Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.517
Filtrar
1.
Cell Death Dis ; 15(4): 265, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615022

RESUMO

Antigen-specific T cell receptor-engineered T cell (TCR-T) based immunotherapy has proven to be an effective method to combat cancer. In recent years, cross-talk between the innate and adaptive immune systems may be requisite to optimize sustained antigen-specific immunity, and the stimulator of interferon genes (STING) is a promising therapeutic target for cancer immunotherapy. The level of expression or presentation of antigen in tumor cells affects the recognition and killing of tumor cells by TCR-T. This study aimed at investigating the potential of innate immune stimulation of T cells and engineered T cells to enhance immunotherapy for low-expression antigen cancer cells. We systematically investigated the function and mechanism of cross-talk between STING agonist diABZI and adaptive immune systems. We established NY-ESO-1 full knockout Mel526 cells for this research and found that diABZI activated STING media and TCR signaling pathways. In addition, the results of flow cytometry showed that antigens presentation from cancer cells induced by STING agonist diABZI also improved the affinity of TCR-T cells function against tumor cells in vitro and in vivo. Our findings revealed that diABZI enhanced the immunotherapy efficacy of TCR-T by activating STING media and TCR signaling pathways, improving interferon-γ expression, and increasing antigens presentation of tumor cells. This indicates that STING agonist could be used as a strategy to promote TCR-T cancer immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Apresentação de Antígeno , Anticorpos , Citometria de Fluxo , Receptores de Antígenos de Linfócitos T , Neoplasias/terapia
2.
Blood Cancer J ; 14(1): 66, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622139

RESUMO

CAR T-cell therapy has transformed relapsed/refractory (r/r) B-cell precursor acute lymphoblastic leukaemia (B-ALL) management and outcomes, but following CAR T infusion, interventions are often needed. In a UK multicentre study, we retrospectively evaluated tisagenlecleucel outcomes in all eligible patients, analysing overall survival (OS) and event-free survival (EFS) with standard and stringent definitions, the latter including measurable residual disease (MRD) emergence and further anti-leukaemic therapy. Both intention-to-treat and infused cohorts were considered. We collected data on feasibility of delivery, manufacture, toxicity, cause of therapy failure and followed patients until death from any cause. Of 142 eligible patients, 125 received tisagenlecleucel, 115/125 (92%) achieved complete remission (CR/CRi). Severe cytokine release syndrome and neurotoxicity occurred in 16/123 (13%) and 10/123 (8.1%), procedural mortality was 3/126 (2.4%). The 2-year intent to treat OS and EFS were 65.2% (95%CI 57.2-74.2%) and 46.5% (95%CI 37.6-57.6%), 2-year intent to treat stringent EFS was 35.6% (95%CI 28.1-44.9%). Median OS was not reached. Sixty-two responding patients experienced CAR T failure by the stringent event definition. Post failure, 1-year OS and standard EFS were 61.2% (95%CI 49.3-75.8) and 55.3% (95%CI 43.6-70.2). Investigation of CAR T-cell therapy for B-ALL delivered on a country-wide basis, including following patients beyond therapy failure, provides clinicians with robust outcome measures. Previously, outcomes post CAR T-cell therapy failure were under-reported. Our data show that patients can be successfully salvaged in this context with good short-term survival.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Criança , Humanos , Adolescente , Análise de Intenção de Tratamento , Estudos Retrospectivos , Receptores de Antígenos de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Imunoterapia Adotiva/efeitos adversos , Antígenos CD19
3.
Bull Math Biol ; 86(5): 57, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625492

RESUMO

Engineered T cell receptor (TCR)-expressing T (TCR-T) cells are intended to drive strong anti-tumor responses upon recognition of the specific cancer antigen, resulting in rapid expansion in the number of TCR-T cells and enhanced cytotoxic functions, causing cancer cell death. However, although TCR-T cell therapy against cancers has shown promising results, it remains difficult to predict which patients will benefit from such therapy. We develop a mathematical model to identify mechanisms associated with an insufficient response in a mouse cancer model. We consider a dynamical system that follows the population of cancer cells, effector TCR-T cells, regulatory T cells (Tregs), and "non-cancer-killing" TCR-T cells. We demonstrate that the majority of TCR-T cells within the tumor are "non-cancer-killing" TCR-T cells, such as exhausted cells, which contribute little or no direct cytotoxicity in the tumor microenvironment (TME). We also establish two important factors influencing tumor regression: the reversal of the immunosuppressive TME following depletion of Tregs, and the increased number of effector TCR-T cells with antitumor activity. Using mathematical modeling, we show that certain parameters, such as increasing the cytotoxicity of effector TCR-T cells and modifying the number of TCR-T cells, play important roles in determining outcomes.


Assuntos
Neoplasias do Colo do Útero , Humanos , Animais , Camundongos , Feminino , Neoplasias do Colo do Útero/terapia , Conceitos Matemáticos , Receptores de Antígenos de Linfócitos T , Modelos Animais de Doenças , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
4.
Cell Stem Cell ; 31(4): 437-438, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579681

RESUMO

Anti-CD19 CAR T cells were among the last decade's scientific breakthroughs, achieving remarkable remissions in patients with B cell leukemias and lymphomas. Now, the engineered cell therapies are traversing disease indications into autoimmunity and resolving disease symptoms in patients with systemic lupus erythematosus (SLE), idiopathic inflammatory myositis, and systemic sclerosis.1.


Assuntos
Imunoterapia Adotiva , Lúpus Eritematoso Sistêmico , Neoplasias , Humanos , Autoimunidade/imunologia , Lúpus Eritematoso Sistêmico/terapia , Linfócitos T , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/uso terapêutico
5.
Front Immunol ; 15: 1302031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571941

RESUMO

Introduction: Atherosclerosis is a major pathological condition that underlies many cardiovascular diseases (CVDs). Its etiology involves breach of tolerance to self, leading to clonal expansion of autoreactive apolipoprotein B (APOB)-reactive CD4+T cells that correlates with clinical CVD. The T-cell receptor (TCR) sequences that mediate activation of APOB-specific CD4+T cells are unknown. Methods: In a previous study, we had profiled the hypervariable complementarity determining region 3 (CDR3) of CD4+T cells that respond to six immunodominant APOB epitopes in most donors. Here, we comprehensively analyze this dataset of 149,065 APOB-reactive and 199,211 non-reactive control CDR3s from six human leukocyte antigen-typed donors. Results: We identified 672 highly expanded (frequency threshold > 1.39E-03) clones that were significantly enriched in the APOB-reactive group as compared to the controls (log10 odds ratio ≥1, Fisher's test p < 0.01). Analysis of 114,755 naïve, 91,001 central memory (TCM) and 29,839 effector memory (TEM) CDR3 sequences from the same donors revealed that APOB+ clones can be traced to the complex repertoire of unenriched blood T cells. The fraction of APOB+ clones that overlapped with memory CDR3s ranged from 2.2% to 46% (average 16.4%). This was significantly higher than their overlap with the naïve pool, which ranged from 0.7% to 2% (average 1.36%). CDR3 motif analysis with the machine learning-based in-silico tool, GLIPHs (grouping of lymphocyte interactions by paratope hotspots), identified 532 APOB+ motifs. Analysis of naïve and memory CDR3 sequences with GLIPH revealed that ~40% (209 of 532) of these APOB+ motifs were enriched in the memory pool. Network analysis with Cytoscape revealed extensive sharing of the memory-affiliated APOB+ motifs across multiple donors. We identified six motifs that were present in TCM and TEM CDR3 sequences from >80% of the donors and were highly enriched in the APOB-reactive TCR repertoire. Discussion: The identified APOB-reactive expanded CD4+T cell clones and conserved motifs can be used to annotate and track human atherosclerosis-related autoreactive CD4+T cells and measure their clonal expansion.


Assuntos
Aterosclerose , Linfócitos T , Humanos , Regiões Determinantes de Complementaridade/genética , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T/genética , Apolipoproteínas B , Epitopos Imunodominantes
6.
J Med Virol ; 96(4): e29573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566569

RESUMO

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, have profoundly affected human health. Booster COVID-19 vaccines have demonstrated significant efficacy in reducing infection and severe cases. However, the effects of booster COVID-19 vaccines on key immune cell subsets and their responses in rheumatoid arthritis (RA) are not well understood. By using single-cell RNA sequencing (scRNA-seq) combined with scTCR/BCR-seq analysis, a total of 8 major and 27 minor cell clusters were identified from paired peripheral blood mononuclear cells (PBMCs) which were collected 1 week before and 4 weeks after booster vaccination in stable RA patients. Booster vaccination only had limited impact on the composition and proportions of PBMCs cell clusters. CD8+ cytotoxic T cells (CD8+T_CTL) showed a trend toward an increase after vaccination, while naive B cells and conventional dendritic cells (cDCs) showed a trend toward a decrease. Transcriptomic changes were observed after booster vaccination, primarily involving T/B cell receptor signaling pathways, phagosome, antigen processing and presenting, and viral myocarditis pathways. Interferon (IFN) and pro-inflammatory response gene sets were slightly upregulated across most major cell subpopulations in COVID-19 booster-vaccinated RA individuals. Plasma neutralizing antibody titers significantly increased after booster COVID-19 vaccination (p = 0.037). Single-cell TCR/BCR analysis revealed increased B cell clone expansion and repertoire diversity postvaccination, with no consistent alterations in T cells. Several clonotypes of BCRs and TCRs were identified to be significantly over-represented after vaccination, such as IGHV3-15 and TRBV28. Our study provided a comprehensive single-cell atlas of the peripheral immune response and TCR/BCR immune repertoire profiles to inactivated SARS-CoV-2 booster vaccination in RA patients, which helps us to understand vaccine-induced immune responses better.


Assuntos
Artrite Reumatoide , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Leucócitos Mononucleares , Receptores de Antígenos de Linfócitos T , Anticorpos Antivirais , Vacinação
7.
Sci Rep ; 14(1): 8255, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589549

RESUMO

Antigen-specific priming of T cells results in the activation of T cells that exert effector functions by interaction of their T-cell receptor (TCR) with the corresponding self-MHC molecule presenting a peptide on the surface of a target cell. Such antigen-specific T cells potentially can also interact with peptide-MHC complexes that contain peptides from unrelated antigens, a phenomenon that often is referred to as heterologous immunity. For example, some individuals that were pre-immunized against an allergen, could subsequently mount better anti-viral T-cell responses than non-allergic individuals. So far only few peptide pairs that experimentally have been shown to provoke heterologous immunity were  identified, and available prediction tools that can identify potential candidates are imprecise. We developed the MORITS algorithm to rapidly screen large lists of peptides for sequence similarities, while giving enhanced consideration to peptide residues presented by MHC that are particularly relevant for TCR interactions. In combination with established peptide-MHC binding prediction tools, the MORITS algorithm revealed peptide similarities between the SARS-CoV-2 proteome and certain allergens. The method outperformed previously published workflows and may help to identify novel pairs of peptides that mediate heterologous immune responses.


Assuntos
Peptídeos , Receptores de Antígenos de Linfócitos T , Humanos , Peptídeos/química , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Alérgenos/metabolismo
8.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591522

RESUMO

Suppressive function of regulatory T cells (Treg) is dependent on signaling of their antigen receptors triggered by cognate self, dietary, or microbial peptides presented on MHC II. However, it remains largely unknown whether distinct or shared repertoires of Treg TCRs are mobilized in response to different challenges in the same tissue or the same challenge in different tissues. Here we use a fixed TCRß chain FoxP3-GFP mouse model to analyze conventional (eCD4) and regulatory (eTreg) effector TCRα repertoires in response to six distinct antigenic challenges to the lung and skin. This model shows highly 'digital' repertoire behavior with easy-to-track challenge-specific TCRα CDR3 clusters. For both eCD4 and eTreg subsets, we observe challenge-specific clonal expansions yielding homologous TCRα clusters within and across animals and exposure sites, which are also reflected in the draining lymph nodes but not systemically. Some CDR3 clusters are shared across cancer challenges, suggesting a response to common tumor-associated antigens. For most challenges, eCD4 and eTreg clonal response does not overlap. Such overlap is exclusively observed at the sites of certain tumor challenges, and not systematically, suggesting transient and local tumor-induced eCD4=>eTreg plasticity. This transition includes a dominant tumor-responding eCD4 CDR3 motif, as well as characteristic iNKT TCRα CDR3. In addition, we examine the homeostatic tissue residency of clonal eTreg populations by excluding the site of challenge from our analysis. We demonstrate that distinct CDR3 motifs are characteristic of eTreg cells residing in particular lymphatic tissues, regardless of the challenge. This observation reveals the tissue-resident, antigen-specific clonal Treg populations.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T Reguladores , Camundongos , Animais , Receptores de Antígenos de Linfócitos T/genética , Peptídeos , Células Clonais
9.
Nat Commun ; 15(1): 3075, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594286

RESUMO

Immune checkpoint blockade (ICB) has improved outcome for patients with metastatic melanoma but not all benefit from treatment. Several immune- and tumor intrinsic features are associated with clinical response at baseline. However, we need to further understand the molecular changes occurring during development of ICB resistance. Here, we collect biopsies from a cohort of 44 patients with melanoma after progression on anti-CTLA4 or anti-PD1 monotherapy. Genetic alterations of antigen presentation and interferon gamma signaling pathways are observed in approximately 25% of ICB resistant cases. Anti-CTLA4 resistant lesions have a sustained immune response, including immune-regulatory features, as suggested by multiplex spatial and T cell receptor (TCR) clonality analyses. One anti-PD1 resistant lesion harbors a distinct immune cell niche, however, anti-PD1 resistant tumors are generally immune poor with non-expanded TCR clones. Such immune poor microenvironments are associated with melanoma cells having a de-differentiated phenotype lacking expression of MHC-I molecules. In addition, anti-PD1 resistant tumors have reduced fractions of PD1+ CD8+ T cells as compared to ICB naïve metastases. Collectively, these data show the complexity of ICB resistance and highlight differences between anti-CTLA4 and anti-PD1 resistance that may underlie differential clinical outcomes of therapy sequence and combination.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
10.
Front Immunol ; 15: 1359933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562929

RESUMO

T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.


Assuntos
Doenças Autoimunes , Humanos , Doenças Autoimunes/metabolismo , Timo , Timócitos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Ubiquitinação
11.
Signal Transduct Target Ther ; 9(1): 93, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637495

RESUMO

Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) protein significantly improve survival in patients with advanced non-small-cell lung cancer (NSCLC), but its impact on early-stage ground-glass opacity (GGO) lesions remains unclear. This is a single-arm, phase II trial (NCT04026841) using Simon's optimal two-stage design, of which 4 doses of sintilimab (200 mg per 3 weeks) were administrated in 36 enrolled multiple primary lung cancer (MPLC) patients with persistent high-risk (Lung-RADS category 4 or had progressed within 6 months) GGOs. The primary endpoint was objective response rate (ORR). T/B/NK-cell subpopulations, TCR-seq, cytokines, exosomal RNA, and multiplexed immunohistochemistry (mIHC) were monitored and compared between responders and non-responders. Finally, two intent-to-treat (ITT) lesions (pure-GGO or GGO-predominant) showed responses (ORR: 5.6%, 2/36), and no patients had progressive disease (PD). No grade 3-5 TRAEs occurred. The total response rate considering two ITT lesions and three non-intent-to-treat (NITT) lesions (pure-solid or solid-predominant) was 13.9% (5/36). The proportion of CD8+ T cells, the ratio of CD8+/CD4+, and the TCR clonality value were significantly higher in the peripheral blood of responders before treatment and decreased over time. Correspondingly, the mIHC analysis showed more CD8+ T cells infiltrated in responders. Besides, responders' cytokine concentrations of EGF and CTLA-4 increased during treatment. The exosomal expression of fatty acid metabolism and oxidative phosphorylation gene signatures were down-regulated among responders. Collectively, PD-1 inhibitor showed certain activity on high-risk pulmonary GGO lesions without safety concerns. Such effects were associated with specific T-cell re-distribution, EGF/CTLA-4 cytokine compensation, and regulation of metabolism pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptor de Morte Celular Programada 1/genética , Antígeno CTLA-4/uso terapêutico , Linfócitos T CD8-Positivos , Fator de Crescimento Epidérmico , Tomografia Computadorizada por Raios X , Pulmão/patologia , Receptores de Antígenos de Linfócitos T , Citocinas
12.
Elife ; 122024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639990

RESUMO

CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Placenta , Gravidez , Animais , Feminino , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Placenta/metabolismo , Transdução de Sinais/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Fosforilação , Antígenos CD4 , Mamíferos/metabolismo
13.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618957

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Humanos , Camundongos , Camundongos Transgênicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Tirosina Quinases , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Fator de Transcrição STAT5/genética
14.
Nat Commun ; 15(1): 3271, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627373

RESUMO

Selective binding of TCR-like antibodies that target a single tumour-specific peptide antigen presented by human leukocyte antigens (HLA) is the absolute prerequisite for their therapeutic suitability and patient safety. To date, selectivity assessment has been limited to peptide library screening and predictive modeling. We developed an experimental platform to de novo identify interactomes of TCR-like antibodies directly in human tissues using mass spectrometry. As proof of concept, we confirm the target epitope of a MAGE-A4-specific TCR-like antibody. We further determine cross-reactive peptide sequences for ESK1, a TCR-like antibody with known off-target activity, in human liver tissue. We confirm off-target-induced T cell activation and ESK1-mediated liver spheroid killing. Off-target sequences feature an amino acid motif that allows a structural groove-coordination mimicking that of the target peptide, therefore allowing the interaction with the engager molecule. We conclude that our strategy offers an accurate, scalable route for evaluating the non-clinical safety profile of TCR-like antibody therapeutics prior to first-in-human clinical application.


Assuntos
Anticorpos , Peptídeos , Humanos , Linhagem Celular Tumoral , Peptídeos/química , Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T/metabolismo
15.
Front Immunol ; 15: 1321603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633256

RESUMO

An individual's T-cell repertoire constantly changes under the influence of external and internal factors. Cells that do not receive a stimulatory signal die, while those that encounter and recognize a pathogen or receive a co-stimulatory signal divide, resulting in clonal expansions. T-cell clones can be traced by monitoring the presence of their unique T-cell receptor (TCR) sequence, which is assembled de novo through a process known as V(D)J rearrangement. Tracking T cells can provide valuable insights into the survival of cells after hematopoietic stem cell transplantation (HSCT) or cancer treatment response and can indicate the induction of protective immunity by vaccination. In this study, we report a bioinformatic method for quantifying the T-cell repertoire dynamics from TCR sequencing data. We demonstrate its utility by measuring the T-cell repertoire stability in healthy donors, by quantifying the effect of donor lymphocyte infusion (DLI), and by tracking the fate of the different T-cell subsets in HSCT patients and the expansion of pathogen-specific clones in vaccinated individuals.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Receptores de Antígenos de Linfócitos T , Humanos , Subpopulações de Linfócitos T , Células Clonais
17.
Cancer Immunol Res ; 12(4): 385-386, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562081

RESUMO

All chimeric antigen receptor (CAR) T-cell products currently approved by the FDA are autologous, which poses several challenges for widespread use. In this issue, Degagné and colleagues present their preclinical research on creating off-the-shelf CAR T cells for multiple myeloma. They utilized the CRISPR/Cas12a genome editing platform and gene knock-in techniques to eliminate alloreactivity and decrease susceptibility to natural killer (NK)-cell elimination. This work has led to an ongoing phase I trial of off-the-shelf CAR T cells for multiple myeloma treatment. See related article by Degagné et al., p. 462 (2).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Imunoterapia Adotiva/métodos
18.
Signal Transduct Target Ther ; 9(1): 84, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575583

RESUMO

Circulating tumor cells (CTCs) are precursors of distant metastasis in a subset of cancer patients. A better understanding of CTCs heterogeneity and how these CTCs survive during hematogenous dissemination could lay the foundation for therapeutic prevention of cancer metastasis. It remains elusive how CTCs evade immune surveillance and elimination by immune cells. In this study, we unequivocally identified a subpopulation of CTCs shielded with extracellular vesicle (EVs)-derived CD45 (termed as CD45+ CTCs) that resisted T cell attack. A higher percentage of CD45+ CTCs was found to be closely correlated with higher incidence of metastasis and worse prognosis in cancer patients. Moreover, CD45+ tumor cells orchestrated an immunosuppressive milieu and CD45+ CTCs exhibited remarkably stronger metastatic potential than CD45- CTCs in vivo. Mechanistically, CD45 expressing on tumor surfaces was shown to form intercellular CD45-CD45 homophilic interactions with CD45 on T cells, thereby preventing CD45 exclusion from TCR-pMHC synapse and leading to diminished TCR signaling transduction and suppressed immune response. Together, these results pointed to an underappreciated capability of EVs-derived CD45-dressed CTCs in immune evasion and metastasis, providing a rationale for targeting EVs-derived CD45 internalization by CTCs to prevent cancer metastasis.


Assuntos
Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Células Neoplásicas Circulantes/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T/metabolismo
19.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580329

RESUMO

BACKGROUND: Hematopoietic cell transplantation (HCT) is an effective treatment for pediatric patients with high-risk, refractory, or relapsed acute myeloid leukemia (AML). However, a large proportion of transplanted patients eventually die due to relapse. To improve overall survival, we propose a combined strategy based on cord blood (CB)-HCT with the application of AML-specific T cell receptor (TCR)-engineered T cell therapy derived from the same CB graft. METHODS: We produced CB-CD8+ T cells expressing a recombinant TCR (rTCR) against Wilms tumor 1 (WT1) while lacking endogenous TCR (eTCR) expression to avoid mispairing and competition. CRISPR-Cas9 multiplexing was used to target the constant region of the endogenous TCRα (TRAC) and TCRß (TRBC) chains. Next, an optimized method for lentiviral transduction was used to introduce recombinant WT1-TCR. The cytotoxic and migration capacity of the product was evaluated in coculture assays for both cell lines and primary pediatric AML blasts. RESULTS: The gene editing and transduction procedures achieved high efficiency, with up to 95% of cells lacking eTCR and over 70% of T cells expressing rWT1-TCR. WT1-TCR-engineered T cells lacking the expression of their eTCR (eTCR-/- WT1-TCR) showed increased cell surface expression of the rTCR and production of cytotoxic cytokines, such as granzyme A and B, perforin, interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), on antigen recognition when compared with WT1-TCR-engineered T cells still expressing their eTCR (eTCR+/+ WT1-TCR). CRISPR-Cas9 editing did not affect immunophenotypic characteristics or T cell activation and did not induce increased expression of inhibitory molecules. eTCR-/- WT1-TCR CD8+ CB-T cells showed effective migratory and killing capacity in cocultures with neoplastic cell lines and primary AML blasts, but did not show toxicity toward healthy cells. CONCLUSIONS: In summary, we show the feasibility of developing a potent CB-derived CD8+ T cell product targeting WT1, providing an option for post-transplant allogeneic immune cell therapy or as an off-the-shelf product, to prevent relapse and improve the clinical outcome of children with AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Criança , Linfócitos T CD8-Positivos , Sistemas CRISPR-Cas/genética , Sangue Fetal , Receptores de Antígenos de Linfócitos T/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Linhagem Celular Tumoral , Recidiva
20.
Front Immunol ; 15: 1362133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558812

RESUMO

Chimeric antigen receptor (CAR) -T cell therapy has achieved tremendous efficacy in the treatment of hematologic malignancies and represents a promising treatment regimen for cancer. Despite the striking response in patients with hematologic malignancies, most patients with solid tumors treated with CAR-T cells have a low response rate and experience major adverse effects, which indicates the need for biomarkers that can predict and improve clinical outcomes with future CAR-T cell treatments. Recently, the role of the gut microbiota in cancer therapy has been established, and growing evidence has suggested that gut microbiota signatures may be harnessed to personally predict therapeutic response or adverse effects in optimizing CAR-T cell therapy. In this review, we discuss current understanding of CAR-T cell therapy and the gut microbiota, and the interplay between the gut microbiota and CAR-T cell therapy. Above all, we highlight potential strategies and challenges in harnessing the gut microbiota as a predictor and modifier of CAR-T cell therapy efficacy while attenuating toxicity.


Assuntos
Microbioma Gastrointestinal , Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Neoplasias/terapia , Neoplasias Hematológicas/terapia , Terapia Baseada em Transplante de Células e Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...