assays, while miR-23a-5p mimics or RAGE inhibitor were applied in 16-HBE human bronchial epithelial cells in vitro. RNA-sequencing, ELISA, and standard molecular techniques were used to characterize downstream signaling pathways in COPD mice and 16-HBE cells treated with cigarette smoke extract (CSE). RESULTS: RAGE expression is significantly increased in lung tissue of COPD patients, COPD model mice, and CSE-treated 16-HBE cells, while inhibiting RAGE expression significantly reduces COPD severity in mice. RNA-seq analysis of peripheral blood from COPD patients identified miR-23a-5p as the most significant candidate miRNA interaction partner of RAGE, and miR-23a-5p is significantly downregulated in mice and cells treated with CS or CSE, respectively. Injection of miR-23a-5p agomir leads to significantly reduced airway inflammation and alleviation of symptoms in COPD mice, while overexpressing miR-23a-5p leads to improved lung function. RNA-seq with validation confirmed that reactive oxygen species (ROS) signaling is increased under CSE-induced aberrant upregulation of RAGE, and suppressed in CSE-stimulated cells treated with miR-23a-5p mimics or overexpression. ERK phosphorylation and subsequent cytokine production was also increased under RAGE activation, but inhibited by increasing miR-23a-5p levels, implying that the miR-23a-5p/RAGE/ROS axis mediates COPD pathogenesis via ERK activation. CONCLUSIONS: This study identifies a miR-23a-5p/RAGE/ROS signaling axis required for pathogenesis of COPD. MiR-23a-5p functions as a negative regulator of RAGE and downstream activation of ROS signaling, and can inhibit COPD progression in vitro and in vivo, suggesting therapeutic targets to improve COPD treatment.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Pulmão/metabolismo , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo
13.
Am J Physiol Cell Physiol ; 326(4): C1080-C1093, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314727

RESUMO

Advanced glycation end-products (AGEs) stochastically accrue in skeletal muscle and on collagen over an individual's lifespan, stiffening the muscle and modifying the stem cell (MuSC) microenvironment while promoting proinflammatory, antiregenerative signaling via the receptor for advanced glycation end-products (RAGEs). In the present study, a novel in vitro model was developed of this phenomenon by cross linking a 3-D collagen scaffold with AGEs and investigating how myoblasts responded to such an environment. Briefly, collagen scaffolds were incubated with d-ribose (0, 25, 40, 100, or 250 mM) for 5 days at 37°C. C2C12 immortalized mouse myoblasts were grown on the scaffolds for 6 days in growth conditions for proliferation, and 12 days for differentiation and fusion. Human primary myoblasts were also used to confirm the C2C12 data. AGEs aberrantly extended the DNA production stage of C2C12s (but not in human primary myoblasts) which is known to delay differentiation in myogenesis, and this effect was prevented by RAGE inhibition. Furthermore, the differentiation and fusion of myoblasts were disrupted by AGEs, which were associated with reductions in integrins and suppression of RAGE. The addition of S100b (RAGE agonist) recovered the differentiation and fusion of myoblasts, and the addition of RAGE inhibitors (FPS-ZM1 and Azeliragon) inhibited the differentiation and fusion of myoblasts. Our results provide novel insights into the role of the AGE-RAGE axis in skeletal muscle aging, and future work is warranted on the potential application of S100b as a proregenerative factor in aged skeletal muscle.NEW & NOTEWORTHY Collagen cross-linked by advanced glycation end-products (AGEs) induced myoblast proliferation but prevented differentiation, myotube formation, and RAGE upregulation. RAGE inhibition occluded AGE-induced myoblast proliferation, while the delivery of S100b, a RAGE ligand, recovered fusion deficits.


Assuntos
Reação de Maillard , Músculo Esquelético , Camundongos , Humanos , Animais , Idoso , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Diferenciação Celular/fisiologia , Colágeno , Desenvolvimento Muscular , Produtos Finais de Glicação Avançada , Subunidade beta da Proteína Ligante de Cálcio S100
14.
Front Immunol ; 15: 1303937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384464

RESUMO

Introduction: Chemotherapy-induced neuropathic pain (CINP) is one of the main adverse effects of chemotherapy treatment. At the spinal level, CINP modulation involves glial cells that upregulate Toll-like receptor 4 (TLR4) and signaling pathways, which can be activated by pro-inflammatory mediators as the high mobility group box-1 (HMGB1). Objective: To evaluate the spinal role of HMGB1 in the paclitaxel-induced neuropathic pain via receptor for advanced glycation end products (RAGE) and TLR4 activation expressed in glial cells. Methods: Male C57BL/6 Wild type and TLR4 deficient mice were used in the paclitaxel-induced neuropathic pain model. The nociceptive threshold was measured using the von Frey filament test. In addition, recombinant HMGB1 was intrathecally (i.t.) injected to confirm its nociceptive potential. To evaluate the spinal participation of RAGE, TLR4, NF-kB, microglia, astrocytes, and MAPK p38 in HMGB1-mediated nociceptive effect during neuropathic pain and recombinant HMGB1-induced nociception, the drugs FPS-ZM1, LPS-RS, PDTC, minocycline, fluorocitrate, and SML0543 were respectively administrated by i.t. rout. Microglia, astrocytes, glial cells, RAGE, and TLR4 protein expression were analyzed by Western blot. ELISA immunoassay was also used to assess HMGB1, IL-1ß, and TNF-α spinal levels. Results: The pharmacological experiments demonstrated that spinal RAGE, TLR4, microglia, astrocytes, as well as MAPK p38 and NF-kB signaling are involved with HMGB1-induced nociception and paclitaxel-induced neuropathic pain. Furthermore, HMGB1 spinal levels were increased during the early stages of neuropathic pain and associated with RAGE, TLR4 and microglial activation. RAGE and TLR4 blockade decreased spinal levels of pro-inflammatory cytokines during neuropathic pain. Conclusion: Taken together, our findings indicate that HMGB1 may be released during the early stages of paclitaxel-induced neuropathic pain. This molecule activates RAGE and TLR4 receptors in spinal microglia, upregulating pro-inflammatory cytokines that may contribute to neuropathic pain.


Assuntos
Proteína HMGB1 , Neuralgia , Animais , Masculino , Camundongos , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Hiperalgesia/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , NF-kappa B , Paclitaxel/toxicidade , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor 4 Toll-Like/metabolismo
15.
Chemistry ; 30(20): e202303255, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317623

RESUMO

RAGE is a transmembrane receptor of immunoglobulin family that can bind various endogenous and exogenous ligands, initiating the inflammatory downstream signaling pathways, including inflammaging. Therefore, RAGE represents an attractive drug target for age-related diseases. For the development of small-molecule RAGE antagonists, we employed protein-templated dynamic combinatorial chemistry (ptDCC) using RAGE's VC1 domain as a template, the first application of this approach in the context of RAGE. The affinities of DCC hits were validated using microscale thermophoresis. Subsequent screening against AGE2 (glyceraldehyde-modified AGE)-sRAGE (solubleRAGE) (AGE2-BSA/sRAGE) interaction using ELISA tests led to the identification of antagonists with micromolar potency. Our findings not only demonstrate the successful application of ptDCC on RAGE but also highlight its potential to address the pressing need for alternative strategies for the development of small-molecule RAGE antagonists, an area of research that has experienced a slowdown in recent years.


Assuntos
Transdução de Sinais , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/metabolismo
16.
Sci Rep ; 14(1): 4685, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409584

RESUMO

The occurrence of nonenzymatic glycosylation reactions in skin fibroblasts can lead to severe impairment of skin health. To investigate the protective effects of the major functional ingredient from Gentianaceae, gentiopicroside (GPS) on fibroblasts, network pharmacology was used to analyse the potential pathways and targets underlying the effects of GPS on skin. At the biochemical and cellular levels, we examined the inhibitory effect of GPS on AGEs, the regulation by GPS of key ECM proteins and vimentin, the damage caused by GPS to the mitochondrial membrane potential and the modulation by GPS of inflammatory factors such as matrix metalloproteinases (MMP-2, MMP-9), reactive oxygen species (ROS), and IL-6 via the RAGE/NF-κB pathway. The results showed that GPS can inhibit AGE-induced damage to the dermis via multiple pathways. The results of biochemical and cellular experiments showed that GPS can strongly inhibit AGE production. Conversely, GPS can block AGE-induced oxidative stress and inflammatory responses in skin cells by disrupting AGE-RAGE signalling, maintain the balance of ECM synthesis and catabolism, and alleviate AGE-induced dysfunctions in cellular behaviour. This study provides a theoretical basis for the use of GPS as an AGE inhibitor to improve skin health and alleviate the damage caused by glycosylation, showing its potential application value in the field of skin care.


Assuntos
Produtos Finais de Glicação Avançada , Glucosídeos Iridoides , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Fibroblastos/metabolismo
17.
Exp Mol Med ; 56(3): 630-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424194

RESUMO

The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.


Assuntos
Menisco , Osteoartrite do Joelho , Calcificação Vascular , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Retroalimentação , Produtos Finais de Glicação Avançada/metabolismo , Menisco/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Serina-Treonina Quinases TOR , Calcificação Vascular/metabolismo
18.
Complement Ther Med ; 81: 103027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336011

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a common complication of type 2 diabetes. Okra (Abelmoschus esculentus L) is reported to have anti-diabetic effects. The present study aimed to investigate the effects of dried okra extract (DOE) supplementation on lipid profile, renal function indices, and expression of inflammatory genes, as well as serum level of soluble Receptor for Advanced glycation end products (sRAGE) in patients with DN. METHODS: In this triple-blind randomized placebo-controlled clinical trial, 64 eligible patients with DN received either 125 mg of DOE or placebo daily along with DN-related nutritional recommendations for 10 weeks. Changes in kidney indices including proteinuria and estimated glomerular filtration rate (eGFR), lipid profile, serum SRAGE, as well as the expression of RAGE, ICAM-1, and IL-1 genes were measured over 10 weeks. RESULTS: After adjustment for the potential confounders, between-group analyses showed no significant differences in terms of lipid profile, kidney function indices, sRAGE, and RAGE-related inflammatory genes expression after 10 weeks. CONCLUSION: Daily 125 mg DOE along with nutritional recommendations on top of usual care did not lead to significant changes in renal function indices, lipid profile, and inflammatory genes expression in patients with DN.


Assuntos
Abelmoschus , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Abelmoschus/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/uso terapêutico , Rim/metabolismo , Lipídeos
19.
J Immunol ; 212(4): 576-585, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180084

RESUMO

SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-ß) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.


Assuntos
COVID-19 , Melfalan , SARS-CoV-2 , gama-Globulinas , Cricetinae , Humanos , Camundongos , Animais , Mesocricetus , Receptor para Produtos Finais de Glicação Avançada/genética , Síndrome Pós-COVID-19 Aguda , Camundongos Transgênicos , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças , Pulmão
20.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38175729

RESUMO

Intrahepatic macrophages in nonalcoholic steatohepatitis (NASH) are heterogenous and include proinflammatory recruited monocyte-derived macrophages. The receptor for advanced glycation endproducts (RAGE) is expressed on macrophages and can be activated by damage associated molecular patterns (DAMPs) upregulated in NASH, yet the role of macrophage-specific RAGE signaling in NASH is unclear. Therefore, we hypothesized that RAGE-expressing macrophages are proinflammatory and mediate liver inflammation in NASH. Compared with healthy controls, RAGE expression was increased in liver biopsies from patients with NASH. In a high-fat, -fructose, and -cholesterol-induced (FFC)-induced murine model of NASH, RAGE expression was increased, specifically on recruited macrophages. FFC mice that received a pharmacological inhibitor of RAGE (TTP488), and myeloid-specific RAGE KO mice (RAGE-MKO) had attenuated liver injury associated with a reduced accumulation of RAGE+ recruited macrophages. Transcriptomics analysis suggested that pathways of macrophage and T cell activation were upregulated by FFC diet, inhibited by TTP488 treatment, and reduced in RAGE-MKO mice. Correspondingly, the secretome of ligand-stimulated BM-derived macrophages from RAGE-MKO mice had an attenuated capacity to activate CD8+ T cells. Our data implicate RAGE as what we propose to be a novel and potentially targetable mediator of the proinflammatory signaling of recruited macrophages in NASH.


Assuntos
Hepatite , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...