Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.472
Filtrar
1.
Psychiatry Res ; 341: 116156, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39236366

RESUMO

We are studying the molecular pathology of a sub-group within schizophrenia (∼ 25 %: termed Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS)) who can be separated because they have very low levels of cortical muscarinic M1 receptors (CHRM1). Based on our transcriptomic data from Brodmann's area ((BA) 9, 10 and 33 (controls, schizophrenia and mood disorders) and the cortex of the CHRM1-/- mouse (a molecular model of aberrant CHRM1 signaling), we predicted levels of AKT interacting protein (AKTIP), but not tubulin alpha 1b (TUBA1B) or AKT serine/threonine kinase 1 (AKT1) and pyruvate dehydrogenase kinase 1 (PDK1) (two AKTIP-functionally associated proteins), would be changed in MRDS. Hence, we used Western blotting to measure AKTIP (BA 10: controls, schizophrenia and mood disorders; BA 9: controls and schizophrenia) plus TUBA1B, AKT1 and PDK1 (BA 10: controls and schizophrenia) proteins. The only significant change with diagnosis was higher levels of AKTIP protein in BA 10 (Cohen's d = 0.73; p = 0.02) in schizophrenia compared to controls due to higher levels of AKTIP only in people with MRDS (Cohen's d = 0.80; p = 0.03). As AKTIP is involved in AKT1 signaling, our data suggests that signaling pathway is particularly disturbed in BA 10 in MRDS.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Receptor Muscarínico M1 , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Frontal/metabolismo , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Receptor Muscarínico M1/metabolismo , Esquizofrenia/metabolismo , Tubulina (Proteína)/metabolismo
2.
ACS Chem Neurosci ; 15(18): 3421-3433, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39197083

RESUMO

Herein we report progress toward a backup clinical candidate to the M1 positive allosteric modulator (PAM) VU319/ACP-319. Scaffold-hopping from the pyrrolo[2,3-b]pyridine-based M1 PAM VU6007477 to isomeric pyrrolo[3,2-b]pyridine and thieno[3,2-b]pyridine congeners identified several backup contenders. Ultimately, VU6007496, a pyrrolo[3,2-b]pyridine, advanced into late stage profiling, only to be plagued with unanticipated, species-specific metabolism and active/toxic metabolites which were identified in our phenotypic seizure liability in vivo screen, preventing further development. However, VU6007496 proved to be a highly selective and CNS penetrant M1 PAM, with minimal agonism, that displayed excellent multispecies IV/PO pharmacokinetics (PK), CNS penetration, no induction of long-term depression (or cholinergic toxicity) and robust efficacy in novel object recognition (minimum effective dose = 3 mg/kg p.o.). Thus, VU6007496 can serve as another valuable in vivo tool compound in rats and nonhuman primates, but not mouse, to study selective M1 activation.


Assuntos
Piridinas , Receptor Muscarínico M1 , Animais , Regulação Alostérica/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/farmacocinética , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/efeitos dos fármacos , Ratos , Humanos , Camundongos , Descoberta de Drogas/métodos , Masculino , Convulsões/tratamento farmacológico , Ratos Sprague-Dawley
3.
J Neurosci Res ; 102(8): e25370, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39158105

RESUMO

Resistance exercise training (RET) is considered an excellent tool for preventing diseases with an inflammatory background. Its neuroprotective, antioxidant, and anti-inflammatory properties are responsible for positively modulating cholinergic and oxidative systems, promoting neurogenesis, and improving memory. However, the mechanisms behind these actions are largely unknown. In order to investigate the pathways related to these effects of exercise, we conducted a 12-week long-term exercise training protocol and used lipopolysaccharide (LPS) to induce damage to the cortex and hippocampus of male Wistar rats. The cholinergic system, oxidative stress, and histochemical parameters were analyzed in the cerebral cortex and hippocampus, and memory tests were also performed. It was observed that LPS: (1) caused memory loss in the novel object recognition (NOR) test; (2) increased the activity of acetylcholinesterase (AChE) and Iba1 protein density; (3) reduced the protein density of brain-derived neurotrophic factor (BDNF) and muscarinic acetylcholine receptor M1 (CHRM1); (4) elevated the levels of lipid peroxidation (TBARS) and reactive species (RS); and (5) caused inflammatory damage to the dentate gyrus. RET, on the other hand, was able to prevent all alterations induced by LPS, as well as increase per se the protein density of the alpha-7 nicotinic acetylcholine receptor (nAChRα7) and Nestin, and the levels of protein thiols (T-SH). Overall, our study elucidates some mechanisms that support resistance physical exercise as a valuable approach against LPS-induced neuroinflammation and memory loss.


Assuntos
Lipopolissacarídeos , Transtornos da Memória , Doenças Neuroinflamatórias , Condicionamento Físico Animal , Ratos Wistar , Animais , Masculino , Lipopolissacarídeos/toxicidade , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/métodos , Ratos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Treinamento Resistido/métodos , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Receptor Muscarínico M1/metabolismo
4.
PLoS Biol ; 22(7): e3002714, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38995982

RESUMO

In everyday life, we encounter situations that require tradeoffs between potential rewards and associated costs, such as time and (physical) effort. The literature indicates a prominent role for dopamine in discounting of both delay and effort, with mixed findings for delay discounting in humans. Moreover, the reciprocal antagonistic interaction between dopaminergic and cholinergic transmission in the striatum suggests a potential opponent role of acetylcholine in these processes. We found opposing effects of dopamine D2 (haloperidol) and acetylcholine M1 receptor (biperiden) antagonism on specific components of effort-based decision-making in healthy humans: haloperidol decreased, whereas biperiden increased the willingness to exert physical effort. In contrast, delay discounting was reduced under haloperidol, but not affected by biperiden. Together, our data suggest that dopamine, acting at D2 receptors, modulates both effort and delay discounting, while acetylcholine, acting at M1 receptors, appears to exert a more specific influence on effort discounting only.


Assuntos
Acetilcolina , Tomada de Decisões , Desvalorização pelo Atraso , Dopamina , Haloperidol , Receptores de Dopamina D2 , Humanos , Acetilcolina/metabolismo , Dopamina/metabolismo , Masculino , Tomada de Decisões/fisiologia , Tomada de Decisões/efeitos dos fármacos , Feminino , Haloperidol/farmacologia , Adulto , Receptores de Dopamina D2/metabolismo , Desvalorização pelo Atraso/efeitos dos fármacos , Desvalorização pelo Atraso/fisiologia , Adulto Jovem , Recompensa , Receptor Muscarínico M1/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38950842

RESUMO

Acute stimulation of M1 or M4 muscarinic cholinergic receptors reduces cocaine abuse-related effects in mice and rats. The combined activation of these receptor subtypes produces synergistic effects on some behavioural endpoints in mice. M1 and M1 + M4 receptor stimulation in a cocaine vs. food choice assay in rats and microdialysis in rats showed delayed and lasting "anticocaine effects". Here, we tested whether these putative lasting neuroplastic changes are sufficient to occlude the reinforcing effects of cocaine at the behavioural level in mice. Mice were pre-treated with the M1 receptor partial agonist VU0364572, M4 receptor positive allosteric modulator VU0152100, or VU0364572 + VU0152100 two weeks prior to acquisition of cocaine intravenous self-administration (IVSA). Male C57BL/6JRj mice received vehicle, VU0364572, VU0152100, or VU0364572 + VU0152100. Female mice were tested with two VU0364572 + VU0152100 dose combinations or vehicle. To attribute potential effects to either reduced rewarding effects or increased aversion to cocaine, we tested VU0364572 alone and VU0364572 + VU0152100 in acquisition of cocaine-conditioned place preference (CPP) in male mice using an unbiased design. The acquisition of cocaine IVSA was drastically reduced and/or slowed in male and female mice receiving VU0364572 + VU0152100, but not either drug alone. Food-maintained operant behaviour was unaffected, indicating that the treatment effects were cocaine-specific. No treatment altered the acquisition of cocaine-CPP, neither in the post-test, nor in a challenge 14 days later. The cocaine IVSA findings confirm unusual long-lasting "anticocaine" effects of muscarinic M1 + M4 receptor stimulation. Thus, in mice, simultaneous stimulation of both receptor subtypes seems to produce potential neuroplastic changes that yield lasting effects.


Assuntos
Cocaína , Camundongos Endogâmicos C57BL , Receptor Muscarínico M1 , Receptor Muscarínico M4 , Reforço Psicológico , Autoadministração , Animais , Masculino , Cocaína/farmacologia , Cocaína/administração & dosagem , Feminino , Receptor Muscarínico M4/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/efeitos dos fármacos , Camundongos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Agonistas Muscarínicos/farmacologia , Condicionamento Operante/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 121(32): e2407974121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39083422

RESUMO

Multiple sclerosis (MS) is a chronic and debilitating neurological disease that results in inflammatory demyelination. While endogenous remyelination helps to recover function, this restorative process tends to become less efficient over time. Currently, intense efforts aimed at the mechanisms that promote remyelination are being considered promising therapeutic approaches. The M1 muscarinic acetylcholine receptor (M1R) was previously identified as a negative regulator of oligodendrocyte differentiation and myelination. Here, we validate M1R as a target for remyelination by characterizing expression in human and rodent oligodendroglial cells (including those in human MS tissue) using a highly selective M1R probe. As a breakthrough to conventional methodology, we conjugated a fluorophore to a highly M1R selective peptide (MT7) which targets the M1R in the subnanomolar range. This allows for exceptional detection of M1R protein expression in the human CNS. More importantly, we introduce PIPE-307, a brain-penetrant, small-molecule antagonist with favorable drug-like properties that selectively targets M1R. We evaluate PIPE-307 in a series of in vitro and in vivo studies to characterize potency and selectivity for M1R over M2-5R and confirm the sufficiency of blocking this receptor to promote differentiation and remyelination. Further, PIPE-307 displays significant efficacy in the mouse experimental autoimmune encephalomyelitis model of MS as evaluated by quantifying disability, histology, electron microscopy, and visual evoked potentials. Together, these findings support targeting M1R for remyelination and support further development of PIPE-307 for clinical studies.


Assuntos
Esclerose Múltipla , Oligodendroglia , Receptor Muscarínico M1 , Remielinização , Animais , Humanos , Camundongos , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Antagonistas Muscarínicos/farmacologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/antagonistas & inibidores , Remielinização/efeitos dos fármacos
7.
Sci Rep ; 14(1): 14901, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942828

RESUMO

Allosteric modulation of muscarinic acetylcholine receptors (mAChR) has been identified as a potential strategy for regulating cholinergic signaling in the treatment of various neurological disorders. Most positive allosteric modulators (PAMs) of mAChR enhance agonist affinity and potency, while very few PAMs (e.g., amiodarone) selectively enhance G protein coupling efficacy. The key structural features of amiodarone responsible for enhancement of mAChR efficacy were examined in CHO cells expressing M1 receptors. Subsequent incorporation of these structural features into previously identified allosteric modulators of potency (i.e., n-benzyl isatins) generated ligands that demonstrated similar or better enhancement of mAChR efficacy, lower in vivo toxicity, and higher allosteric binding affinity relative to amiodarone. Notable ligands include 8a, c which respectively demonstrated the strongest binding affinity and the most robust enhancement of mAChR efficacy as calculated from an allosteric operational model. Amiodarone derivatives and hybrid ligands were additionally screened in wildtype zebrafish (Danio rerio) to provide preliminary in vivo toxicity data as well as to observe effects on locomotor and turning behaviors relative to other mAChR PAMs. Several compounds, including 8a, c, reduced locomotor activity and increased measures of turning behaviors in zebrafish, suggesting that allosteric modulation of muscarinic receptor efficacy might be useful in the treatment of repetitive behaviors associated with autism spectrum disorder (ASD) and other neuropsychiatric disorders.


Assuntos
Acetilcolina , Cricetulus , Locomoção , Receptor Muscarínico M1 , Peixe-Zebra , Animais , Receptor Muscarínico M1/metabolismo , Regulação Alostérica/efeitos dos fármacos , Células CHO , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Locomoção/efeitos dos fármacos , Ligantes , Agonistas Muscarínicos/farmacologia
8.
Neurol Res ; 46(7): 593-604, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747300

RESUMO

BACKGROUND: Sevoflurane treatment increases the incidence of postoperative cognitive dysfunction (POCD), and patients with POCD show a decline in cognitive abilities compared to preoperative levels. OBJECTIVES: This study aimed to investigate whether the activation of α7 nicotinic acetylcholine receptor (α7nAChR) and the expression of M1 acetylcholine receptor (mAChR M1) in the hippocampus affects the cognitive function of aged rats. METHODS: Forty-eight Sprague-Dawley (SD) rats of 1-week- and 12-months-old were divided into eight groups: four groups for α7nAChR and four groups for mAChR M1, respectively. All SD rats received 1.0-02% sevoflurane for α7nAChR and 1.0-02% sevoflurane for mAChR M1 for 2-6 h, respectively. The Y-maze test was used to assess the ability to learn and memory after receiving sevoflurane for 7 days at the same moment portion. RT-PCR was used to determine the expression of α7nAChR and mAChR M1 in the hippocampus of rats. RESULTS: The α7nAChR mitigated the formation of sevoflurane-induced memory impairment by modulating the translocation of NR2B from the intracellular reservoir to the cell surface reservoir within the hippocampus. Next, sevoflurane-induced decline of cognitive function and significantly decreased mAChR M1 expression at mRNA levels. CONCLUSION: α7nAChR regulates the trafficking of NR2B in the hippocampus of rats via the Src-family tyrosine kinase (SFK) pathway. This regulation is associated with cognitive deficits induced by sevoflurane in hippocampal development. Sevoflurane affects the cognitive function of rats by suppressing the mAChR M1 expression at mRNA levels in the hippocampus.


α7nAChR attenuates sevoflurane-induced memory deficits by regulating NR2B.α7nAChR controls NR2B via the SFK in the hippocampus of rats that contribute to sevoflurane-induced cognitive deficits.Sevoflurane may affect cognitive function in rats by suppressing the mAChR M1 expression at the mRNA levels in the hippocampus.Dysregulation of the α7nAChR and mAChR M1 receptors may contribute to cognitive deficits and neurodegenerative disorders.


Assuntos
Hipocampo , Ratos Sprague-Dawley , Receptor Muscarínico M1 , Sevoflurano , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Sevoflurano/farmacologia , Sevoflurano/efeitos adversos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Receptor Muscarínico M1/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Ratos , Aprendizagem em Labirinto/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética , Anestésicos Inalatórios/farmacologia , Anestésicos Inalatórios/efeitos adversos , Modelos Animais de Doenças
9.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38719447

RESUMO

Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.


Assuntos
Giro do Cíngulo , Macaca mulatta , Animais , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiologia , Masculino , Feminino , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M1/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Acetilcolina/metabolismo , Vias Neurais/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia
10.
Bioorg Med Chem ; 105: 117728, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640587

RESUMO

Muscarinic acetylcholine receptors (mAChRs) play a significant role in the pathophysiology of schizophrenia. Although activating mAChRs holds potential in addressing the full range of schizophrenia symptoms, clinical application of many non-selective mAChR agonists in cognitive deficits, positive and negative symptoms is hindered by peripheral side effects (gastrointestinal disturbances and cardiovascular effects) and dosage restrictions. Ligands binding to the allosteric sites of mAChRs, particularly the M1 and M4 subtypes, demonstrate activity in improving cognitive function and amelioration of positive and negative symptoms associated with schizophrenia, enhancing our understanding of schizophrenia. The article aims to critically examine current design concepts and clinical advancements in synthesizing and designing small molecules targeting M1/M4, providing theoretical insights and empirical support for future research in this field.


Assuntos
Antipsicóticos , Receptor Muscarínico M1 , Esquizofrenia , Antipsicóticos/farmacologia , Antipsicóticos/química , Antipsicóticos/uso terapêutico , Estrutura Molecular , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M4/metabolismo , Receptor Muscarínico M4/antagonistas & inibidores , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
11.
J Phys Chem B ; 128(18): 4354-4366, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38683784

RESUMO

G protein-coupled receptors (GPCRs) are a major gateway to cellular signaling, which respond to ligands binding at extracellular sites through allosteric conformational changes that modulate their interactions with G proteins and arrestins at intracellular sites. High-resolution structures in different ligand states, together with spectroscopic studies and molecular dynamics simulations, have revealed a rich conformational landscape of GPCRs. However, their supramolecular structure and spatiotemporal distribution is also thought to play a significant role in receptor activation and signaling bias within the native cell membrane environment. Here, we applied single-molecule fluorescence techniques, including single-particle tracking, single-molecule photobleaching, and fluorescence correlation spectroscopy, to characterize the diffusion and oligomerization behavior of the muscarinic M1 receptor (M1R) in live cells. Control samples included the monomeric protein CD86 and fixed cells, and experiments performed in the presence of different orthosteric M1R ligands and of several compounds known to change the fluidity and organization of the lipid bilayer. M1 receptors exhibit Brownian diffusion characterized by three diffusion constants: confined/immobile (∼0.01 µm2/s), slow (∼0.04 µm2/s), and fast (∼0.14 µm2/s), whose populations were found to be modulated by both orthosteric ligands and membrane disruptors. The lipid raft disruptor C6 ceramide led to significant changes for CD86, while the diffusion of M1R remained unchanged, indicating that M1 receptors do not partition in lipid rafts. The extent of receptor oligomerization was found to be promoted by increasing the level of expression and the binding of orthosteric ligands; in particular, the agonist carbachol elicited a large increase in the fraction of M1R oligomers. This study provides new insights into the balance between conformational and environmental factors that define the movement and oligomerization states of GPCRs in live cells under close-to-native conditions.


Assuntos
Receptor Muscarínico M1 , Ligantes , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/química , Difusão , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Multimerização Proteica/efeitos dos fármacos , Animais , Espectrometria de Fluorescência , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
12.
J Neurophysiol ; 131(6): 1213-1225, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629848

RESUMO

Acetylcholine is a neurotransmitter that plays a variety of roles in the central nervous system. It was previously shown that blocking muscarinic receptors with a nonselective antagonist prevents a form of experience-dependent plasticity termed "spatiotemporal sequence learning" in the mouse primary visual cortex (V1). Muscarinic signaling is a complex process involving the combined activities of five different G protein-coupled receptors, M1-M5, all of which are expressed in the murine brain but differ from each other functionally and in anatomical localization. Here we present electrophysiological evidence that M2, but not M1, receptors are required for spatiotemporal sequence learning in mouse V1. We show in male mice that M2 is highly expressed in the neuropil in V1, especially in thalamorecipient layer 4, and colocalizes with the soma in a subset of somatostatin-expressing neurons in deep layers. We also show that expression of M2 receptors is higher in the monocular region of V1 than it is in the binocular region but that the amount of experience-dependent sequence potentiation is similar in both regions and that blocking muscarinic signaling after visual stimulation does not prevent plasticity. This work establishes a new functional role for M2-type receptors in processing temporal information and demonstrates that monocular circuits are modified by experience in a manner similar to binocular circuits.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are required for multiple forms of plasticity in the brain and support perceptual functions, but the precise role of the five subtypes (M1-M5) are unclear. Here we show that the M2 receptor is specifically required to encode experience-dependent representations of spatiotemporal relationships in both monocular and binocular regions of mouse V1. This work identifies a novel functional role for M2 receptors in coding temporal information into cortical circuits.


Assuntos
Córtex Visual Primário , Receptor Muscarínico M2 , Animais , Masculino , Camundongos , Receptor Muscarínico M2/metabolismo , Córtex Visual Primário/fisiologia , Córtex Visual Primário/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Receptor Muscarínico M1/metabolismo , Córtex Visual/fisiologia , Córtex Visual/metabolismo , Somatostatina/metabolismo , Aprendizagem/fisiologia
13.
Br J Pharmacol ; 181(17): 3064-3081, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38689378

RESUMO

BACKGROUND AND PURPOSE: Current pharmacotherapies for Tourette syndrome (TS) are often unsatisfactory and poorly tolerated, underscoring the need for novel treatments. Insufficient striatal acetylcholine has been suggested to contribute to tic ontogeny. Thus, we tested whether activating M1 and/or M4 receptors-the two most abundant muscarinic receptors in the striatum-reduced tic-related behaviours in mouse models of TS. EXPERIMENTAL APPROACH: Studies were conducted using CIN-d and D1CT-7 mice, two TS models characterized by early-life depletion of striatal cholinergic interneurons and cortical neuropotentiation, respectively. First, we tested the effects of systemic and intrastriatal xanomeline, a selective M1/M4 receptor agonist, on tic-like and other TS-related responses. Then, we examined whether xanomeline effects were reduced by either M1 or M4 antagonists or mimicked by the M1/M3 agonist cevimeline or the M4 positive allosteric modulator (PAM) VU0467154. Finally, we measured striatal levels of M1 and M4 receptors and assessed the impact of VU0461754 on the striatal expression of the neural marker activity c-Fos. KEY RESULTS: Systemic and intrastriatal xanomeline reduced TS-related behaviours in CIN-d and D1CT-7 mice. Most effects were blocked by M4, but not M1, receptor antagonists. VU0467154, but not cevimeline, elicited xanomeline-like ameliorative effects in both models. M4, but not M1, receptors were down-regulated in the striatum of CIN-d mice. Additionally, VU0467154 reduced striatal c-Fos levels in these animals. CONCLUSION AND IMPLICATIONS: Activation of striatal M4, but not M1, receptors reduced tic-like manifestations in mouse models, pointing to xanomeline and M4 PAMs as novel putative therapeutic strategies for TS.


Assuntos
Corpo Estriado , Modelos Animais de Doenças , Agonistas Muscarínicos , Receptor Muscarínico M4 , Síndrome de Tourette , Animais , Síndrome de Tourette/metabolismo , Síndrome de Tourette/tratamento farmacológico , Receptor Muscarínico M4/metabolismo , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/antagonistas & inibidores , Camundongos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Masculino , Agonistas Muscarínicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Piridinas/farmacologia , Tiques/tratamento farmacológico , Tiques/metabolismo , Tiofenos/farmacologia , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/agonistas , Dioxóis/farmacologia , Camundongos Endogâmicos C57BL , Tiadiazóis
14.
Brain Behav ; 14(5): e3507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688895

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual loss of cognitive abilities (dementia) and is a major public health problem. Here, we aimed at investigating the effects of Rosa damascena essential oil (RDEO) on learning and memory functions in a rat model of amnesia induced by scopolamine, as well as on changes in acetylcholinesterase (AChE) activity, M1 muscarinic acetylcholine receptor (mAChR) expression, and brain-derived neurotrophic factor (BDNF) levels in the extracted brain tissues. METHODS: The control, amnesia (scopolamine, 1 mg/kg/i.p.) and treatment (RDEO, 100 µL/kg/p.o. or galantamine, 1.5 mg/kg/i.p.) groups were subjected to Morris water maze and new object recognition tests. AChE activity was assayed by ELISA, and M1 mAChR and BDNF concentration changes were determined by western blotting. Also, using computational tools, human M1 mAChR was modeled in an active conformation, and the major components of RDEO were docked onto this receptor. RESULTS: According to our behavioral tests, RDEO was able to mitigate the learning and memory impairments caused by scopolamine in vivo. Our in vitro assays showed that the observed positive effects correlated well with a decrease in AChE activity and an increase in M1 mAChR and BDNF levels in amnestic rat brains. We also demonstrated in an in silico setting that the major components of RDEO, specifically -citronellol, geraniol, and nerol, could be accommodated favorably within the allosteric binding pocket of active-state human M1 mAChR and anchored here chiefly by hydrogen-bonding and alkyl-π interactions. CONCLUSION: Our findings offer a solid experimental foundation for future RDEO-based medicinal product development for patients suffering from AD.


Assuntos
Acetilcolinesterase , Amnésia , Fator Neurotrófico Derivado do Encéfalo , Óleos Voláteis , Rosa , Escopolamina , Animais , Ratos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/administração & dosagem , Masculino , Rosa/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Acetilcolinesterase/metabolismo , Receptor Muscarínico M1/metabolismo , Ratos Wistar , Nootrópicos/farmacologia , Modelos Animais de Doenças , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos
15.
J Alzheimers Dis ; 98(1): 247-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427478

RESUMO

Background: Loss of Cholinergic Receptor Muscarinic 1 (CHRM1) has been linked to the pathogenesis of Alzheimer's disease (AD). Our recent study found significantly lower CHRM1 protein levels in AD patient cortices, linked to reduced survival. Furthermore, using knockout mice (Chrm1-/-) we demonstrated that deletion of Chrm1 alters cortical mitochondrial structure and function, directly establishing a connection between its loss and mitochondrial dysfunction in the context of AD. While CHRM1's role in the brain has been extensively investigated, its impact on peripheral neurons in AD remains a crucial area of research, especially considering reported declines in peripheral nerve conduction among AD patients. Objective: The objective was to characterize Chrm1 localization and mitochondrial deficits in Chrm1-/- dorsal root ganglion (DRG) neurons. Methods: Recombinant proteins tagged with Green or Red Fluorescent Protein (GFP/RFP) were transiently expressed to investigate the localization of Chrm1 and mitochondria, as well as mitochondrial movement in the neurites of cultured primary mouse DRG neurons, using confocal time-lapse live cell imaging. Transmission electron microscopy was performed to examine the ultrastructure of mitochondria in both wild-type and Chrm1-/- DRGs. Results: Fluorescence imaging revealed colocalization and comigration of N-terminal GFP-tagged Chrm1 and mitochondrial localization signal peptide-tagged RFP-labelled mitochondria in the DRGs neurons. A spectrum of mitochondrial structural abnormalities, including disruption and loss of cristae was observed in 87% neurons in Chrm1-/- DRGs. Conclusions: This study suggests that Chrm1 may be localized in the neuronal mitochondria and loss of Chrm1 in peripheral neurons causes sever mitochondrial structural aberrations resembling AD pathology.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/patologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Neurônios/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Colinérgicos , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
16.
Biomed Pharmacother ; 173: 116388, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460371

RESUMO

Alzheimer's disease (AD) is the most prevalent type of dementia, disproportionately affecting females, who make up nearly 60% of diagnosed cases. In AD patients, the accumulation of beta-amyloid (Aß) in the brain triggers a neuroinflammatory response driven by neuroglia, worsening the condition. We have previously demonstrated that VU0486846, an orally available positive allosteric modulator (PAM) targeting M1 muscarinic acetylcholine receptors, enhances cognitive function and reduces Aß pathology in female APPswe/PSEN1ΔE9 (APP/PS1) mice. However, it remained unclear whether these improvements were linked to a decrease in neuroglial activation. To investigate, we treated nine-month-old APP/PS1 and wildtype mice with VU0486846 for 8 weeks and analyzed brain slices for markers of microglial activation (ionized calcium binding adaptor molecule 1, Iba1) and astrocyte activation (Glial fibrillary acidic protein, GFAP). We find that VU0486846 reduces the presence of Iba1-positive microglia and GFAP-positive astrocytes in the hippocampus of female APP/PS1 mice and limits the recruitment of these cells to remaining Aß plaques. This study sheds light on an additional mechanism through which novel M1 mAChR PAMs exhibit disease-modifying effects by reducing neuroglial activation and underscore the potential of these ligands for the treatment of AD, especially in females.


Assuntos
Doença de Alzheimer , Morfolinas , Pirazóis , Camundongos , Humanos , Feminino , Animais , Lactente , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Receptor Muscarínico M1 , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
17.
Pharmacol Biochem Behav ; 237: 173725, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340989

RESUMO

BACKGROUND: Several studies have demonstrated that ACh modulates the dopaminergic circuit in the nucleus accumbens, and its blockade appears to be associated with the inhibition of the reinforced effect or the increase in dopamine caused by cocaine use. The objective of this study was to evaluate the effect of biperiden (a muscarinic receptor antagonist with a relatively higher affinity for the M1 receptor) on crack/cocaine use relapse compared to a control group that received placebo. METHODS: This study is a double-blind, randomized, placebo-controlled clinical trial. The intervention group received 2 mg of biperiden, 3 times a day, for a period of 3 months. The control group received identical placebo capsules, at the same frequency and over the same period. All participants were followed for a period of six months. RESULTS: The sample comprised 128 people, with 61 in the control group and 67 in the biperiden group. Lower substance consumption was observed in the group that received biperiden treatment two (bT2 = -2.2 [-3.3; -1.0], p < 0.001) and six months (bT4 = -6, 2 [-8.6; -3.9], p < 0.001) after the beginning of the intervention. The biperiden group had a higher latency until a possible first day of consumption, in the same evaluation periods (bT2 = 0.26 [0.080; 0.44], p = 0.004; bT4 = 0.63 [0.32; 0.93], p < 0.001). CONCLUSIONS: Despite the major limitations of the present study, the group that received biperiden reduced the number of days of cocaine/crack use and showed an increase in the latency time for relapse. More studies are needed to confirm the utility of this approach.


Assuntos
Biperideno , Transtornos Relacionados ao Uso de Cocaína , Cocaína Crack , Humanos , Biperideno/uso terapêutico , Biperideno/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cocaína Crack/efeitos adversos , Método Duplo-Cego , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/uso terapêutico , Receptor Muscarínico M1
18.
Cell Rep Med ; 5(2): 101388, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262412

RESUMO

Docetaxel is the most commonly used chemotherapy for advanced prostate cancer (PC), including castration-resistant disease (CRPC), but the eventual development of docetaxel resistance constitutes a major clinical challenge. Here, we demonstrate activation of the cholinergic muscarinic M1 receptor (CHRM1) in CRPC cells upon acquiring resistance to docetaxel, which is manifested in tumor tissues from PC patients post- vs. pre-docetaxel. Genetic and pharmacological inactivation of CHRM1 restores the efficacy of docetaxel in resistant cells. Mechanistically, CHRM1, via its first and third extracellular loops, interacts with the SEMA domain of cMET and forms a heteroreceptor complex with cMET, stimulating a downstream mitogen-activated protein polykinase program to confer docetaxel resistance. Dicyclomine, a clinically available CHRM1-selective antagonist, reverts resistance and restricts the growth of multiple docetaxel-resistant CRPC cell lines and patient-derived xenografts. Our study reveals a CHRM1-dictated mechanism for docetaxel resistance and identifies a CHRM1-targeted combinatorial strategy for overcoming docetaxel resistance in PC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptor Muscarínico M1 , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Receptor Muscarínico M1/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Colinérgicos/uso terapêutico
19.
Psychiatry Res ; 331: 115656, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071879

RESUMO

We identified a sub-group (25%) of people with schizophrenia (muscarinic receptor deficit schizophrenia (MRDS)) that are characterised because of markedly lower levels of cortical muscarinic M1 receptors (CHRM1) compared to most people with the disorder (non-MRDS). Notably, bioinformatic analyses of our cortical gene expression data shows a disturbance in the homeostasis of a biochemical pathway that regulates levels of CHRM1. A step in this pathway is the processing of ß-amyloid precursor protein (APP) and therefore we postulated there would be altered levels of APP in the frontal cortex from people with MRDS. Here we measure levels of CHRM1 using [3H]pirenzepine binding, soluble APP (sAPP) using Western blotting and amyloid beta peptides (Aß1-40 and Aß1-42) using ELISA in the frontal cortex (Brodmann's area 6: BA 6; MRDS = 14, non-MRDS = 14, controls = 14). We confirmed the MRDS cohort in this study had the expected low levels of [3H]pirenzepine binding. In addition, we showed that people with schizophrenia, independent of their sub-group status, had lower levels of sAPP compared to controls but did not have altered levels of Aß1-40 or Aß1-42. In conclusion, whilst changes in sAPP are not restricted to MRDS our data could indicate a role of APP, which is important in axonal and synaptic pruning, in the molecular pathology of the syndrome of schizophrenia.


Assuntos
Precursor de Proteína beta-Amiloide , Esquizofrenia , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Pirenzepina/metabolismo , Peptídeos beta-Amiloides , Esquizofrenia/genética , Lobo Frontal/metabolismo , Receptor Muscarínico M1/genética
20.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050146

RESUMO

Acetylcholine (ACh) promotes neocortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of layer 5 pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in dual recordings of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies, suggesting that ACh may generally suppress synaptic transmission in the cortex via non-M1 receptors. Cholinergic enhancement of sEPSPs in PT neurons was not sensitive to antagonism of GABA receptors with gabazine (10 µM) and CGP52432 (2.5 µM) but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in dual recordings of PT neurons relative to IT-PT and IT-IT parings. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not commissural IT, neurons blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to selectively enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by amplifying recurrent excitation within networks of PT neurons.


Assuntos
Colinérgicos , Neurônios , Camundongos , Masculino , Feminino , Animais , Colinérgicos/farmacologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolina/farmacologia , Córtex Pré-Frontal/fisiologia , Receptor Muscarínico M1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA