Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.796
Filtrar
1.
PLoS Biol ; 22(9): e3002783, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226305

RESUMO

Cell shape remodeling is a principal driver of epithelial tissue morphogenesis. While progress continues to be made in our understanding of the pathways that control the apical (top) geometry of epithelial cells, we know comparatively little about those that control cell basal (bottom) geometry. To examine this, we used the Drosophila ommatidium, which is the basic visual unit of the compound eye. The ommatidium is shaped as a hexagonal prism, and generating this 3D structure requires ommatidial cells to adopt specific apical and basal polygonal geometries. Using this model system, we find that generating cell type-specific basal geometries starts with patterning of the basal extracellular matrix, whereby Laminin accumulates at discrete locations across the basal surface of the retina. We find the Dystroglycan receptor complex (DGC) is required for this patterning by promoting localized Laminin accumulation at the basal surface of cells. Moreover, our results reveal that localized accumulation of Laminin and the DGC are required for directing Integrin adhesion. This induces cell basal geometry remodeling by anchoring the basal surface of cells to the extracellular matrix at specific, Laminin-rich locations. We propose that patterning of a basal extracellular matrix by generating discrete Laminin domains can direct Integrin adhesion to induce cell shape remodeling in epithelial morphogenesis.


Assuntos
Forma Celular , Proteínas de Drosophila , Drosophila melanogaster , Distroglicanas , Matriz Extracelular , Integrinas , Laminina , Retina , Animais , Distroglicanas/metabolismo , Laminina/metabolismo , Integrinas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Matriz Extracelular/metabolismo , Retina/metabolismo , Retina/crescimento & desenvolvimento , Retina/citologia , Retina/embriologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Morfogênese , Adesão Celular , Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento
2.
Nat Commun ; 15(1): 7965, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261465

RESUMO

Current adeno-associated virus (AAV) gene therapy using nature-derived AAVs is limited by non-optimal tissue targeting. In the treatment of muscular diseases (MD), high doses are often required but can lead to severe adverse effects. Here, we rationally design an AAV capsid that specifically targets skeletal muscle to lower treatment doses. We computationally integrate binding motifs of human integrin alphaV beta6, a skeletal muscle receptor, into a liver-detargeting capsid. Designed AAVs show higher productivity and superior muscle transduction compared to their parent. One variant, LICA1, demonstrates comparable muscle transduction to other myotropic AAVs with reduced liver targeting. LICA1's myotropic properties are observed across species, including non-human primate. Consequently, LICA1, but not AAV9, effectively delivers therapeutic transgenes and improved muscle functionality in two mouse MD models (male mice) at a low dose (5E12 vg/kg). These results underline the potential of our design method for AAV engineering and LICA1 variant for MD gene therapy.


Assuntos
Dependovirus , Terapia Genética , Músculo Esquelético , Dependovirus/genética , Animais , Humanos , Músculo Esquelético/metabolismo , Camundongos , Terapia Genética/métodos , Masculino , Vetores Genéticos/genética , Integrinas/metabolismo , Integrinas/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Doenças Musculares/terapia , Doenças Musculares/genética , Transdução Genética , Fígado/metabolismo , Capsídeo/metabolismo , Receptores de Vitronectina/metabolismo , Receptores de Vitronectina/genética , Modelos Animais de Doenças , Células HEK293 , Transgenes , Camundongos Endogâmicos C57BL , Antígenos de Neoplasias
3.
Sci Adv ; 10(36): eadk2252, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39231227

RESUMO

Primordial germ cells (PGCs) are the precursors of gametes and the sole mechanism by which animals transmit genetic information across generations. In the mouse embryo, the transcriptional and epigenetic regulation of PGC specification has been extensively characterized. However, the initial event that triggers the soma-germline segregation remains poorly understood. Here, we uncover a critical role for the basement membrane in regulating germline entry. We show that PGCs arise in a region of the mouse embryo that lacks contact with the basement membrane, and the addition of exogenous extracellular matrix (ECM) inhibits both PGC and PGC-like cell (PGCLC) specification in mouse embryos and stem cell models, respectively. Mechanistically, we demonstrate that the engagement of ß1 integrin with laminin blocks PGCLC specification by preventing the Wnt signaling-dependent down-regulation of the PGC transcriptional repressor, Otx2. In this way, the physical segregation of cells away from the basement membrane acts as a morphogenetic fate switch that controls the soma-germline bifurcation.


Assuntos
Células Germinativas , Células-Tronco Pluripotentes , Animais , Camundongos , Células Germinativas/metabolismo , Células Germinativas/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Transdução de Sinais , Integrinas/metabolismo , Integrinas/genética , Membrana Basal/metabolismo , Via de Sinalização Wnt , Diferenciação Celular , Matriz Extracelular/metabolismo , Laminina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Integrina beta1/metabolismo , Integrina beta1/genética , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição Otx/genética , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/citologia
4.
Matrix Biol ; 133: 77-85, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39147247

RESUMO

To form blood vessels, endothelial cells rearrange their cytoskeleton, generate traction stresses, migrate, and proliferate, all of which require energy. Despite these energetic costs, stiffening of the extracellular matrix promotes tumor angiogenesis and increases cell contractility. However, the interplay between extracellular matrix, cell contractility, and cellular energetics remains mechanistically unclear. Here, we utilized polyacrylamide substrates with various stiffnesses, a real-time biosensor of ATP, and traction force microscopy to show that endothelial cells exhibit increasing traction forces and energy usage trend as substrate stiffness increases. Inhibition of cytoskeleton reorganization via ROCK inhibition resulted in decreased cellular energy efficiency, and an opposite trend was found when cells were treated with manganese to promote integrin affinity. Altogether, our data reveal a link between matrix stiffness, cell contractility, and cell energetics, suggesting that endothelial cells on stiffer substrates can better convert intracellular energy into cellular traction forces. Given the critical role of cellular metabolism in cell function, our study also suggests that not only energy production but also the efficiency of its use plays a vital role in regulating cell behaviors and may help explain how increased matrix stiffness promotes angiogenesis.


Assuntos
Resinas Acrílicas , Citoesqueleto , Células Endoteliais , Matriz Extracelular , Matriz Extracelular/metabolismo , Humanos , Resinas Acrílicas/química , Células Endoteliais/metabolismo , Citoesqueleto/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/antagonistas & inibidores , Integrinas/metabolismo , Integrinas/genética , Manganês/metabolismo , Movimento Celular , Adesão Celular
5.
Matrix Biol ; 133: 57-63, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39151809

RESUMO

This article recounts my journey as a scientist in the early days of extracellular matrix research through the discovery of fibronectin, the RGD sequence as a key recognition motif in fibronectin and other adhesion proteins, and isolation and cloning of integrins. I also discuss more recent work on identification of molecular "zip codes" by in vivo screening of peptide libraries expressed on phage, which led us right back to RGD and integrins. Many disease-specific zip codes have turned out to be based on altered expression of extracellular matrix molecules and integrins. Homing peptides and antibodies recognizing zip code molecules are being used in drug delivery applications, some of which have advanced into clinical trials.


Assuntos
Matriz Extracelular , Fibronectinas , Integrinas , Oligopeptídeos , Matriz Extracelular/metabolismo , Humanos , Integrinas/metabolismo , Integrinas/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Fibronectinas/química , História do Século XXI , História do Século XX , Oligopeptídeos/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/química , Biblioteca de Peptídeos , Animais , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética
6.
Cancer Res Commun ; 4(9): 2374-2383, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39172021

RESUMO

Opposite expression and pro- or anti-cancer function of YAP and its paralog TAZ/WWTR1 stratify cancers into binary YAPon and YAPoff classes. These transcriptional coactivators are oncogenic in YAPon cancers. In contrast, YAP/TAZ are silenced epigenetically along with their integrin and extracellular matrix adhesion target genes in neural and neuroendocrine YAPoff cancers (e.g., small cell lung cancer, retinoblastoma). Forced YAP/TAZ expression induces these targets, causing cytostasis in part through Integrin-αV/ß5, independent of the integrin-binding RGD ligand. Other effectors of this anticancer YAP function are unknown. Here, using clustered regularly interspaced short palindromic repeats (CRISPR) screens, we link the Netrin receptor UNC5B to YAP-induced cytostasis in YAPoff cancers. Forced YAP expression induces UNC5B through TEAD DNA-binding partners, as either TEAD1/4-loss or a YAP mutation that disrupts TEAD-binding (S94A) blocks, whereas a TEAD-activator fusion (TEAD(DBD)-VP64) promotes UNC5B induction. Ectopic YAP expression also upregulates UNC5B relatives and their netrin ligands in YAPoff cancers. Netrins are considered protumorigenic, but knockout and peptide/decoy receptor blocking assays reveal that in YAPoff cancers, UNC5B and Netrin-1 can cooperate with integrin-αV/ß5 to mediate YAP-induced cytostasis. These data pinpoint an unsuspected Netrin-1/UNC5B/integrin-αV/ß5 axis as a critical effector of YAP tumor suppressor activity. SIGNIFICANCE: Netrins are widely perceived as procancer proteins; however, we uncover an anticancer function for Netrin-1 and its receptor UNC5B.


Assuntos
Receptores de Netrina , Netrina-1 , Fatores de Transcrição , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Netrina-1/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Integrinas/metabolismo , Animais , Camundongos
7.
ACS Nano ; 18(32): 21144-21155, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088555

RESUMO

Cells can sense the physical properties of the extracellular matrices (ECMs), such as stiffness and ligand density, through cell adhesions to actively regulate their behaviors. Recent studies have shown that varying ligand spacing of ECMs can influence adhesion size, cell spreading, and even stem cell differentiation, indicating that cells have the spatial sensing ability of ECM ligands. However, the mechanism of the cells' spatial sensing remains unclear. In this study, we have developed a lattice-spring motor-clutch model by integrating cell membrane deformation, the talin unfolding mechanism, and the lattice spring for substrate ligand distribution to explore how the spatial distribution of integrin ligands and substrate stiffness influence cell spreading and adhesion dynamics. By applying the Gillespie algorithm, we found that large ligand spacing reduces the superposition effect of the substrate's displacement fields generated by pulling force from motor-clutch units, increasing the effective stiffness probed by the force-sensitive receptors; this finding explains a series of previous experiments. Furthermore, using the mean-field theory, we obtain the effective stiffness sensed by bound clutches analytically; our analysis shows that the bound clutch number and ligand spacing are the two key factors that affect the superposition effects of deformation fields and, hence, the effective stiffness. Overall, our study reveals the mechanism of cells' spatial sensing, i.e., ligand spacing changes the effective stiffness sensed by cells due to the superposition effect of deformation fields, which provides a physical clue for designing and developing biological materials that effectively control cell behavior and function.


Assuntos
Adesão Celular , Matriz Extracelular , Ligantes , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Modelos Biológicos , Integrinas/metabolismo , Integrinas/química , Membrana Celular/metabolismo , Membrana Celular/química , Talina/metabolismo , Talina/química
8.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125578

RESUMO

CX3CL1 is one of the 50 up-to-date identified and characterized chemokines. While other chemokines are produced as small, secreted proteins, CX3CL1 (fractalkine) is synthetized as a transmembrane protein which also leads to a soluble form produced as a result of proteolytic cleavage. The membrane-bound protein and the soluble forms exhibit different biological functions. While the role of the fractalkine/CX3CR1 signaling axis was described in the nervous system and was also related to the migration of leukocytes to sites of inflammation, its actions are controversial in cancer progression and anti-tumor immunity. In the present review, we first describe the known biology of fractalkine concerning its action through its cognate receptor, but also its role in the activation of different integrins. The second part of this review is dedicated to its role in cancer where we discuss its role in anti-cancer or procarcinogenic activities.


Assuntos
Quimiocina CX3CL1 , Neoplasias , Humanos , Quimiocina CX3CL1/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Transdução de Sinais , Integrinas/metabolismo , Inflamação/metabolismo
9.
Nat Commun ; 15(1): 7180, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168982

RESUMO

Commander is a multiprotein complex that orchestrates endosomal recycling of integral cargo proteins and is essential for normal development. While the structure of this complex has recently been described, how cargo proteins are selected for Commander-mediated recycling remains unclear. Here we identify the mechanism through which the unstructured carboxy-terminal tail of the cargo adaptor sorting nexin-17 (SNX17) directly binds to the Retriever sub-complex of Commander. SNX17 adopts an autoinhibited conformation where its carboxy-terminal tail occupies the cargo binding groove. Competitive cargo binding overcomes this autoinhibition, promoting SNX17 endosomal residency and the release of the tail for Retriever association. Furthermore, our study establishes the central importance of SNX17-Retriever association in the handover of integrin and lipoprotein receptor cargoes into pre-existing endosomal retrieval sub-domains. In describing the principal mechanism of cargo entry into the Commander recycling pathway we provide key insight into the function and regulation of this evolutionary conserved sorting pathway.


Assuntos
Endossomos , Transporte Proteico , Nexinas de Classificação , Endossomos/metabolismo , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Humanos , Ligação Proteica , Células HeLa , Integrinas/metabolismo
10.
J Transl Med ; 22(1): 800, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210440

RESUMO

BACKGROUND: Recycling of integrin via endosomal vesicles is critical for the migration of cancer cells, which leads to the metastasis of pancreatic cancer and devastating cancer-related death. So, new diagnostic and therapeutic molecules which target the recycling of endosomal vesicles need to be developed. METHODS: Public databases including TCGA, ICGC, GSE21501, GSE28735, and GENT are analyzed to derive diagnostic and therapeutic targets. To reveal biological roles and underlying mechanisms of molecular targets, various molecular biological experiments were conducted. RESULTS: First, we identified UNC13D's overexpression in patients with pancreatic cancer (n = 824) and its prognostic significance and high hazard ratio (HR) in four independent pancreatic cancer cohorts (TCGA, n = 178, p = 0.014, HR = 3.629; ICGC, n = 91, p = 0.000, HR = 4.362; GSE21501, n = 102, p = 0.002, HR = 2.339; GSE28735, n = 45, p = 0.022, HR = 2.681). Additionally, its expression is associated with the clinicopathological progression of pancreatic cancer. Further biological studies have shown that UNC13D regulates the migration of pancreatic cancer cells by coupling the exocytosis of recycling endosomes with focal adhesion turnover via the regulation of FAK phosphorylation. Immunoprecipitation and immunocytochemistry showed the formation of the RAB11-UNC13D-FAK axis in endosomes during integrin recycling. We observed that UNC13D directly interacted with the FERM domain of FAK and regulated FAK phosphorylation in a calcium-dependent manner. Finally, we found co-expression of UNC13D and FAK showed the poorest survival (TCGA, p = 0.000; ICGC, p = 0.036; GSE28735, p = 0.006). CONCLUSIONS: We highlight that UNC13D, a novel prognostic factor, promotes pancreatic cancer progression by coupling integrin recycling with focal adhesion turnover via the RAB11-UNC13D-FAK axis for the migration of pancreatic cancer cells.


Assuntos
Movimento Celular , Adesões Focais , Integrinas , Neoplasias Pancreáticas , Proteínas rab de Ligação ao GTP , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Adesões Focais/metabolismo , Integrinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Feminino , Masculino , Transdução de Sinais , Pessoa de Meia-Idade , Prognóstico , Regulação Neoplásica da Expressão Gênica , Endossomos/metabolismo , Progressão da Doença
11.
Sci Rep ; 14(1): 19809, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191802

RESUMO

Kindlin-2 is a cytoskeletal adapter protein that is present in many different cell types. By virtue of its interaction with multiple binding partners, Kindlin-2 intercalates into numerous signaling pathways and cytoskeletal nodes. A specific interaction of Kindlin-2 that is of paramount importance in many cellular responses is its direct binding to the cytoplasmic tails of integrins, an interaction that controls many of the adhesive, migratory and signaling responses mediated by members of the integrin family of cell-surface heterodimers. Kindlin-2 is highly expressed in many cancers and is particularly prominent in prostate cancer cells. CRISPR/cas9 was used as a primary approach to knockout expression of Kindlin-2 in both androgen-independent and dependent prostate cancer cell lines, and the effects of Kindlin-2 suppression on oncogenic properties of these prostate cancer cell lines was examined. Adhesion to extracellular matrix proteins was markedly blunted, consistent with the control of integrin function by Kindlin-2. Migration across matrices was also affected. Anchorage independent growth was markedly suppressed. These observations indicate that Kindlin-2 regulates hallmark features of prostate cancer cells. In androgen expressing cells, testosterone-stimulated adhesion was Kindlin-2-dependent. Furthermore, tumor growth of a prostate cancer cell line lacking Kindlin-2 and implanted into the prostate gland of immunocompromised mice was markedly blunted and was associated with suppression of angiogenesis in the developing tumor. These results establish a key role of Kindlin-2 in prostate cancer progression and suggest that Kindlin-2 represents an interesting therapeutic target for treatment of prostate cancer.


Assuntos
Adesão Celular , Proteínas de Membrana , Proteínas de Neoplasias , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Humanos , Animais , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Camundongos , Movimento Celular , Proliferação de Células , Integrinas/metabolismo
12.
Cells ; 13(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39195240

RESUMO

In nephrotic syndrome, the podocyte filtration structures are damaged in a process called foot process effacement. This is mediated by the actin cytoskeleton; however, which actins are involved and how they interact with other filtration components, like the basement membrane, remains poorly understood. Here, we used the well-established Drosophila pericardial nephrocyte-the equivalent of podocytes in flies-knockdown models (RNAi) to study the interplay of the actin cytoskeleton (Act5C, Act57B, Act42A, and Act87E), alpha- and beta-integrin (basement membrane), and the slit diaphragm (Sns and Pyd). Knockdown of an actin gene led to variations of formation of actin stress fibers, the internalization of Sns, and a disrupted slit diaphragm cortical pattern. Notably, deficiency of Act5C, which resulted in complete absence of nephrocytes, could be partially mitigated by overexpressing Act42A or Act87E, suggesting at least partial functional redundancy. Integrin localized near the actin cytoskeleton as well as slit diaphragm components, but when the nephrocyte cytoskeleton or slit diaphragm was disrupted, this switched to colocalization, both at the surface and internalized in aggregates. Altogether, the data show that the interdependence of the slit diaphragm, actin cytoskeleton, and integrins is key to the structure and function of the Drosophila nephrocyte.


Assuntos
Citoesqueleto de Actina , Proteínas de Drosophila , Integrinas , Podócitos , Animais , Citoesqueleto de Actina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Integrinas/metabolismo , Podócitos/metabolismo , Drosophila melanogaster/metabolismo , Drosophila/metabolismo , Actinas/metabolismo , Imunoglobulinas
13.
Korean J Gastroenterol ; 84(2): 43-50, 2024 Aug 25.
Artigo em Coreano | MEDLINE | ID: mdl-39176460

RESUMO

Recently, novel biologics or small molecular drugs have been introduced for overcoming the unmet needs associated with anti-tumor necrosis factor α agents for inflammtory bowel disease (IBD) treatment. Among these novel drugs, anti integrin agents block leukocyte trafficking to the intestine by blocking the interaction between integrin and cell adhesion molecules. Vedolizumab (anti-α4ß7) is most widely used anti-integrin approved in both ulcerative colitis and Crohn's disease .It has been shown to be effective in both induction and maintenance therapy with a favorable safety profile due to gut selectivity. Several models incorporating clinical, genetic, immune and gut microbial markers to predict response to vedolizumab in IBD have been developed. Etrolizumab (anti-ß7) blocks leukocyte trafficking via α4ß7 and cell adhesion via αEß7 integrins. In addition, the introduction of subcutaneous vedolizumab showed similar efficacy and safety with improved patients' convenience. Other investigational anti-integrin therapies include abrilumab (anti-α4ß7 IgG2), PN-943 (orally administered and gut-restricted α4ß7 antagonist peptide), AJM300 (orally active small molecule inhibitor of α4), and ontamalimab (anti-MAdCAM-1 IgG).


Assuntos
Anticorpos Monoclonais Humanizados , Produtos Biológicos , Fármacos Gastrointestinais , Doenças Inflamatórias Intestinais , Integrinas , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Fármacos Gastrointestinais/uso terapêutico , Fármacos Gastrointestinais/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Integrinas/antagonistas & inibidores , Integrinas/metabolismo
14.
J Am Chem Soc ; 146(33): 23034-23043, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133202

RESUMO

Cells apply forces to extracellular matrix (ECM) ligands through transmembrane integrin receptors: an interaction which is intimately involved in cell motility, wound healing, cancer invasion and metastasis. These small (piconewton) integrin-ECM forces have been studied by molecular tension fluorescence microscopy (MTFM), which utilizes a force-induced conformational change of a probe to detect mechanical events. MTFM has revealed the force magnitude for integrin receptors in a variety of cell models including primary cells. However, force dynamics and specifically the force loading rate (LR) have important implications in receptor signaling and adhesion formation and remain poorly characterized. Here, we develop an LR probe composed of an engineered DNA structure that undergoes two mechanical transitions at distinct force thresholds: a low force threshold at 4.7 pN (hairpin unfolding) and a high force threshold at 47 pN (duplex shearing). These transitions yield distinct fluorescence signatures observed through single-molecule fluorescence microscopy in live cells. Automated analysis of tens of thousands of events from eight cells showed that the bond lifetime of integrins that engage their ligands and transmit a force >4.7 pN decays exponentially with a τ of 45.6 s. A subset of these events mature in magnitude to >47 pN with a median loading rate of 1.1 pN s-1 and primarily localize at the periphery of the cell-substrate junction. The LR probe design is modular and can be adapted to measure force ramp rates for a broad range of mechanoreceptors and cell models, thus aiding in the study of molecular mechanotransduction in living systems.


Assuntos
DNA , Integrinas , Integrinas/metabolismo , Integrinas/química , DNA/química , DNA/metabolismo , Humanos , Microscopia de Fluorescência
15.
Chin J Dent Res ; 27(2): 121-131, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38953477

RESUMO

As the biological mechanisms of orthodontic tooth movement have been explored further, scholars have gradually focused on the remodelling mechanism of the extracellular matrix (ECM) in the periodontal ligament (PDL). The ECM of the PDL consists of various types of collagens and other glycoproteins. The specific process and mechanism of ECM remodelling during orthodontic tooth movement remains unclear. Collagen I and III, which constitute major components of the PDL, are upregulated under orthodontic force. The changes in the contents of ECM proteins also depend on the expression of ECM-related enzymes, which organise new collagen fibre networks to adapt to changes in tooth position. The matrix metalloproteinase family is the main enzyme that participates in collagen hydrolysis and renewal and changes its expression under orthodontic force. Moreover, ECM adhesion molecules, such as integrins, are also regulated by orthodontic force and participate in the dynamic reaction of cell adhesion and separation with the ECM. This article reviews the changes in ECM components, related enzymes and adhesion molecules in the PDL under orthodontic force to lay the foundation for the exploration of the regulatory mechanism of ECM remodelling during orthodontic tooth movement.


Assuntos
Matriz Extracelular , Ligamento Periodontal , Técnicas de Movimentação Dentária , Matriz Extracelular/metabolismo , Humanos , Técnicas de Movimentação Dentária/métodos , Ligamento Periodontal/citologia , Periodonto/metabolismo , Metaloproteinases da Matriz/metabolismo , Integrinas/metabolismo , Colágeno/metabolismo
16.
Sci Adv ; 10(30): eado7438, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39047093

RESUMO

Designing highly efficient orally administrated nanotherapeutics with specific inflammatory site-targeting functions in the gastrointestinal tract for ulcerative colitis (UC) management is a noteworthy challenge. Here, we focused on exploring a specific targeting oral nanotherapy, serving as "one stone," for the directed localization of inflammation and the regulation of redox homeostasis, thereby achieving effects against "two birds" for UC treatment. Our designed nanotherapeutic agent OPNs@LMWH (oxidation-sensitive ε-polylysine nanoparticles at low-molecular weight heparin) exhibited specific active targeting effects and therapeutic efficacy simultaneously. Our results indicate that OPNs@LMWH had high integrin αM-mediated immune cellular uptake efficiency and preferentially accumulated in inflamed tissues. We also confirmed its effectiveness in the treatment experiment of colitis in mice by ameliorating oxidative stress and inhibiting the activation of inflammation-associated signaling pathways while simultaneously bolstering the protective mechanisms of the colonic epithelium. Overall, these findings underscore the compelling dual functionalities of OPNs@LMWH, which enable effective oral delivery to inflamed sites, thereby facilitating precise UC management.


Assuntos
Colite Ulcerativa , Homeostase , Integrinas , Nanopartículas , Oxirredução , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Nanopartículas/química , Administração Oral , Integrinas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos
17.
Nat Commun ; 15(1): 6131, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033133

RESUMO

One question in lymphocyte homing is how integrins are rapidly activated to enable immediate arrest of fast rolling lymphocytes upon encountering chemokines at target vascular beds given the slow chemokine-induced integrin inside-out activation. Herein we demonstrate that chemokine CCL25-triggered Ca2+ influx induces T cell membrane-proximal external Ca2+ concentration ([Ca2+]ex) drop in 6 s from physiological concentration 1.2 mM to 0.3 mM, a critical extracellular Ca2+ threshold for inducing αLß2 activation, triggering rapid αLß2 activation and T cell arrest before occurrence of αLß2 inside-out activation. Talin knockdown inhibits the slow inside-out activation of αLß2 but not [Ca2+]ex drop-triggered αLß2 quick activation. Blocking Ca2+ influx significantly suppresses T cell rolling-to-arrest transition and homing to skin lesions in a mouse psoriasis model, thus alleviating skin inflammation. [Ca2+]ex decrease-triggered rapid integrin activation bridges the gap between initial chemokine stimulation and slow integrin inside-out activation, ensuring immediate lymphocyte arrest and subsequent diapedesis on the right location.


Assuntos
Cálcio , Linfócitos T , Talina , Animais , Cálcio/metabolismo , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Talina/metabolismo , Humanos , Psoríase/metabolismo , Psoríase/imunologia , Camundongos Endogâmicos C57BL , Membrana Celular/metabolismo , Integrinas/metabolismo , Sinalização do Cálcio , Pele/metabolismo
18.
ACS Sens ; 9(7): 3660-3670, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38968930

RESUMO

DNA-based tension sensors have innovated the imaging and calibration of mechanosensitive receptor-transmitted molecular forces, such as integrin tensions. However, these sensors mainly serve as binary reporters, only indicating if molecular forces exceed one predefined threshold. Here, we have developed tandem tension sensor (TTS), which comprises two consecutive force-sensing units, each with unique force detection thresholds and distinct fluorescence spectra, thereby enabling the quantification of molecular forces with dual reference levels. With TTS, we revealed that vinculin is not required for transmitting integrin tensions at approximately 10 pN (piconewtons) but is essential for elevating integrin tensions beyond 20 pN in focal adhesions (FAs). Such high tensions have emerged during the early stage of FA formation. TTS also successfully detected changes in integrin tensions in response to disrupted actin formation, inhibited myosin activity, and tuned substrate elasticity. We also applied TTS to examine integrin tensions in platelets and revealed two force regimes, with integrin tensions surpassing 20 pN at cell central regions and 13-20 pN integrin tensions at the cell edge. Overall, TTS, especially the construct consisting of a hairpin DNA (13 pN opening force) and a shearing DNA (20 pN opening force), stands as a valuable tool for the quantification of receptor-transmitted molecular forces within living cells.


Assuntos
Integrinas , Integrinas/metabolismo , Humanos , Vinculina/metabolismo , Adesões Focais , Técnicas Biossensoriais/métodos , Animais , DNA/química , Plaquetas/citologia , Plaquetas/metabolismo
19.
Tissue Eng Part C Methods ; 30(8): 343-352, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39078332

RESUMO

Ex vivo 3D culture of human tissue explants addresses many limitations of traditional monolayer cell culture techniques, namely the lack of cellular heterogeneity and absence of 3D intercellular spatial relationships, but presents challenges with regard to repeatability owing to the difficulty of acquiring multiple tissue samples from the same donor. In this study, we used a cryopreserved bank of human lung microexplants, ∼1 mm3 fragments of peripheral lung from donors undergoing lung resection surgery, and a liquid-like solid 3D culture matrix to describe a method for the analysis of non-small-cell lung cancer adhesion to human lung tissue. H226 (squamous cell carcinoma), H441 (lung adenocarcinoma), and H460 (large cell carcinoma) cell lines were cocultured with lung microexplants. Confocal fluorescence microscopy was used to visualize the adherence of each cell line to lung microexplants. Adherent cancer cells were quantified following filtration of nonadherent cells, digestion of cultured microexplants, and flow cytometry. This method was used to evaluate the role of integrins in cancer cell adherence. A statistically significant decrease in the adherence of H460 cells to lung microexplants was observed when anti-integrins were administered to H460 cells before coculture with lung microexplants.


Assuntos
Adesão Celular , Neoplasias Pulmonares , Pulmão , Humanos , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Pulmão/patologia , Pulmão/citologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas de Cocultura/métodos , Carcinoma Pulmonar de Células não Pequenas/patologia , Integrinas/metabolismo
20.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063187

RESUMO

Metastatic melanoma, a deadly form of skin cancer, often develops resistance to the BRAF inhibitor drug vemurafenib, highlighting the need for understanding the underlying mechanisms of resistance and exploring potential therapeutic strategies targeting integrins and TGF-ß signalling. In this study, the role of integrins and TGF-ß signalling in vemurafenib resistance in melanoma was investigated, and the potential of combining vemurafenib with cilengitide as a therapeutic strategy was investigated. In this study, it was found that the transcription of PAI1 and p21 was induced by acquired vemurafenib resistance, and ITGA5 levels were increased as a result of this resistance. The transcription of ITGA5 was mediated by the TGF-ß pathway in the development of vemurafenib resistance. A synergistic effect on the proliferation of vemurafenib-resistant melanoma cells was observed with the combination therapy of vemurafenib and cilengitide. Additionally, this combination therapy significantly decreased invasion and colony formation in these resistant cells. In conclusion, it is suggested that targeting integrins and TGF-ß signalling, specifically ITGA5, ITGB3, PAI1, and p21, may offer promising approaches to overcoming vemurafenib resistance, thereby improving outcomes for metastatic melanoma patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Melanoma , Venenos de Serpentes , Vemurafenib , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Venenos de Serpentes/farmacologia , Integrina beta3/metabolismo , Integrina beta3/genética , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Integrinas/metabolismo , Integrinas/antagonistas & inibidores , Integrina alfa5/metabolismo , Integrina alfa5/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Indóis/farmacologia , Indóis/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA