Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Cancer Immunol Res ; 11(4): 421-434, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758176

RESUMO

Intratumoral cytotoxic CD8+ T cells (CTL) enter a dysfunctional state characterized by expression of coinhibitory receptors, loss of effector function, and changes in the transcriptional landscape. Even though several regulators of T-cell exhaustion have been identified, the molecular mechanisms inducing T-cell exhaustion remain unclear. Here, we show that IL18 receptor (IL18R) signaling induces CD8+ T-cell exhaustion in a murine pancreatic cancer model. Adoptive transfer of Il18r-/- OT-1 CD8+ CTLs resulted in enhanced rejection of subcutaneous tumors expressing ovalbumin (OVA) as a model antigen (PancOVA), compared with wild-type OT-1 CTLs. Transferred intratumoral IL18R-deficient CTLs expressed higher levels of effector cytokines TNF and IFNγ and had reduced expression of coinhibitory receptors (PD-1, TIM-3, 2B4, LAG-3) and the transcription factors Eomes and TOX. Lower expression of coinhibitory receptors and TOX on IL18R-deficient versus IL18R-sufficient CD8+ T cells were confirmed in an orthotopic KPC model. IL18R-induced T-cell exhaustion was regulated by IL2/STAT5 and AKT/mTOR pathways, as demonstrated in an in vitro exhaustion assay. Concordantly, mice deficient in NLRP3, the molecular complex activating IL18, had decreased expression of coinhibitory receptors on intratumoral T cells and similar changes in signaling pathways at the transcriptome level. Thus, molecular pathways promoting T-cell exhaustion indicate an involvement of an NLRP3-expressing tumor microenvironment, which mediates IL18 release. The Cancer Genome Atlas analysis of patients with pancreatic carcinoma showed an association between NLRP3-mediated IL18 signaling and shorter survival. These findings indicate NLRP3-mediated IL18R signaling as a regulator of intratumoral T-cell exhaustion and a possible target for immunotherapy. See related Spotlight by Stromnes, p. 400.


Assuntos
Interleucina-18 , Neoplasias Pancreáticas , Camundongos , Animais , Interleucina-2 , Exaustão das Células T , Receptores de Interleucina-18 , Fator de Transcrição STAT5 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Linfócitos T CD8-Positivos/imunologia , Neoplasias Pancreáticas/genética , Serina-Treonina Quinases TOR , Inflamação , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Dev Comp Immunol ; 140: 104610, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496012

RESUMO

As an important proinflammation and immunomodulatory cytokine, IL-18 has been reported in several species of fish, but its receptor subunits, IL-18Rα and IL-18Rß, and its decoy receptor, IL-18BP, have not been functionally characterized in fish. In the present study, IL-18Rα, IL-18Rß and IL-18BP were cloned from rainbow trout Oncorhynchus mykiss, and they possess common conserved domains with their mammalian orthologues. In tested organs/tissues, IL-18Rα and IL-18Rß exhibit basal expression levels, and IL-18BP has a pattern of constitutive expression. When transfected with different combinations of chimeric receptors in HEK293T cells, recombinant IL-18 (rIL-18) can induce the activation of NF-κB only when pcDNA3.1-IL-18Rα/IL-1R1 and pcDNA3.1-IL-18Rß/IL-1RAP were both expressed. On the other hand, recombinant receptors, including rIL-18BP, rIL-18Rα-ECD-Fc and rIL-18Rß-ECD-Fc can down-regulate significantly the activity of NF-κB, suggesting the participation of IL-18Rα, IL-18Rß and IL-18BP in rainbow trout IL-18 signal transduction. Co-IP assays indicated that IL-18Rß may form a complex with MyD88, IRAK4, IRAK1, TRAF6 and TAB2 in HEK293T cells, indicating that IL-18Rß, in IL-18 signalling pathway, is associated with these signalling molecules. In conclusion, IL-18Rα, IL-18Rß and IL-18BP in rainbow trout are conserved in function and signalling pathway with their mammalian orthologues.


Assuntos
Oncorhynchus mykiss , Humanos , Animais , Receptores de Interleucina-18/metabolismo , Oncorhynchus mykiss/metabolismo , Proteínas de Transporte , Interleucina-18/genética , Interleucina-18/metabolismo , NF-kappa B/metabolismo , Células HEK293 , Mamíferos
3.
Nat Commun ; 13(1): 7582, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482059

RESUMO

White adipose tissue (WAT) plays a role in storing energy, while brown adipose tissue (BAT) is instrumental in the re-distribution of stored energy when dietary sources are unavailable. Interleukin-18 (IL18) is a cytokine playing a role in T-cell polarization, but also for regulating energy homeostasis via the dimeric IL18 receptor (IL18r) and Na-Cl co-transporter (NCC) on adipocytes. Here we show that IL18 signaling in metabolism is regulated at the level of receptor utilization, with preferential role for NCC in brown adipose tissue (BAT) and dominantly via IL18r in WAT. In Il18r-/-Ncc-/- mice, high-fat diet (HFD) causes more prominent body weight gain and insulin resistance than in wild-type mice. The WAT insulin resistance phenotype of the double-knockout mice is recapitulated in HFD-fed Il18r-/- mice, whereas decreased thermogenesis in BAT upon HFD is dependent on NCC deletion. BAT-selective depletion of either NCC or IL18 reduces thermogenesis and increases BAT and WAT inflammation. IL18r deletion in WAT reduces insulin signaling and increases WAT inflammation. In summary, our study contributes to the mechanistic understanding of IL18 regulation of energy metabolism and shows clearly discernible roles for its two receptors in brown and white adipose tissues.


Assuntos
Resistência à Insulina , Interleucina-18 , Receptores de Interleucina-18 , Membro 3 da Família 12 de Carreador de Soluto , Termogênese , Animais , Camundongos , Glucose , Interleucina-18/metabolismo , Receptores de Interleucina-18/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Camundongos Knockout
4.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142206

RESUMO

Atopic dermatitis (AD) is maintained by a variety of cells and inflammatory mediators, including eosinophils and histamine. We recently reported that eosinophils from AD patients highly express the H4R. However, its immunomodulatory function in eosinophils is still largely unexplored. In this study, transcriptome analysis of blood eosinophils from AD patients stimulated with histamine and the H4R agonist ST-1006 revealed several regulated genes (e.g., IL-18R, IL-1RL1, PDE4B, CXCR4) involved in inflammation. Subsequently, the impact of histamine on one of the strongly regulated genes, the IL-18 receptor (IL-18Rα), was investigated in detail. Stimulation with histamine induced the upregulation of IL-18Rα at mRNA and at the protein level in human eosinophils, which was more pronounced in cells from AD patients than in cells from healthy controls. IL-18 was upregulated via histamine as well. After pre-incubation with histamine and IFN-γ, subsequent stimulation with IL-18 resulted in an increased ECP mRNA expression. The activation of eosinophils by histamine, in combination with IFN-γ and IL-5, was also accompanied by an upregulation of CD69. Thus, our results indicate a crucial role of histamine in the upregulation of the IL-18/IL-18R axis and in the activation of human eosinophils from AD patients.


Assuntos
Dermatite Atópica , Histamina , Dermatite Atópica/metabolismo , Eosinófilos/metabolismo , Histamina/metabolismo , Histamina/farmacologia , Humanos , Interleucina-18/genética , Interleucina-5 , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/genética , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , Receptores de Interleucina-18
5.
Immunohorizons ; 6(8): 630-641, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35985797

RESUMO

We have recently demonstrated that basophils are protective against intestinal permeability during malaria and contribute to reduced parasite transmission to mosquitoes. Given that IL-18 is an early cytokine/alarmin in malaria and has been shown to activate basophils, we sought to determine the role of the basophil IL-18R in this protective phenotype. To address this, we infected control [IL18r flox/flox or basoIL-18R (+)] mice and mice with basophils lacking the IL-18R [IL18r flox/flox × Basoph8 or basoIL-18R (-)] with Plasmodium yoelii yoelii 17XNL, a nonlethal strain of mouse malaria. Postinfection (PI), intestinal permeability, ileal mastocytosis, bacteremia, and levels of ileal and plasma cytokines and chemokines were measured through 10 d PI. BasoIL-18R (-) mice exhibited greater intestinal permeability relative to basoIL-18R (+) mice, along with increased plasma levels of proinflammatory cytokines at a single time point PI, day 4 PI, a pattern not observed in basoIL-18R (+) mice. Surprisingly, mosquitoes fed on basoIL-18R (-) mice became infected less frequently than mosquitoes fed on basoIL-18R (+) mice, with no difference in gametocytemia, a pattern that was distinct from that observed previously with basophil-depleted mice. These findings suggest that early basophil-dependent protection of the intestinal barrier in malaria is mediated by IL-18, and that basophil IL-18R-dependent signaling differentially regulates the inflammatory response to infection and parasite transmission.


Assuntos
Culicidae , Mucosa Intestinal , Malária , Parasitos , Receptores de Interleucina-18 , Animais , Basófilos , Permeabilidade da Membrana Celular , Culicidae/parasitologia , Citocinas , Imunidade , Interleucina-18 , Mucosa Intestinal/parasitologia , Malária/parasitologia , Camundongos , Receptores de Interleucina-18/metabolismo , Receptores de Interleucina-18/fisiologia
6.
J Pain ; 23(10): 1629-1645, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35691467

RESUMO

Recent studies have shown that the incidence of chronic primary pain including temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS) often exhibit comorbidities. We recently reported that central sensitization and descending facilitation system contributed to the development of somatic pain hypersensitivity induced by orofacial inflammation combined with stress. The purpose of this study was to explore whether TMD caused by unilateral anterior crossbite (UAC) can induce somatic pain hypersensitivity, and whether the cholecystokinin (CCK) receptor-mediated descending facilitation system promotes hypersensitivity through neuron-glia cell signaling cascade. UAC evoked thermal and mechanical pain hypersensitivity of the hind paws from day 5 to 70 that peaked at week 4 post UAC. The expression levels of CCK1 receptors, interleukin-18 (IL-18) and IL-18 receptors (IL-18R) were significantly up-regulated in the L4 to L5 spinal dorsal horn at 4 weeks post UAC. Intrathecal injection of CCK1 and IL-18 receptor antagonists blocked somatic pain hypersensitivity. IL-18 mainly co-localized with microglia, while IL-18R mainly co-localized with astrocytes and to a lesser extent with neurons. These findings indicate that the signaling transduction between neurons and glia at the spinal cord level contributes to the descending pain facilitation through CCK1 receptors during the development of the comorbidity of TMD and FMS. PERSPECTIVE: CCK1 receptor-dependent descending facilitation may mediate central mechanisms underlying the development of widespread somatic pain via a reciprocal neuron-glial signaling cascade, providing novel therapeutic targets for the clinical treatment of TMD and FMS comorbidities.


Assuntos
Dor Crônica , Má Oclusão , Dor Nociceptiva , Receptor de Colecistocinina B , Animais , Colecistocinina/metabolismo , Dor Crônica/metabolismo , Hiperalgesia/metabolismo , Interleucina-18/metabolismo , Má Oclusão/metabolismo , Neuroglia/fisiologia , Neurônios , Dor Nociceptiva/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Colecistocinina B/metabolismo , Receptores de Interleucina-18/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal , Corno Dorsal da Medula Espinal/metabolismo
7.
Stem Cell Reports ; 16(12): 2887-2899, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34798063

RESUMO

Severe infection can dramatically alter blood production, but the mechanisms driving hematopoietic stem and progenitor cell (HSC/HSPC) loss have not been clearly defined. Using Ixodes ovatus Ehrlichia (IOE), a tick-borne pathogen that causes severe shock-like illness and bone marrow (BM) aplasia, type I and II interferons (IFNs) promoted loss of HSPCs via increased cell death and enforced quiescence. IFN-αß were required for increased interleukin 18 (IL-18) expression during infection, correlating with ST-HSC loss. IL-18 deficiency prevented BM aplasia and increased HSC/HSPCs. IL-18R signaling was intrinsically required for ST-HSC quiescence, but not for HSPC cell death. To elucidate cell death mechanisms, MLKL- or gasdermin D-deficient mice were infected; whereas Mlkl-/- mice exhibited protected HSC/HSPCs, no such protection was observed in Gsdmd-/- mice during infection. MLKL deficiency intrinsically protected HSCs during infection and improved hematopoietic output upon recovery. These studies define MLKL and IL-18R signaling in HSC loss and suppressed hematopoietic function in shock-like infection.


Assuntos
Infecções Bacterianas/complicações , Ciclo Celular , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Proteínas Quinases/metabolismo , Receptores de Interleucina-18/metabolismo , Choque/microbiologia , Choque/patologia , Animais , Bactérias/metabolismo , Medula Óssea/patologia , Morte Celular , Feminino , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases/deficiência , Choque/metabolismo , Transdução de Sinais
8.
J Biol Chem ; 296: 100630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823154

RESUMO

Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans-induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.


Assuntos
Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Fatores Imunológicos/farmacologia , Interleucina-18/genética , Receptores de Interleucina-18/genética , Anti-Inflamatórios/metabolismo , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fatores Imunológicos/biossíntese , Inflamação , Interferon gama/genética , Interferon gama/imunologia , Interleucina-18/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Síndrome de Ativação Macrofágica/tratamento farmacológico , NF-kappa B/genética , NF-kappa B/imunologia , Cultura Primária de Células , Receptores de Interleucina-18/antagonistas & inibidores , Receptores de Interleucina-18/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Tratamento Farmacológico da COVID-19
9.
J Cell Mol Med ; 25(2): 1128-1139, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459528

RESUMO

Interleukin 18 (IL-18) is a pleiotropic pro-inflammatory cytokine and is associated with arrested follicle development and anovulation which are the typical pathological changes of PCOS. Theca cells (TCs) have a key role in follicular growth and atresia. But whether IL-18 can directly affect ovarian TCs function is unknown. Therefore, the objective of this study was to determine the effect of IL-18 on proliferation and steroidogenesis of bovine TCs and to explore the biological effect of IL-18 on folliculogenesis. This work revealed that at 300-1000 pg/mL, IL-18 led to a time- and dose-dependently increase in cell proliferation (P < .05). IL-18 increased 17-hydroxyprogesterone (17OHP4) and androstenedione (A2) secretion with up-regulation of key steroidogenesis-related genes CYP11A1 and CYP17A1 (P < .05). Furthermore, our data demonstrated that the IL-18R protein is predominantly expressed in small-follicle (3-6 mm) TCs than large follicles (8-22 mm) by immunohistochemistry. We also found that the stimulation effects of IL-18 on TCs can be reversed with the addition of IL-18BP as early as at 4 hours of culture and reached the peak at 16 hours. We conclude that IL-18 appears to target TCs in bovine, and suggest an important role for this cytokine in ovarian function. Present findings further validate potential effects of IL-18 in the conditions associated with follicular dysplasia and excessive growth of ovarian TCs (such as PCOS). But additional research is needed to further understand the mechanism of action of IL-18 in theca cells as well as its precise role in folliculogenesis.


Assuntos
Interleucina-18/farmacologia , Síndrome do Ovário Policístico/patologia , Esteroides/biossíntese , Células Tecais/metabolismo , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Separação Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Hormônio Luteinizante/farmacologia , Síndrome do Ovário Policístico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-18/metabolismo
10.
Int Immunopharmacol ; 90: 107133, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33168408

RESUMO

BACKGROUND: Myocardial infarction (MI) triggers a strong inflammatory response that is associated with myocardial fibrosis and cardiac remodeling. Interleukin (IL)-1ß and IL-18 are key players in this response and are controlled by NLRP3-inflammatory bodies. Oridonin is a newly reported NLRP3 inhibitor with strong anti-inflammatory activity. We hypothesized that the covalent NLRP3 inhibitor Oridonin could reduce IL-1ß and IL-18 expression and ameliorate myocardial fibrosis after myocardial infarction in mice, improve poor heart remodeling, and preserve heart function. METHODS: Male C57BL/6 mice were subjected to left coronary artery ligation to induce MI and then treated with Oridonin (1, 3, or 6 mg/kg), MCC950 (10 mg/kg), CY-09 (5 mg/kg) or saline three times a week for two weeks. Four weeks after MI, cardiac function and myocardial fibrosis were assessed. In addition, myocardial expressions of inflammatory factors and fibrotic markers were analyzed by western blot, immunofluorescence, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. RESULTS: Oridonin treatment preserved left ventricular ejection fraction and fractional shortening, and markedly limited the myocardial infarct size in treated mice. The myocardial fibrosis was lower in the 1 mg/kg group (15.98 ± 1.64)%, 3 mg/kg group (17.39 ± 2.45)%, and 6 mg/kg group (16.76 ± 3.06)% compared to the control group (23.38 ± 1.65)%. Moreover, similar with the results of Oridonin, MCC950 and CY-09 also preserved cardiac function and reduced myocardial fibrosis. The expression levels of NLRP3, IL-1ß and IL-18 were decreased in the Oridonin treatment group compared to non-treated group. In addition, myocardial macrophage and neutrophil influxes were attenuated in the Oridonin treated group. CONCLUSIONS: The covalent NLRP3-inflammasome inhibitor Oridonin reduces myocardial fibrosis and preserves cardiac function in a mouse MI model, which indicates potential therapeutic effect of Oridonin on acute MI patients.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Inflamassomos/antagonistas & inibidores , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Indenos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Interleucina-18/metabolismo , Transdução de Sinais , Volume Sistólico/efeitos dos fármacos , Sulfonamidas , Sulfonas/farmacologia , Tiazolidinas/farmacologia , Tionas/farmacologia
11.
Neuroscience ; 451: 207-215, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33137409

RESUMO

Interleukin-18 (IL-18) is an important regulator of innate and immune responses, and is involved in the pain process, including neuropathic and cancer pain. The current study demonstrated that inflammatory soup (IS) dural infusions elicited the activation of microglia and astrocytes. In comparison, IS dural infusions induced the upregulation of IL-18 and IL-18R in microglia and astrocytes, respectively. Blocking the IL-18 signaling pathway attenuated nociceptive behavior. In comparison, blocking IL-18 signaling also suppressed the activation of astrocytes and nuclear factor-kappa B (NF-κB). IL-18 dural infusions induced nociceptive behavior and glia activation. IL-18 is a product of the activation of microglial toll-like receptor 4 (TLR4), and it acted on IL-18R expressed in astrocytes. Subsequently, it stimulated the activation of nuclear factor-kappa B (NF-κB), leading to the activation of astrocytes. In conclusion, IL-18-mediated microglia/astrocyte interactions in the medullary dorsal horn likely contribute to the development of hyperpathia or allodynia induced by migraines.


Assuntos
Interleucina-18/metabolismo , Microglia , Transtornos de Enxaqueca , Receptores de Interleucina-18/metabolismo , Animais , Astrócitos/metabolismo , Microglia/metabolismo , Modelos Teóricos , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
12.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202693

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is rising in prevalence, and a better pathophysiologic understanding of the transition to its inflammatory phenotype (NASH) is key to the development of effective therapies. To evaluate the contribution of the NLRP3 inflammasome and its downstream effectors IL-1 and IL-18 in this process, we applied the true-to-life "American lifestyle-induced obesity syndrome" (ALiOS) diet mouse model. Development of obesity, fatty liver and liver damage was investigated in mice fed for 24 weeks according to the ALiOS protocol. Lipidomic changes in mouse livers were compared to human NAFLD samples. Receptor knockout mice for IL-1 and IL-18 were used to dissect the impact of downstream signals of inflammasome activity on the development of NAFLD. The ALiOS diet induced obesity and liver steatosis. The lipidomic changes closely mimicked changes in human NAFLD. A pro-inflammatory gene expression pattern in liver tissue and increased serum liver transaminases indicated early liver damage in the absence of histological evidence of NASH. Mechanistically, Il-18r-/-- but not Il-1r-/- mice were protected from early liver damage, possibly due to silencing of the pro-inflammatory gene expression pattern. Our study identified NLRP3 activation and IL-18R-dependent signaling as potential modulators of early liver damage in NAFLD, preceding development of histologic NASH.


Assuntos
Interleucina-18/metabolismo , Interleucina-1/metabolismo , Fígado/lesões , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais , Animais , Interleucina-1/genética , Interleucina-18/genética , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-18/genética , Receptores de Interleucina-18/metabolismo
13.
Nature ; 583(7817): 609-614, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581358

RESUMO

Cytokines were the first modern immunotherapies to produce durable responses in patients with advanced cancer, but they have only modest efficacy and limited tolerability1,2. In an effort to identify alternative cytokine pathways for immunotherapy, we found that components of the interleukin-18 (IL-18) pathway are upregulated on tumour-infiltrating lymphocytes, suggesting that IL-18 therapy could enhance anti-tumour immunity. However, recombinant IL-18 previously did not demonstrate efficacy in clinical trials3. Here we show that IL-18BP, a high-affinity IL-18 decoy receptor, is frequently upregulated in diverse human and mouse tumours and limits the anti-tumour activity of IL-18 in mice. Using directed evolution, we engineered a 'decoy-resistant' IL-18 (DR-18) that maintains signalling potential but is impervious to inhibition by IL-18BP. Unlike wild-type IL-18, DR-18 exerted potent anti-tumour effects in mouse tumour models by promoting the development of poly-functional effector CD8+ T cells, decreasing the prevalence of exhausted CD8+ T cells that express the transcriptional regulator of exhaustion TOX, and expanding the pool of stem-like TCF1+ precursor CD8+ T cells. DR-18 also enhanced the activity and maturation of natural killer cells to effectively treat anti-PD-1 resistant tumours that have lost surface expression of major histocompatibility complex class I molecules. These results highlight the potential of the IL-18 pathway for immunotherapeutic intervention and implicate IL-18BP as a major therapeutic barrier.


Assuntos
Imunoterapia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-18/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Estimativa de Kaplan-Meier , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Receptores de Interleucina-18/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
14.
Int Immunopharmacol ; 83: 106391, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32208166

RESUMO

Interleukin (IL)-37 belongs to the IL-1 cytokine family. It has anti-inflammatory effects on numerous autoimmune diseases such as asthma, psoriasis, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), multiple sclerosis (MS) and rheumatoid arthritis (RA). Mechanistically, IL-37 plays an anti-inflammatory role by regulating the expression of inflammatory factors in two ways: binding extracellular receptors IL-18R or transferring into the nucleus with Smad3. IBD is a kind of idiopathic intestinal inflammatory disease with unknown etiology and pathogenesis. Recent researches had proved that IL-37 is negatively involved in the pathogenesis and development of IBD. Among various inflammatory diseases, IL-37 has been shown to regulate inflammatory development by acting on various immune cells such as neutrophils, macrophages (Mϕ), dendritic cells (DCs), T cells and intestinal epithelial cells. This review summarizes the biological role of IL-37, and its immunoregulatory effects on the immune cells, especially anti-inflammatory function in both human and experimental models of IBD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Imunoterapia/métodos , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-1/metabolismo , Animais , Humanos , Imunomodulação , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Terapia de Alvo Molecular , Receptores de Interleucina-18/metabolismo
15.
FASEB J ; 34(1): 1768-1782, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914650

RESUMO

Interleukin-18 (IL-18) has been demonstrated to augment the antitumor capacity of chimeric antigen receptor-T cells (CAR-T) but the underlying mechanisms are largely unknown. Here we explored the effects and mechanisms of exogenous IL-18 on the antitumor response of CAR-T cells. IL-18 boosted the cytotoxicity of human epidermal growth factor receptor-2 (HER2)-specific CAR-T cells ex vivo and enhanced the antitumor efficacy of the CAR-T cells in immunodeficient mice, moreover, IL-18 improved the antitumor capacity of OVA-specific T cells in immunocompetent mice, indicating the universal enhancing function of IL-18 for adoptive cell therapy. To address the roles of IL-18 receptor (IL-18R) in the enhancing function, we evaluated the effects of IL-18R knockout (IL-18R-/-) condition in immunocompetent host and CAR-T cells on the IL-18-enhanced antitumor activities. Interestingly, IL-18 persisted to improve the antitumor ability of IL-18R intact CAR-T cells in IL-18R-/- mice. For IL-18R-/- CAR-T cells, however, IL-18 still holds the enhancing ability to boost the antitumor efficacy in IL-18R-/- mice, albeit the ex vivo tumor-killing ability was lower than that of IL-18R intact CAR-T cells, indicating that IL-18R-independent pathway is involved in the enhancement. Furthermore, tagged IL-18 binded to the membrane of IL-18R-/- splenic and lymph node cells and IL-18R intact and IL-18R-/- CAR-T cells showed distinct transcriptomic profiles when stimulated by IL-18. These data demonstrate that IL-18R-independent pathways contribute to functions of IL-18.


Assuntos
Antineoplásicos/metabolismo , Interleucina-18/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Interleucina-18/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo , Animais , Linhagem Celular , Feminino , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Eur Heart J ; 41(26): 2456-2468, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-31821481

RESUMO

AIMS: Obesity is a risk factor of abdominal aortic aneurysm (AAA). Inflammatory cytokine interleukin-18 (IL18) has two receptors: IL18 receptor (IL18r) and Na-Cl co-transporter (NCC). In human and mouse AAA lesions, IL18 colocalizes to its receptors at regions rich in adipocytes, suggesting a role of adipocytes in promoting IL18 actions in AAA development. METHODS AND RESULTS: We localized both IL18r and NCC in human and mouse AAA lesions. Murine AAA development required both receptors. In mouse AAA lesions, IL18 binding to these receptors increased at regions enriched in adipocytes or adjacent to perivascular adipose tissue. 3T3-L1 adipocytes enhanced IL18 binding to macrophages, aortic smooth muscle cells (SMCs), and endothelial cells by inducing the expression of both IL18 receptors on these cells. Adipocytes also enhanced IL18r and IL18 expression from T cells and macrophages, AAA-pertinent protease expression from macrophages, and SMC apoptosis. Perivascular implantation of adipose tissue from either diet-induced obese mice or lean mice but not that from leptin-deficient ob/ob mice exacerbated AAA development in recipient mice. Further experiments established an essential role of adipocyte leptin and fatty acid-binding protein 4 (FABP4) in promoting IL18 binding to macrophages and possibly other inflammatory and vascular cells by inducing their expression of IL18, IL18r, and NCC. CONCLUSION: Interleukin-18 uses both IL18r and NCC to promote AAA formation. Lesion adipocyte and perivascular adipose tissue contribute to AAA pathogenesis by releasing leptin and FABP4 that induce IL18, IL18r, and NCC expression and promote IL18 actions.


Assuntos
Adipócitos , Aneurisma da Aorta Abdominal , Interleucina-18 , Animais , Aneurisma da Aorta Abdominal/etiologia , Modelos Animais de Doenças , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-18 , Transdução de Sinais
17.
Chin J Physiol ; 62(4): 139-147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31535629

RESUMO

Cardiac hypertrophy is the main cause of heart failure. Levels of circulating interleukin-18 (IL-18) have been reported to increase in congestive heart disease and cardiac hypertrophy. Relationships among IL-18 levels, IL-18 receptor (IL-18R) expression, and cardiac hypertrophy remain unclear. IL-18 can induce cardiac hypertrophy in cardiomyoblasts. We also studied IL-18R messenger RNA (mRNA) and protein expression through quantitative-polymerase chain reaction and Western blotting. Furthermore, we treated cardiomyoblasts with adenine, gold nanoparticles (AuNPs), and inhibitors to analyze the morphology and identify signaling pathways involved in cardiac hypertrophy. Moreover, we studied the effects of IL-18R small interfering RNA (siRNA) on signaling pathways through Western blotting. The mRNA expression of IL-18R in H9c2 cardiomyoblasts, which was induced by IL-18, increased significantly after 8 h, and the protein level increased significantly after 15 h. Morphological examination of H9c2 cardiomyoblasts showed that cell volume and cell diameter decreased after adenine pretreatment. Both p38 MAPK and PI3 kinase are biomarkers in the pathway correlated with cardiac hypertrophy. After treatment with inhibitors SB203580 and LY294002, the levels of p38 MAPK and PI3 kinase, respectively, decreased along with cell size and IL-18R expression. Treatment with adenine, but not AuNPs, reduced the levels of phosphorylated p38 and PI3 kinase expression more effectively than did treatment with the respective inhibitors alone. IL-18R siRNA significantly reduced cell size but not PI3 kinase expression and phosphorylation of p38 MAPK. However, adenine treatment reduced PI3 kinase expression after treatment with IL-18R siRNA. In this study, IL-18 induced cardiomyoblast hypertrophy through IL-18R upregulation, which was found to be related to p38 MAPK and PI3 kinase signaling. Adenine, but not AuNPs, showed antihypertrophic effects possibly because of decreased levels of signaling.


Assuntos
Receptores de Interleucina-18/classificação , Adenina , Ouro , Interleucina-8 , Sistema de Sinalização das MAP Quinases , Nanopartículas Metálicas , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno
18.
Nat Commun ; 10(1): 3897, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467285

RESUMO

Despite animal models showing that natural killer (NK) cells are important players in the early defense against many viral infections, the NK cell response is poorly understood in humans. Here we analyze the phenotype, temporal dynamics, regulation and trafficking of NK cells in a patient cohort with acute dengue virus infection. NK cells are robustly activated and proliferate during the first week after symptom debut. Increased IL-18 levels in plasma and in induced skin blisters of DENV-infected patients, as well as concomitant signaling downstream of the IL-18R, suggests an IL-18-dependent mechanism in driving the proliferative NK cell response. Responding NK cells have a less mature phenotype and a distinct chemokine-receptor imprint indicative of skin-homing. A corresponding NK cell subset can be localized to skin early during acute infection. These data provide evidence of an IL-18-driven NK cell proliferation and priming for skin-homing during an acute viral infection in humans.


Assuntos
Dengue/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Pele/imunologia , Animais , Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Antígeno CD56/genética , Proliferação de Células , Vírus da Dengue , Humanos , Interleucina-18/metabolismo , Lectinas Tipo C , Camundongos , Fenótipo , Receptores CCR5 , Receptores CXCR3 , Receptores de Interleucina-18/metabolismo , Transdução de Sinais
19.
Sci Rep ; 9(1): 9386, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253830

RESUMO

Support from human genetics increases the probability of success in drug development. However, few examples exist of successful genomically-driven drug repositioning. Given that a Mendelian form of severe enterocolitis is due to up-regulation of the interleukin-18 (IL18) signaling pathway, and pharmacologic inhibition of IL18 has been shown to reverse this enterocolitis, we undertook a Mendelian randomization study to test the causal effect of elevated IL18 levels on inflammatory bowel disease susceptibility (IBD) in 12,882 cases and 21,770 controls. Mendelian randomization is an established method to assess the role of biomarkers in disease etiology in a manner that minimizes confounding and prevents reverse causation. Using three SNPs that explained almost 7% of the variance in IL18 level, we found that each genetically predicted standard deviation increase in IL18 was associated with an increase in IBD susceptibility (odds ratio = 1.22, 95% CI = 1.11-1.34, P-value = 6 × 10-5). This association was further validated in 25,042 IBD cases and 34,915 controls (odds ratio = 1.13, 95% CI = 1.05-1.20). Recently, an anti-IL18 monoclonal antibody, which decreased free IL18 levels, was found to be safe, yet ineffective in a phase II trial for type 2 diabetes. Taken together, these genomic findings implicated IBD as an alternative indication for anti-IL18 therapy, which should be tested in randomized controlled trials.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Reposicionamento de Medicamentos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Interleucina-18/uso terapêutico , Alelos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/efeitos adversos , Biomarcadores , Predisposição Genética para Doença , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/etiologia , Interleucina-18/sangue , Análise da Randomização Mendeliana , Razão de Chances , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-18/genética , Receptores de Interleucina-18/metabolismo , Índice de Gravidade de Doença , Resultado do Tratamento
20.
Int J Mol Sci ; 20(3)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717382

RESUMO

Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4⁺ NKT cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by binding to a specific receptor expressed on various types of cells. In this review article, we will focus on the unique features of IL-18 in health and disease in experimental animals and humans.


Assuntos
Suscetibilidade a Doenças , Interleucina-18/genética , Interleucina-18/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Interleucina-18/antagonistas & inibidores , Interleucina-33/genética , Interleucina-33/metabolismo , Terapia de Alvo Molecular , Ligação Proteica , Receptores de Interleucina-18/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...