Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.423
Filtrar
1.
EMBO Rep ; 25(4): 2045-2070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454159

RESUMO

Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.


Assuntos
Proteínas do Citoesqueleto , Infertilidade Masculina , Teratozoospermia , Tiazóis , Humanos , Masculino , Animais , Camundongos , Teratozoospermia/metabolismo , Teratozoospermia/patologia , Sêmen/metabolismo , Espermatozoides/metabolismo , Cabeça do Espermatozoide/fisiologia , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Dineínas/metabolismo , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Adv Sci (Weinh) ; 11(14): e2307749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311582

RESUMO

The heart primarily derives its energy through lipid oxidation. In cardiomyocytes, lipids are stored in lipid droplets (LDs) and are utilized in mitochondria, although the structural and functional connections between these two organelles remain largely unknown. In this study, visible evidence have presented indicating that a complex is formed at the mitochondria-LD membrane contact (MLC) site, involving mitochondrion-localized Mfn2 and LD-localized Hsc70. This complex serves to tether mitochondria to LDs, facilitating the transfer of fatty acids (FAs) from LDs to mitochondria for ß-oxidation. Reduction of Mfn2 induced by lipid overload inhibits MLC, hinders FA transfer, and results in lipid accumulation. Restoring Mfn2 reinstates MLC, alleviating myocardial lipotoxicity under lipid overload conditions both in-vivo and in-vitro. Additionally, prolonged lipid overload induces Mfn2 degradation through the ubiquitin-proteasome pathway, following Mfn2 acetylation at the K243 site. This leads to the transition from adaptive lipid utilization to maladaptive lipotoxicity. The experimental findings are supported by clinical data from patients with obesity and age-matched non-obese individuals. These translational results make a significant contribution to the molecular understanding of MLC in the heart, and offer new insights into its role in myocardial lipotoxicity.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Choque Térmico HSC70 , Gotículas Lipídicas , Metabolismo dos Lipídeos , Miócitos Cardíacos , Humanos , Ácidos Graxos/metabolismo , Hidrolases/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Camundongos , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Coração , Miócitos Cardíacos/metabolismo
3.
Biol Direct ; 19(1): 16, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395908

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a biliary epithelial malignant tumor with an increasing incidence worldwide. Therefore, further understanding of the molecular mechanisms of CCA progression is required to identify new therapeutic targets. METHODS: The expression of RPL35A in CCA and para-carcinoma tissues was detected by immunohistochemical staining. IP-MS combined with Co-IP identified downstream proteins regulated by RPL35A. Western blot and Co-IP of CHX or MG-132 treated CCA cells were used to verify the regulation of HSPA8 protein by RPL35A. Cell experiments and subcutaneous tumorigenesis experiments in nude mice were performed to evaluate the effects of RPL35A and HSPA8 on the proliferation, apoptosis, cell cycle, migration of CCA cells and tumor growth in vivo. RESULTS: RPL35A was significantly upregulated in CCA tissues and cells. RPL35A knockdown inhibited the proliferation and migration of HCCC-9810 and HUCCT1 cells, induced apoptosis, and arrested the cell cycle in G1 phase. HSPA8 was a downstream protein of RPL35A and overexpressed in CCA. RPL35A knockdown impaired HSPA8 protein stability and increased HSPA8 protein ubiquitination levels. RPL35A overexpression promoted CCA cell proliferation and migration. HSPA8 knockdown inhibited CCA cell proliferation and migration, and reversed the promoting effect of RPL35A. Furthermore, RPL35A promoted tumor growth in vivo. In contrast, HSPA8 knockdown suppressed tumor growth, while was able to restore the effects of RPL35A overexpression. CONCLUSION: RPL35A was upregulated in CCA tissues and promoted the progression of CCA by mediating HSPA8 ubiquitination.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteínas Ribossômicas , Animais , Camundongos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proteínas Ribossômicas/metabolismo , Humanos , Proteínas de Choque Térmico HSC70/metabolismo , Ubiquitinação/genética
4.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119684, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301906

RESUMO

Prostate cancer is the most common malignant tumor in males, which frequently develops into castration-resistant prostate cancer (CRPC). CRPC metastasis is the main reason for its high mortality rate. At present, it lacks effective treatment for patients with CRPC. Raltitrexed (RTX) has been shown to be effective in the treatment of colorectal cancer. However, the effect of RTX on prostate cancer and the underlying mechanism remain unknown. In the current study, we found that RTX could dose-dependently inhibit proliferation, migration, colony formation and induce apoptosis in DU145 and PC-3 cells. RTX also increased ROS generation in prostate cancer cells. Pretreatment with N-acetyl-L-cysteine (NAC) significantly prevented RTX-induced cell apoptosis and endoplasmic reticulum (ER) stress signaling activation in prostate cancer cells. Additionally, we found RTX-induced ROS generation and ER stress activation depended on the expression of heat shock protein family A member 8 (HSPA8). Over-expression of HSPA8 could alleviate RTX-induced cell apoptosis, ROS generation and ER stress signaling activation. Finally, our study also showed that RTX attenuated the tumor growth of prostate cancer in the DU145 xenograft model and significantly downregulated HSPA8 expression and activated ER stress signaling pathway in tumor tissues. Our study is the first to reveal that RTX induces prostate cancer cells apoptosis through inhibiting the expression of HSPA8 and further inducing ROS-mediated ER stress pathway action. This study suggests that RTX may be a novel promising candidate drug for prostate cancer therapy.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Quinazolinas , Tiofenos , Masculino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Apoptose , Proteínas de Choque Térmico HSC70/farmacologia
5.
FEBS Lett ; 598(7): 818-836, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418371

RESUMO

Plasmodium falciparum renovates the host erythrocyte to survive during intraerythrocytic development. This renovation requires many parasite proteins to unfold and move outside the parasitophorous vacuolar membrane, and chaperone-regulated protein folding becomes essential for the exported proteins to function. We report on a type-IV J domain protein (JDP), PF3D7_1401100, which we found to be processed before export and trafficked inside the lumen of parasite-derived structures known as J-dots. We found this protein to have holdase activity, as well as stimulate the ATPase and aggregation suppression activity of the human HSP70 chaperone HsHSPA8; thus, we named it "HSPA8-interacting J protein" (A8iJp). Moreover, we found a subset of HsHSPA8 to co-localize with A8iJp inside the infected human erythrocyte. Our results suggest that A8iJp modulates HsHSPA8 chaperone activity and may play an important role in host erythrocyte renovation.


Assuntos
Proteínas de Choque Térmico HSP40 , Plasmodium falciparum , Humanos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Chaperonas Moleculares/metabolismo , Eritrócitos , Dobramento de Proteína , Proteínas de Choque Térmico HSC70/metabolismo
6.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 356-365, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38419499

RESUMO

Currently, platinum agents remain the mainstay of chemotherapy for ovarian cancer (OC). However, cisplatin (DDP) resistance is a major reason for chemotherapy failure. Thus, it is extremely important to elucidate the mechanism of resistance to DDP. Here, we establish two DDP-resistant ovarian cancer cell lines and find that caseinolytic protease P (CLPP) level is significantly downregulated in DDP-resistant cell lines compared to wild-type ovarian cancer cell lines (SK-OV-3 and OVcar3). Next, we investigate the functions of CLPP in DDP-resistant and wild-type ovarian cancer cells using various assays, including cell counting kit-8 assay, western blot analysis, immunofluorescence staining, and detection of reactive oxygen species (ROS) and apoptosis. Our results show that CLPP knockdown significantly increases the half maximal inhibitory concentration (IC 50) and mitophagy of wild-type SK-OV-3 and OVcar3 cells, while CLPP overexpression reduces the IC 50 values and mitophagy of DDP-resistant SK-OV-3 and OVcar3 cells. Next, we perform database predictions and confirmation experiments, which show that heat shock protein family A member 8 (HSPA8) regulates CLPP protein stability. The dynamic effects of the HSPA8/CLPP axis in ovarian cancer cells are also examined. HSPA8 increases mitophagy and the IC 50 values of SK-OV-3 and OVcar3 cells but inhibits their ROS production and apoptosis. In addition, CLPP partly reverses the effects induced by HSPA8 in SK-OV-3 and OVcar3 cells. In conclusion, CLPP increases DDP resistance in ovarian cancer by inhibiting mitophagy and promoting cellular stress. Meanwhile, HSPA8 promotes the degradation of CLPP protein by regulating its stability.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Endopeptidase Clp , Proteínas de Choque Térmico HSC70/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Arch Biochem Biophys ; 752: 109889, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38215959

RESUMO

Hemolysis in red blood cells followed by hemoglobin degradation results in high hemin levels in the systemic circulation. Such a level of hemin is disastrous for cells and tissues and is considerably responsible for the pathologies of diseases like severe malaria. Hemin's hydrophobic chemical nature and structure allow it to bind several proteins leading to their functional modification. Such modifications in physiologically relevant proteins can have a high impact on various cellular processes. HSPA8 is a chaperone that has a protective role in oxidative stress by aiding protein refolding. Through ATPase activity assays we found that hemin can competitively inhibit ATP hydrolysis by the chaperone HSPA8. Hemin as such does not affect the structural integrity of the protein which is inferred from CD spectroscopy and Gel filtration but it hinders the ATP-dependent foldase function of the chaperone. HSPA8 was not able to cause the refolding of the model protein lysozyme in the presence of hemin. The loss in HSPA8 function was due to competition between hemin and ATP as the chaperone was able to regain the foldase function when the concentration of ATP was gradually increased with hemin present at the inhibitory concentration. In-silico studies to establish the competition for the specific binding site revealed that ATP was unable to replace hemin from the ATP binding pocket of HSPA8 and was forced to form a non-specific and unstable complex. In-vitro isothermal calorimetry revealed that the affinity of ATP for binding to HSPA8 was reduced 22 folds in the presence of hemin. The prevention of HSPA8's cytoprotective function by hemin can be a major factor contributing to the overall cellular damage during hemin accumulation in the case of severe malaria and other hemolytic diseases.


Assuntos
Hemina , Malária , Humanos , Hemina/farmacologia , Chaperonas Moleculares , Hemólise , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSC70
8.
ACS Nano ; 18(2): 1599-1610, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38157218

RESUMO

Chaperone-mediated autophagy (CMA) is a lysosomal-dependent proteolysis pathway for the degradation of cytosolic proteins. However, exploiting CMA-mediated proteolysis to degrade proteins of interest in cancer therapy has not been widely applied. In this study, we develop a CMA-targeting chimera (CMATAC) to efficiently and specifically degrade signal transduction and activator of transcription 3 (STAT3) in tumor cells. CMATAC consists of STAT3 and heat shock cognate 70 kDa protein (HSC70) targeting peptides connected by a linker. To efficiently deliver CMATACs into tumor cells, lipid nanoparticles (LNPs) are used to encapsulate CMATACs (nCMATACs) and decorated with an insulin-like growth factor 2 receptor (IGF2R) targeting peptide (InCMATACs) to achieve tumor targeting and precise delivery. The CMA pathway is activated in tumor cells by a fasting-mimicking diet (FMD). Furthermore, FMD treatment strongly enhances the cellular uptake and tumor accumulation of InCMATACs by upregulating the IGF2R expression. As a result, InCMATACs efficiently degrade STAT3 protein in both A549 and HCC827 tumor cells and inhibit tumor growths in vivo. This study demonstrates that InCMATACs can be used for selective proteolysis in cancer therapy.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias , Humanos , Autofagia , Neoplasias/metabolismo , Proteólise , Proteínas de Choque Térmico HSC70/metabolismo , Peptídeos/metabolismo , Transdução de Sinais , Lisossomos/metabolismo
9.
J Transl Med ; 21(1): 625, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715221

RESUMO

BACKGROUND: The hepatitis B virus X (HBx) protein is an established cause of hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC). Whether arginine methylation regulates ferroptosis involved in HBx-induced HCC progression has not been reported. This study aimed to explore whether HBx-regulated protein arginine methyltransferase 9 (PRMT9) mediates the involvement of ferroptosis in the development of HCC. METHODS AND RESULTS: HBx inhibited ferroptosis through promoting PRMT9 expression in HCC cells. PRMT9 suppressed ferroptosis to accelerate HCC progression in vivo. PRMT9 targeted HSPA8 and enhanced arginine methylation of HSPA8 at R76 and R100 to regulate ferroptosis in HCC. HSPA8 overexpression altered the transcriptome profile of HepG2 cells, in particular, ferroptosis and immune-related pathways were significantly enriched by differentially expressed genes, including CD44. HSPA8 overexpression up-regulated CD44 expression and knockdown of CD44 significantly reversed the inhibition of ferroptosis caused by PRMT9 overexpression. CONCLUSIONS: In conclusion, HBx/PRMT9/HSPA8/CD44 axis is a vital signal pathway regulating ferroptosis in HCC cells. This study provides new opportunities and targets for the treatment of HBV-induced HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Metilação , Carcinoma Hepatocelular/genética , Vírus da Hepatite B , Neoplasias Hepáticas/genética , Arginina , Proteínas de Choque Térmico HSC70
10.
Toxicology ; 495: 153610, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541565

RESUMO

Aluminum (Al) is recognized as a neurotoxin. Studies have confirmed that the neurotoxicity induced by Al may be related to tau hyperphosphorylation. Phosphorylated tau is degraded through the ubiquitin-proteasome pathway (UPP), in which the carboxyl terminus of Hsc70-interacting protein (CHIP) plays an important role. However, whether the CHIP plays a role in regulating tau hyperphosphorylation induced by Al is yet to be determined. The purpose of this study was to explore the molecular mechanism of the CHIP in tau hyperphosphorylation induced by AlCl3 in N2a cells. Mouse neuroblastoma cells (N2a) were exposed to different concentrations of AlCl3 (0, 0.5, 1, and 2 mM) and treated with CHIP/CHIP shRNA/CHIP (ΔU-box)/CHIP (ΔTPR) plasmid transfection. The cell viability was determined by the CCK-8 kit. Protein expression was detected by Western blot. The interaction between CHIP and AlCl3 exposure on the proteins was analyzed by factorial design ANOVA. The results showed that Al can cause tau hyperphosphorylation, mainly affecting the pThr231, pSer262, and pSer396 sites of tau in N2a cells. UPP is involved in the degradation of tau hyperphosphorylation induced by Al in N2a cells, of which CHIP may be the main regulatory target. Both the U-box and TPR domains of CHIP are indispensable and play an important role in the regulation of tau hyperphosphorylation induced by AlCl3 in N2a cells.


Assuntos
Proteínas de Choque Térmico HSC70 , Ubiquitina-Proteína Ligases , Camundongos , Animais , Proteínas de Choque Térmico HSC70/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas/metabolismo , Proteínas de Transporte/metabolismo , Transfecção , Proteínas tau/genética , Proteínas tau/toxicidade , Proteínas tau/metabolismo , Fosforilação
11.
Cell Res ; 33(11): 851-866, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37580406

RESUMO

Ultra-stable fibrous structure is a hallmark of amyloids. In contrast to canonical disease-related amyloids, emerging research indicates that a significant number of cellular amyloids, termed 'functional amyloids', contribute to signal transduction as temporal signaling hubs in humans. However, it is unclear how these functional amyloids are effectively disassembled to terminate signal transduction. RHIM motif-containing amyloids, the largest functional amyloid family discovered thus far, play an important role in mediating necroptosis signal transduction in mammalian cells. Here, we identify heat shock protein family A member 8 (HSPA8) as a new type of enzyme - which we name as 'amyloidase' - that directly disassembles RHIM-amyloids to inhibit necroptosis signaling in cells and mice. Different from its role in chaperone-mediated autophagy where it selects substrates containing a KFERQ-like motif, HSPA8 specifically recognizes RHIM-containing proteins through a hydrophobic hexapeptide motif N(X1)φ(X3). The SBD domain of HSPA8 interacts with RHIM-containing proteins, preventing proximate RHIM monomers from stacking into functional fibrils; furthermore, with the NBD domain supplying energy via ATP hydrolysis, HSPA8 breaks down pre-formed RHIM-amyloids into non-functional monomers. Notably, HSPA8's amyloidase activity in disassembling functional RHIM-amyloids does not require its co-chaperone system. Using this amyloidase activity, HSPA8 reverses the initiator RHIM-amyloids (formed by RIP1, ZBP1, and TRIF) to prevent necroptosis initiation, and reverses RIP3-amyloid to prevent necroptosis execution, thus eliminating multi-level RHIM-amyloids to effectively prevent spontaneous necroptosis activation. The discovery that HSPA8 acts as an amyloidase dismantling functional amyloids provides a fundamental understanding of the reversibility nature of functional amyloids, a property distinguishing them from disease-related amyloids that are unbreakable in vivo.


Assuntos
Amiloide , Necroptose , Animais , Humanos , Camundongos , Proteínas de Choque Térmico HSC70/metabolismo , Mamíferos , Ligação Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
12.
Genes (Basel) ; 14(6)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37372351

RESUMO

HSPA8 is involved in many stroke-associated cellular processes, playing a pivotal role in the protein quality control system. Here we report the results of the pilot study aimed at determining whether HSPA8 SNPs are linked to the risk of ischemic stroke (IS). DNA samples from 2139 Russians (888 IS patients and 1251 healthy controls) were genotyped for tagSNPs (rs1461496, rs10892958, and rs1136141) in the HSPA8 gene using probe-based PCR. SNP rs10892958 of HSPA8 was associated with an increased risk (risk allele G) of IS in smokers (OR = 1.37; 95% CI = 1.07-1.77; p = 0.01) and patients with low fruit and vegetable consumption (OR = 1.36; 95% CI = 1.14-1.63; p = 0.002). SNP rs1136141 of HSPA8 was also associated with an increased risk of IS (risk allele A) exclusively in smokers (OR = 1.68; 95% CI = 1.23-2.28; p = 0.0007) and in patients with a low fruit and vegetable intake (OR = 1.29; 95% CI = 1.05-1.60; p = 0.04). Sex-stratified analysis revealed an association of rs10892958 HSPA8 with an increased risk of IS in males (risk allele G; OR = 1.30; 95% CI = 1.05-1.61; p = 0.01). Thus, SNPs rs10892958 and rs1136141 in the HSPA8 gene represent novel genetic markers of IS.


Assuntos
Proteínas de Choque Térmico , AVC Isquêmico , Masculino , Humanos , Proteínas de Choque Térmico/genética , Projetos Piloto , Proteínas de Choque Térmico HSC70/genética , Genótipo
13.
Biol Direct ; 18(1): 26, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254218

RESUMO

BACKGROUND: The human genome contains nearly 20.000 protein-coding genes, but there are still more than 6,000 proteins poorly characterized. Among them, ZNF330/NOA36 stand out because it is a highly evolutionarily conserved nucleolar zinc-finger protein found in the genome of ancient animal phyla like sponges or cnidarians, up to humans. Firstly described as a human autoantigen, NOA36 is expressed in all tissues and human cell lines, and it has been related to apoptosis in human cells as well as in muscle morphogenesis and hematopoiesis in Drosophila. Nevertheless, further research is required to better understand the roles of this highly conserved protein. RESULTS: Here, we have investigated possible interactors of human ZNF330/NOA36 through affinity-purification mass spectrometry (AP-MS). Among them, NOA36 interaction with HSPA1 and HSPA8 heat shock proteins was disclosed and further validated by co-immunoprecipitation. Also, "Enhancer of Rudimentary Homolog" (ERH), a protein involved in cell cycle regulation, was detected in the AP-MS approach. Furthermore, we developed a NOA36 knockout cell line using CRISPR/Cas9n in HEK293, and we found that the cell cycle profile was modified, and proliferation decreased after heat shock in the knocked-out cells. These differences were not due to a different expression of the HSPs genes detected in the AP-MS after inducing stress. CONCLUSIONS: Our results indicate that NOA36 is necessary for proliferation recovery in response to thermal stress to achieve a regular cell cycle profile, likely by interaction with HSPA1 and HSPA8. Further studies would be required to disclose the relevance of NOA36-EHR interaction in this context.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Choque Térmico HSC70 , Resposta ao Choque Térmico , Chaperonas Moleculares , Humanos , Ciclo Celular , Divisão Celular , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Chaperonas Moleculares/genética , Proteínas de Ligação a DNA/genética
14.
Mol Immunol ; 156: 170-176, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36933345

RESUMO

AIMS: In recent decades, Cinnamomum camphora have gradually become the main street trees in Shanghai. This study aims to investigate the allergenicity of camphor pollen. MAIN METHODS: A total of 194 serum samples from patients with respiratory allergy were collected and analyzed. Through protein profile identification and bioinformatics analysis, we hypothesized that heat shock cognate protein 2-like protein (HSC70L2) is the major potential allergenic protein in camphor pollen. Recombinant HSC70L2 (rHSC70L2) was expressed and purified, and a mouse model of camphor pollen allergy was established by subcutaneous injection of total camphor pollen protein extract (CPPE) and rHSC70L2. KEY FINDINGS: Specific IgE was found in the serum of 5 patients in response to camphor pollen and three positive bands were identified by Western blotting. Enzyme-linked immunosorbent assay (ELISA), Immune dot blot and Western blot experiments confirmed that CPPE and rHSC70L2 can cause allergies in mice. Moreover, rHSC70L2 induces polarization of peripheral blood CD4+ T cells to Th2 cells in patients with respiratory allergies and mice with camphor pollen allergy. Finally, we predicted the T cell epitope of the HSC70L2 protein, and through the mouse spleen T cell stimulation experiment, we found that the 295EGIDFYSTITRARFE309 peptide induced T cells differentiation to Th2 and macrophages differentiation to the alternatively activated (M2) state. Moreover, 295EGIDFYSTITRARFE309 peptide increased the serum IgE levels in mice. SIGNIFICANCE: The identification of HSC70L2 protein can provide novel diagnostic and therapeutic targets for allergies caused by camphor pollen.


Assuntos
Asma , Hipersensibilidade , Rinite Alérgica Sazonal , Animais , Camundongos , Cânfora , Proteínas de Choque Térmico HSC70 , Imunoglobulina E , China , Pólen , Alérgenos , Peptídeos
15.
J Virol ; 97(4): e0012823, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36975782

RESUMO

Coronavirus membrane protein is a major component of the viral envelope and plays a central role in the viral life cycle. Studies of the coronavirus membrane protein (M) have mainly focused on its role in viral assembly and budding, but whether M protein is involved in the initial stage of viral replication remains unclear. In this study, eight proteins in transmissible gastroenteritis virus (TGEV)-infected cells coimmunoprecipitated with monoclonal antibodies (MAb) against M protein in PK-15 cells, heat shock cognate protein 70 (HSC70), and clathrin were identified by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF MS). Further studies demonstrated that HSC70 and TGEV M colocalized on the cell surface in early stages of TGEV infection; specifically, HSC70 bound M protein through its substrate-binding domain (SBD) and preincubation of TGEV with anti-M serum to block the interaction of M and HSC70 reduced the internalization of TGEV, thus demonstrating that the M-HSC70 interaction mediates the internalization of TGEV. Remarkably, the process of internalization was dependent on clathrin-mediated endocytosis (CME) in PK-15 cells. Furthermore, inhibition of the ATPase activity of HSC70 reduced the efficiency of CME. Collectively, our results indicated that HSC70 is a newly identified host factor involved in TGEV infection. Taken together, our findings clearly illustrate a novel role for TGEV M protein in the viral life cycle and present a unique strategy used by HSC70 to promote TGEV infection in which the interaction with M protein directs viral internalization. These studies provide new insights into the life cycle of coronaviruses. IMPORTANCE TGEV is the causative agent of porcine diarrhea, a viral disease that economically affects the pig industry in many countries. However, the molecular mechanisms underlying viral replication remain incompletely understood. Here, we provide evidence of a previously undescribed role of M protein in viral replication during early stages. We also identified HSC70 as a new host factor affecting TGEV infection. We demonstrate that the interaction between M and HSC70 directs TGEV internalization in a manner dependent on CME, thus revealing a novel mechanism for TGEV replication. We believe that this study may change our understanding of the first steps of infection of cells with coronavirus. This study should facilitate the development of anti-TGEV therapeutic agents by targeting the host factors and may provide a new strategy for the control of porcine diarrhea.


Assuntos
Clatrina , Proteínas M de Coronavírus , Endocitose , Proteínas de Choque Térmico HSC70 , Vírus da Gastroenterite Transmissível , Internalização do Vírus , Vírus da Gastroenterite Transmissível/fisiologia , Clatrina/metabolismo , Proteínas M de Coronavírus/metabolismo , Linhagem Celular , Humanos , Animais , Replicação Viral
16.
Cancer Res ; 83(7): 1048-1061, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36745032

RESUMO

Hepatitis B virus (HBV) infection is a major driver of hepatocarcinogenesis. Ferroptosis is a type of iron-mediated cell death that can suppress liver transformation. Previous studies have linked HBV to ferroptosis in liver fibrosis and acute liver failure. However, whether ferroptosis is involved in HBV-mediated liver cancer is poorly understood. Here, we identified heat shock protein family A member 8 (HSPA8) as a crucial host factor that modulates HBV replication and ferroptosis in liver cancer. Hepatitis B X protein (HBx) upregulated HSPA8 by coactivating the transcription factor heat shock factor 1 (HSF1) in cells. HSPA8 enhanced HBV replication by recruiting hepatitis B core protein (HBc) to the HBV covalently closed circular DNA (cccDNA) minichromosome, forming a positive feedback loop. Moreover, HSPA8 suppressed ferroptosis in liver cancer cells by upregulating the expression of SLC7A11/GPX4 and decreasing erastin-mediated reactive oxygen species and Fe2+ accumulation in cells in vitro and in vivo. Inhibition of HSPA8 reduced the growth of HBV-positive liver tumors and increased sensitivity to erastin. In conclusion, HBx-elevated HSPA8 regulates both HBV replication and ferroptosis in liver cancer. Targeting HSPA8 could be a promising strategy for controlling HBV and hepatocarcinogenesis. SIGNIFICANCE: HBV-induced upregulation of HSPA8 promotes hepatocarcinogenesis by suppressing ferroptosis and stimulating HBV replication, identifying HSPA8 as a potential therapeutic target in liver cancer.


Assuntos
Ferroptose , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Células Hep G2 , DNA Circular/metabolismo , Replicação Viral/genética , Neoplasias Hepáticas/genética , Hepatite B/complicações , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo
17.
J Cell Physiol ; 238(4): 829-841, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36815383

RESUMO

Metastasis in breast cancer usually lead to the majority of deaths on clinical patients. Accordingly, diagnosis of metastasis at the early stage in breast cancer is important to improve the prognosis. We observed that Dicer protein levels are significant decrease in highly invasive breast cancer cells and usually correlated with poor clinical outcomes. Following, we aim to clarify the molecular regulatory mechanism of this phenomenon in breast cancer to provide a new therapeutic target. In this study, we obtained that Dicer expression correlated with metastasis and invasion without affect cell stability in breast cancer cells. Importantly, we identified the regulatory mechanism of Dicer protein degradation, the chaperone-mediated autophagy (CMA)-mediated degradation that is major mechanism to decrease Dicer protein expression and lead to cancer metastasis. We discovered that heat shock cognate 71-kDa protein (Hsc70) which as a CMA-related factor interacts with the CMA-targeting motif I333A/K334A on Dicer to promote degradation through CMA. Taken together, our findings hint that Dicer highly correlated with cancer metastasis, we reveal the tumor-promoting effect of CMA-mediated Dicer degradation in breast cancer.


Assuntos
Neoplasias da Mama , Autofagia Mediada por Chaperonas , RNA Helicases DEAD-box , Ribonuclease III , Feminino , Humanos , Autofagia/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Lisossomos/metabolismo , Proteólise , Metástase Neoplásica , RNA Helicases DEAD-box/metabolismo , Ribonuclease III/metabolismo
18.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835170

RESUMO

Fish sex determination can be affected by environmental temperature. This process relies on temperature-sensitive proteins such as heat shock proteins (HSPs). Our previous work found that heat shock cognate proteins (HSCs) may participate in high-temperature associated sex reversal of Chinese tongue sole (Cynoglossus semilaevis). However, the role of hsc genes in responding to high temperature and affecting sex determination/differentiation remains unclear. Here, by using C. semilaevis as model, we identified hsc70 and hsc70-like. hsc70 was abundant in the gonads with a testicular-higher expression at all gonadal development stages except for 6 months post fertilization (mpf). Intriguingly, hsc70-like showed higher expression in testes from 6 mpf on. Both long-term heat treatment during the temperature-sensitive sex-determining period and short-term heat stress at the end of this period caused different expression of hsc70/hsc70-like between sexes. The dual-luciferase assay results also suggested that these genes can respond to high temperature rapidly in vitro. Heat treatment of C. semilaevis testis cells overexpressed with hsc70/hsc70-like could affect the expression of sex-related genes sox9a and cyp19a1a. Our results indicated that hsc70 and hsc70-like were key regulators linking external high-temperature signals with sex differentiation in vivo and provide a new idea for understanding the mechanism by which high temperature affects sex determination/differentiation in teleosts.


Assuntos
Linguados , Linguado , Proteínas de Choque Térmico HSC70 , Processos de Determinação Sexual , Animais , Masculino , Proteínas de Peixes/genética , Linguados/genética , Linguado/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Choque Térmico HSC70/metabolismo , Processos de Determinação Sexual/genética
19.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768989

RESUMO

Complex immune contexture leads to resistance to immunotherapy in hepatocellular carcinoma (HCC), and the need for new potential biomarkers of immunotherapy in HCC is urgent. Histone chaperones are vital determinants of gene expression and genome stability that regulate tumor development. This study aimed to investigate the effect of histone chaperones on tumor immunity in HCC. Bioinformatics analyses were initially performed using The Cancer Genome Atlas (TCGA) database, and were validated using the Gene Expression Omnibus (GEO) database and the International Cancer Genome Consortium (ICGC) database. Immune-related histone chaperones were screened with the Spearman rank coefficient. Consensus clustering was utilized to divide the HCC samples into two clusters. ESTIMATE, CIBERSORT and ssGSEA analyses were performed to assess immune infiltration. The expression of immunomodulatory genes, chemokines and chemokine receptors was analyzed to evaluate sensitivity to immunotherapy. The differentially expressed genes (DEGs) were included in weighted gene coexpression network analysis (WGCNA) to identify the hub genes. Enrichment analyses were used to investigate the functions of the hub genes. The Kaplan-Meier method and log-rank test were conducted to draw survival curves. A Cox regression analysis was utilized to identify independent risk factors affecting prognosis. HSPA8 and DEK were screened out from 36 known histone chaperones based on their strongest correlation with the ESTIMATE score. Cluster 2, with high HSPA8 expression and low DEK expression, tended to have stronger immune infiltration and better sensitivity to immunotherapy than Cluster 1, with low HSPA8 expression and high DEK expression. Furthermore, WGCNA identified 12 hub genes closely correlated with immune infiltration from the DEGs of the two clusters, of which FBLN2 was proven to be an independent protective factor of HCC patients. HSPA8 and DEK are expected to be biomarkers for precisely predicting the effect of immunotherapy, and FBLN2 is expected to be a therapeutic target of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Imunoterapia , Complexo Antígeno-Anticorpo , Análise por Conglomerados , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Cromossômicas não Histona/genética , Proteínas Oncogênicas/genética , Proteínas de Choque Térmico HSC70
20.
Cell Death Differ ; 30(3): 647-659, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36182990

RESUMO

Inflammation leads to systemic osteoporosis or local bone destruction, however, the underlying molecular mechanisms are still poorly understood. In this study, we report that PRL2 is a negative regulator of osteoclastogenesis and bone absorption. Mice with PRL2 deficiency exhibit a decrease in bone volume and an increase in osteoclast numbers. PRL2 negatively regulates RANKL-induced reactive oxygen species production through the activation of RAC1, thus PRL2 deficient osteoclast precursors have both increased osteoclast differentiation ability and bone resorptive capacity. During inflammation, oxidized PRL2 is a selected substrate of HSC70 and conditions of oxidative stress trigger rapid degradation of PRL2 by HSC70 mediated endosomal microautophagy and chaperone-mediated autophagy. Ablation of PRL2 in mouse models of inflammatory bone disease leads to an increase in the number of osteoclasts and exacerbation of bone damage. Moreover, reduced PRL2 protein levels in peripheral myeloid cells are highly correlated with bone destruction in a mouse arthritis model and in human rheumatoid arthritis, while the autophagy inhibitor hydroxychloroquine blocked inflammation-induced PRL2 degradation and bone destruction in vivo. Therefore, our findings identify PRL2 as a new regulator in osteoimmunity, providing a link between inflammation and osteoporosis. As such, PRL2 is a potential therapeutic target for inflammatory bone disease and inhibition of HSC70 mediated autophagic degradation of PRL2 may offer new therapeutic tools for the treatment of inflammatory bone disease.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Humanos , Camundongos , Autofagia , Reabsorção Óssea/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Inflamação/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteoporose/metabolismo , Ligante RANK/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...