Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(2): 187-198, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38058218

RESUMO

Nucleoplasmin (NPM) histone chaperones regulate distinct processes in the nucleus and nucleolus. While intrinsically disordered regions (IDRs) are hallmarks of NPMs, it is not clear whether all NPM functions require these unstructured features. We assessed the importance of IDRs in a yeast NPM-like protein and found that regulation of rDNA copy number and genetic interactions with the nucleolar RNA surveillance machinery require the highly conserved FKBP prolyl isomerase domain, but not the NPM domain or IDRs. By contrast, transcriptional repression in the nucleus requires IDRs. Furthermore, multiple lysines in polyacidic serine/lysine motifs of IDRs are required for both lysine polyphosphorylation and NPM-mediated transcriptional repression. These results demonstrate that this NPM-like protein relies on IDRs only for some of its chromatin-related functions.


Assuntos
Chaperonas de Histonas , Lisina , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Nucleoplasminas/metabolismo , Lisina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Cancer Lett ; 581: 216498, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38029539

RESUMO

Abnormal regulation of RNA binding proteins (RBPs) plays an essential role in tumorigenesis and progression, but their functions and mechanisms remain largely elusive. Previously, we reported that Pumilio 1 (PUM1), a RBP, could regulate glycolysis metabolism and promote the progression of gastric cancer (GC). However, the role of PUM1 in tumor immune regulation remains largely elusive. In this study, we report that PUM1 induces immune escape through posttranscriptional regulation of PD-L1 in GC. We used multiplexed immunohistochemistry to analyze the correlation between PUM1 expression and immune microenvironment in GC. The effect of PUM1 deficiency on tumor killing of T cells was examined in vitro and in vivo. The molecular mechanism of PUM1 was evaluated via RNA immunoprecipitation, chromatin immunoprecipitation, Western blot, co-immunoprecipitation, and RNA stability assays. Clinically, elevated PUM1 expression is associated with high-expression of PD-L1, lack of CD8+ T cell infiltration and poor prognosis in GC patients. PUM1 positively regulates PD-L1 expression and PUM1 reduction enhances T cell killing of tumors. Mechanistically, PUM1 directly binds to nucleophosmin/nucleoplasmin 3 (NPM3) mRNA and stabilizes NPM3. NPM3 interacts with NPM1 to promote NPM1 translocation into the nucleus and increase the transcription of PD-L1. PUM1 inhibits the anti-tumor activity of T cells through the PUM1/NPM3/PD-L1 axis. In summary, this study reveals the critical post-transcriptional effect of PUM1 in the modulation of PD-L1-dependent GC immune escape, thus provides a novel indicator and potential therapeutic target for cancer immunotherapy.


Assuntos
Neoplasias Gástricas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias Gástricas/patologia , Microambiente Tumoral
3.
Fish Shellfish Immunol ; 142: 109153, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821004

RESUMO

To decipher the functional characterization of Nucleophosmin 1a (NPM1a) from grass carp (Ctenopharyngodon idellus) (CiNPM1a), its cDNA was cloned and bioinformatic analysis were conducted. The full-length cDNA sequence of CiNPM1a is 1732 bp, which encodes 307 amino acids. CiNPM1a contains conserved domains of Nucleoplasmin domain, NPM1-C terminal domain, as well as nuclear localization signals, nuclear export signal (NES) and acid patches. There are 52 and 20 consensus amino acids exist in the Nucleoplasmin domain and the NPM1-C terminal domain of all blasted species. In addition, the immune function of CiNPM1a were analyzed. The Ciirf7, Ciifn1 and Ciifn2 transcription was inhibited, whereas the vp2 and vp7 expressions were enhanced in CiNPM1a overexpressing cells after GCRV infection (P < 0.05). Moreover, the Ciirf7, Ciifn1 and Ciifn2 mRNA levels were significantly up-regulated, but the vp2 and vp7 expressions were significantly down-regulated in CiNPM1a knockdown cells after infection. This indicated that CiNPM1a played negative roles in the induction of Type I IFN reaction and thus the GCRV replication. Finally, the NES domain that affect the nucleous-cytoplasm shuttle and the replication of GCRV were investigated. The deletion of NES1 and NES(1 + 2+3) absolutely limited the transloacation of CiNPM1a△NES1 protein and CiNPM1a △NES(1 + 2+3) protein to cytoplasm after infection, and the deletion of NES2 resulted in partially limitation of protein shuttle. In general, Ciirf3, Ciirf7, Ciifn1 and Ciifn2 expressions were enhanced in the CiNPM1a△NES1, CiNPM1a△NES2 and CiNPM1a△NES3 overexpression groups, and the deletion of functional domains in CiNPM1a led to significantly reduction of the vp2 and vp7 replication. The results indicated that CiNPM1a may be a target molecular for GCRV infection curation, and a candidate molecular for resistance strain breeding of grass carp.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , DNA Complementar , Nucleofosmina , Nucleoplasminas , Carpas/metabolismo , Citoplasma/metabolismo , Aminoácidos , Proteínas de Peixes
4.
Hereditas ; 160(1): 27, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254219

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide, and despite recent advances in targeted therapies and immunotherapies, the clinical benefit remains limited. Therefore, there is an urgent need to further investigate the molecular mechanisms underlying lung cancer. The aim of this study was to investigate the expression and function of NPM3 in the tumor microenvironment of lung adenocarcinoma (LUAD). METHODS: We utilized bioinformatics tools and databases, including UALCAN, GEPIA2, HPA, and Sangerbox, to analyze NPM3 expression in LUAD samples and its association with prognosis and mutational landscape. NPM3 expression in various cell types was assessed at the single cell level using the TISCH database. We also used algorithms such as TIMER and EPIC to explore the crosstalk between NPM3 expression and immune features. KEGG enrichment analysis was performed to identify potential signaling pathways of NPM3. Finally, we employed siRNA knockdown strategy to investigate the effect of NPM3 on LUAD cell proliferation and migration in vitro. RESULTS: NPM3 was significantly upregulated in LUAD tissues and was strongly associated with poor prognosis and TP53 gene mutations. Single-cell sequencing analysis revealed that NPM3 was expressed in immune cells (dendritic cells and monocytes/macrophages) in the tumor microenvironment. Moreover, NPM3 expression was negatively associated with immune B cell and CD4 T cell infiltration, as well as with several immune-related genes (including CCL22, CXCR2, CX3CR1, CCR6, HLA-DOA, HLA-DQA2). KEGG enrichment analysis indicated that NPM3 expression was associated with cell cycle, CAMs, and NSCLC pathway genes. Finally, in vitro experiments showed that NPM3 knockdown inhibited LUAD cell proliferation and migration in NCI-H1299 and SPC-A1 cells, and suppressed the expression of CCNA2 and MAD2L1. CONCLUSION: Elevated NPM3 expression predicts poor clinical outcome and an immunosuppressive microenvironment in LUAD tissues. NPM3 promotes LUAD progression by promoting cell proliferation and migration, and targeting NPM3 may represent a novel therapeutic strategy for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Nucleoplasminas , Humanos , Adenocarcinoma de Pulmão/genética , Divisão Celular , Proliferação de Células , Neoplasias Pulmonares/genética , Prognóstico , Microambiente Tumoral , Nucleoplasminas/genética
5.
Methods Mol Biol ; 2577: 161-173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36173572

RESUMO

Sperm chromatin compaction is physiologically essential for sperm to acquire the fertility. However, this unique structure composed of protamines makes us unable to solubilize the chromatin due to its resistance to sonication and enzymes usually used for chromatin fragmentation in somatic cells. Even when intense enzymatic treatment is applied, it appears to solubilize only certain portions of sperm chromatin presumably because of the heterogeneous properties. To overcome this issue, we previously developed a method to treat the sperm with recombinant nucleoplasmin, a protamine remover in fertilized embryos, followed by sonication. The nucleoplasmin treatment dramatically increased the efficiency of sperm chromatin solubilization, while a relatively large amount of recombinant nucleoplasmin was required. Here, we describe an improvement of nucleoplasmin method with a less amount of recombinant protein and a shorter reaction time.


Assuntos
Cromatina , Proteínas Nucleares , Animais , Cromatina/genética , Cromatina/metabolismo , Masculino , Camundongos , Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , Fosfoproteínas/metabolismo , Protaminas , Proteínas Recombinantes/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo
6.
World J Surg Oncol ; 20(1): 350, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280841

RESUMO

BACKGROUND: Malignant peritoneal mesothelioma (MPM) is a rare malignant tumor with a high mortality rate and extremely poor prognosis. In-depth pathological analysis is essential to assess tumor biological behaviors and explore potential therapeutic targets of MPM. Nucleoplasmin 2 (NPM2) is a molecular chaperone that binds histones and may play a key role in the development and progression of tumors. This study aimed to analyze the correlation between the expression level of NPM2 and the main clinicopathological characteristics and prognosis of MPM. METHODS: Ninety-two postoperative specimens from MPM patients following cytoreductive surgery were collected. Postoperative specimens were stained with immunohistochemistry. The expression level of NPM2 was quantitatively analyzed by QuPath-0.3.2 software. Univariate and multivariate analyses were conducted to investigate the correlation between NPM2 expression and other conventional clinicopathological characteristics. RESULTS: Among the 92 MPM patients, there were 47 males (48.9%) and 45 females (51.1%), with a median age of 56 (range: 24-73). There were 70 (76.0%) cases with loss of NPM2 protein expression, 11 (12.0%) cases with low expression, and 11 (12.0%) cases with high expression. Univariate analysis showed that NPM2 protein expression level (negative vs. low expression vs. high expression) was negatively correlated with the following three clinicopathological factors: completeness of cytoreduction (CC) score, vascular tumor emboli, and serious adverse events (SAEs) (all P < 0.05). Multivariate analysis showed that NPM2 protein expression level (negative vs. low expression vs. high expression) was independently negatively correlated with the following two clinicopathological factors: CC score [odds ratio (OR) = 0.317, 95% CI: 0.317-0.959, P = 0.042] and vascular tumor emboli (OR = 0.092, 95% CI = 0.011-0.770, P = 0.028). Survival analysis showed that loss of NPM2 protein expression (negative vs. positive) was associated with poor prognosis of MPM. CONCLUSIONS: Loss of NPM2 expression is a potential immunohistochemical marker for MPM.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Nucleoplasminas , Neoplasias Peritoneais , Neoplasias Pleurais , Neoplasias Vasculares , Feminino , Humanos , Masculino , Biomarcadores , Histonas , Neoplasias Pulmonares/diagnóstico , Mesotelioma Maligno/diagnóstico , Células Neoplásicas Circulantes , Nucleoplasminas/metabolismo , Neoplasias Peritoneais/diagnóstico , Neoplasias Pleurais/diagnóstico , Prognóstico , Neoplasias Vasculares/diagnóstico , Adulto , Pessoa de Meia-Idade , Idoso
7.
Plant Cell ; 34(12): 4760-4777, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36069647

RESUMO

Histone acetyltransferase (HAT)- and histone deacetylase (HDAC)-mediated histone acetylation and deacetylation regulate nucleosome dynamics and gene expression. HDACs are classified into different families, with HD-tuins or HDTs being specific to plants. HDTs show some sequence similarity to nucleoplasmins, the histone chaperones that aid in binding, storing, and loading H2A/H2B dimers to assemble nucleosomes. Here, we solved the crystal structure of the N-terminal domain (NTD) of all four HDTs (HDT1, HDT2, HDT3, and HDT4) from Arabidopsis (Arabidopsis thaliana). The NTDs form a nucleoplasmin fold, exist as pentamers in solution, and are resistant to protease treatment, high temperature, salt, and urea conditions. Structurally, HDTs do not form a decamer, unlike certain classical nucleoplasmins. The HDT-NTD requires an additional A2 acidic tract C-terminal to the nucleoplasmin domain for interaction with histone H3/H4 and H2A/H2B oligomers. We also report the in-solution structures of HDT2 pentamers in complex with histone oligomers. Our study provides a detailed structural and in vitro functional characterization of HDTs, revealing them to be nucleoplasmin family histone chaperones. The experimental confirmation that HDTs are nucleoplasmins may spark new interest in this enigmatic family of proteins.


Assuntos
Arabidopsis , Histonas , Nucleoplasminas/química , Nucleoplasminas/genética , Nucleoplasminas/metabolismo , Histonas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Nucleossomos/metabolismo , Chaperonas de Histonas/genética , Arabidopsis/genética , Arabidopsis/metabolismo
8.
Biochim Biophys Acta Gene Regul Mech ; 1865(7): 194872, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058470

RESUMO

The nucleoplasmin family of histone chaperones is a key player in governing the dynamic architecture of chromatin, thereby regulating various DNA-templated processes. The crystal structure of the N-terminal domain of Arabidopsis thaliana FKBP43 (AtFKBP43), an FK506-binding immunophilin protein, revealed a characteristic nucleoplasmin fold, thus confirming it to be a member of the FKBP nucleoplasmin class. Small-Angle X-ray Scattering (SAXS) analyses confirmed its pentameric nature in solution, and additional studies confirmed the nucleoplasmin fold to be highly stable. Unlike its homolog AtFKBP53, the AtFKBP43 nucleoplasmin core domain could not interact with histones and required the acidic arms, C-terminal to the core, for histone association. However, SAXS generated low-resolution envelope structure, ITC, and AUC results revealed that an AtFKBP43 pentamer with C-terminal extensions interacts with H2A/H2B dimer and H3/H4 tetramer in an equimolar ratio, like AtFKBP53. Put together, AtFKBP43 belongs to a hitherto unreported subclass of FKBP nucleoplasmins that requires the C-terminal acidic stretches emanating from the core domain for histone interaction.


Assuntos
Arabidopsis , Histonas , Arabidopsis/genética , Cromatina/metabolismo , DNA/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Nucleoplasminas/metabolismo , Espalhamento a Baixo Ângulo , Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Difração de Raios X
9.
World J Surg Oncol ; 20(1): 141, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490253

RESUMO

BACKGROUND: This review systematically summarizes gene biology features and protein structure of nucleoplasmin2 (NPM2) and the relationship between NPM2 and malignant peritoneal mesothelioma (MPM), in order to explore the molecular pathological mechanism of MPM and explore new therapeutic targets. METHODS: NCBI PubMed database was used for the literature search. NCBI Gene and Protein databases, Ensembl Genome Browser, UniProt, and RCSB PDB database were used for gene and protein review. Three online tools (Consurf, DoGSiteScorer, and ZdockServer), the GEPIA database, and the Cancer Genome Atlas were used to analyze bioinformatics characteristics for NPM2 protein. RESULTS: The main structural domains of NPM2 protein include the N-terminal core region, acidic region, and motif and disordered region. The N-terminal core region, involved in histone binding, is the most conserved domain in the nucleoplasmin (NPM) family. NPM2 with a large acidic tract in its C-terminal tail (NPM2-A2) is able to bind histones and form large complexes. Bioinformatics results indicated that NPM2 expression was correlated with the pathology of multiple tumors. Among mesothelioma patients, 5-year survival of patients with low-NPM2-expression was significantly higher than that of the high-NPM2-expression patients. NPM2 can facilitate the formation of histone deacetylation. NPM2 may promote histone deacetylation and inhibit the related-gene transcription, thus leading to abnormal proliferation, invasion, and metastasis of MPM. CONCLUSION: NPM2 may play a key role in the development and progression of MPM.


Assuntos
Medicina Clínica , Mesotelioma , Biologia , Histonas/genética , Histonas/metabolismo , Humanos , Mesotelioma/genética , Nucleoplasminas/genética , Nucleoplasminas/metabolismo
10.
Head Neck ; 42(1): 5-13, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571325

RESUMO

BACKGROUND: Nucleophosmin/nucleoplasmin family 1 (NPM1) has broad physiological functions, such as DNA replication, transcription, ribosome biogenesis, and centrosome replication. This study explored the clinicopathological importance of NPM1 as a prognostic marker for oral squamous cell carcinoma (OSCC). METHODS: We collected specimens from 96 OSCC, 45 oral epithelial dysplasia (OED), and 29 normal oral mucosa (NOM). NPM1 expression was analyzed via immunohistochemistry. Correlations between NPM1and clinical parameters were analyzed using Student t test, chi-squared test, and Kaplan-Meier product-limit method. RESULTS: The NPM1 labeling indices (LIs) were significantly higher in OSCCs than in NOM and oral OED. Higher NPM1 expression was significantly correlated with larger tumor size, nodal metastasis, and advanced clinical stage. Multivariate analysis revealed that higher NPM1 LIs were an unfavorable independent factor for survival. CONCLUSIONS: Upregulated NPM1 is an independent biomarker of poor prognosis and NPM1 inhibitors may be promising in molecular targeted therapy against OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Proteínas Nucleares/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Progressão da Doença , Humanos , Mucosa Bucal , Nucleofosmina , Nucleoplasminas , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Taiwan
11.
Nucleic Acids Res ; 48(3): 1531-1550, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31807785

RESUMO

FKBP53 is one of the seven multi-domain FK506-binding proteins present in Arabidopsis thaliana, and it is known to get targeted to the nucleus. It has a conserved PPIase domain at the C-terminus and a highly charged N-terminal stretch, which has been reported to bind to histone H3 and perform the function of a histone chaperone. To better understand the molecular details of this PPIase with histone chaperoning activity, we have solved the crystal structures of its terminal domains and functionally characterized them. The C-terminal domain showed strong PPIase activity, no role in histone chaperoning and revealed a monomeric five-beta palm-like fold that wrapped over a helix, typical of an FK506-binding domain. The N-terminal domain had a pentameric nucleoplasmin-fold; making this the first report of a plant nucleoplasmin structure. Further characterization revealed the N-terminal nucleoplasmin domain to interact with H2A/H2B and H3/H4 histone oligomers, individually, as well as simultaneously, suggesting two different binding sites for H2A/H2B and H3/H4. The pentameric domain assists nucleosome assembly and forms a discrete complex with pre-formed nucleosomes; wherein two pentamers bind to a nucleosome.


Assuntos
Proteínas de Arabidopsis/ultraestrutura , Histonas/genética , Chaperonas Moleculares/ultraestrutura , Nucleoplasminas/química , Proteínas de Ligação a Tacrolimo/ultraestrutura , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Montagem e Desmontagem da Cromatina/genética , Cristalografia por Raios X , Histonas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleoplasminas/genética , Nucleossomos/química , Nucleossomos/genética , Peptidilprolil Isomerase/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Dobramento de Proteína , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/genética
12.
J Cell Biol ; 218(12): 4063-4078, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31636119

RESUMO

How nuclear size is regulated relative to cell size is a fundamental cell biological question. Reductions in both cell and nuclear sizes during Xenopus laevis embryogenesis provide a robust scaling system to study mechanisms of nuclear size regulation. To test if the volume of embryonic cytoplasm is limiting for nuclear growth, we encapsulated gastrula-stage embryonic cytoplasm and nuclei in droplets of defined volume using microfluidics. Nuclei grew and reached new steady-state sizes as a function of cytoplasmic volume, supporting a limiting component mechanism of nuclear size control. Through biochemical fractionation, we identified the histone chaperone nucleoplasmin (Npm2) as a putative nuclear size effector. Cellular amounts of Npm2 decrease over development, and nuclear size was sensitive to Npm2 levels both in vitro and in vivo, affecting nuclear histone levels and chromatin organization. We propose that reductions in cell volume and the amounts of limiting components, such as Npm2, contribute to developmental nuclear size scaling.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Nucleoplasminas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Tamanho Celular , Cromatina/metabolismo , Citosol , Desenvolvimento Embrionário , Histonas/metabolismo , Microfluídica , Neoplasias/metabolismo , Oócitos/fisiologia
13.
Sci Rep ; 9(1): 9487, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263230

RESUMO

Nucleoplasmin (NP) is a pentameric histone chaperone that regulates the condensation state of chromatin in different cellular processes. We focus here on the interaction of NP with the histone octamer, showing that NP could bind sequentially the histone components to assemble an octamer-like particle, and crosslinked octamers with high affinity. The three-dimensional reconstruction of the NP/octamer complex generated by single-particle cryoelectron microscopy, revealed that several intrinsically disordered tail domains of two NP pentamers, facing each other through their distal face, encage the histone octamer in a nucleosome-like conformation and prevent its dissociation. Formation of this complex depended on post-translational modification and exposure of the acidic tract at the tail domain of NP. Finally, NP was capable of transferring the histone octamers to DNA in vitro, assembling nucleosomes. This activity may have biological relevance for processes in which the histone octamer must be rapidly removed from or deposited onto the DNA.


Assuntos
Proteínas Aviárias/química , DNA/química , Histonas/química , Nucleoplasminas/química , Nucleossomos/química , Proteínas de Xenopus/química , Animais , Proteínas Aviárias/metabolismo , Galinhas , DNA/metabolismo , Histonas/metabolismo , Nucleoplasminas/metabolismo , Nucleossomos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis
14.
Int J Dev Biol ; 63(3-4-5): 105-112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058290

RESUMO

Mammalian oocytes/zygotes contain atypical nucleoli that are composed exclusively of a dense fibrillar material. It has been commonly accepted that these nucleoli serve as a repository of components that are used later on, as the embryo develops, for the construction of typical tripartite nucleoli. Indeed, when nucleoli were removed from immature oocytes (enucleolation) and these oocytes were then matured, fertilized or parthenogenetically activated, development of the produced embryos ceased after one or two cleavages with no detectable nucleoli in nuclei. This indicated that zygotic nucleoli originate exclusively from oocytes, i.e. are maternally inherited. Recently published results, however, do not support this developmental biology dogma and demonstrate that maternal nucleoli in one-cell stage embryos are necessary only during a very short time period after fertilization when they serve as a major heterochromatin organizing structures. Nevertheless, it still remains to be determined, which other functions/roles the atypical oocyte/zygote nucleoli eventually have.


Assuntos
Nucléolo Celular/fisiologia , Heterocromatina/fisiologia , Oócitos/fisiologia , Zigoto/fisiologia , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Fertilização , Humanos , Herança Materna , Camundongos , Nucleoplasminas/genética , Oócitos/ultraestrutura , Fatores de Tempo
15.
Mol Biol Cell ; 30(5): 591-606, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625028

RESUMO

The nucleolus is a membraneless organelle of the nucleus and the site of rRNA synthesis, maturation, and assembly into preribosomal particles. The nucleolus, organized around arrays of rRNA genes (rDNA), dissolves during prophase of mitosis in metazoans, when rDNA transcription ceases, and reforms in telophase, when rDNA transcription resumes. No such dissolution and reformation cycle exists in budding yeast, and the precise course of nucleolar segregation remains unclear. By quantitative live-cell imaging, we observed that the yeast nucleolus is reorganized in its protein composition during mitosis. Daughter cells received equal shares of preinitiation factors, which bind the RNA polymerase I promoter and the rDNA binding barrier protein Fob1, but only about one-third of RNA polymerase I and the processing factors Nop56 and Nsr1. The distribution bias was diminished in nonpolar chromosome segregation events observable in dyn1 mutants. Unequal distribution, however, was enhanced by defects in RNA polymerase I, suggesting that rDNA transcription supports nucleolar segregation. Indeed, quantification of pre-rRNA levels indicated ongoing rDNA transcription in yeast mitosis. These data, together with photobleaching experiments to measure nucleolar protein dynamics in anaphase, consolidate a model that explains the differential partitioning of nucleolar components in budding yeast mitosis.


Assuntos
Nucléolo Celular/metabolismo , Mitose , Saccharomycetales/citologia , Saccharomycetales/metabolismo , Anáfase , Cromatina/metabolismo , Segregação de Cromossomos , DNA Ribossômico/genética , Modelos Biológicos , Mutação/genética , Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , RNA Polimerase I/metabolismo , Precursores de RNA/metabolismo , Transcrição Gênica
16.
BMC Evol Biol ; 18(1): 167, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419815

RESUMO

BACKGROUND: Nucleoplasmin 2 (npm2) is an essential maternal-effect gene that mediates early embryonic events through its function as a histone chaperone that remodels chromatin. Recently, two npm2 (npm2a and npm2b) genes have been annotated in zebrafish. Thus, we examined the evolution of npm2a and npm2b in a variety of vertebrates, their potential phylogenetic relationships, and their biological functions using knockout models via the CRISPR/cas9 system. RESULTS: We demonstrated that the two npm2 duplicates exist in a wide range of vertebrates, including sharks, ray-finned fish, amphibians, and sauropsids, while npm2a was lost in coelacanth and mammals, as well as some specific teleost lineages. Using phylogeny and synteny analyses, we traced their origins to the early stages of vertebrate evolution. Our findings suggested that npm2a and npm2b resulted from an ancient local gene duplication, and their functions diverged although key protein domains were conserved. We then investigated their functions by examining their tissue distribution in a wide variety of species and found that they shared ovarian-specific expression, a key feature of maternal-effect genes. We also demonstrated that both npm2a and npm2b are maternally-inherited transcripts in vertebrates, and that they play essential, but distinct, roles in early embryogenesis using zebrafish knockout models. Both npm2a and npm2b function early during oogenesis and may play a role in cortical granule function that impact egg activation and fertilization, while npm2b is also involved in early embryogenesis. CONCLUSION: These novel findings will broaden our knowledge on the evolutionary history of maternal-effect genes and underlying mechanisms that contribute to vertebrate reproductive success. In addition, our results demonstrate the existence of a newly described maternal-effect gene, npm2a, that contributes to egg competence, an area that still requires further comprehension.


Assuntos
Peixes/genética , Genes Duplicados , Nucleoplasminas/genética , Animais , Sequência Conservada/genética , Evolução Molecular , Feminino , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma , Humanos , Nucleoplasminas/metabolismo , Peptídeos/química , Filogenia , Domínios Proteicos , Sintenia/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Nucleic Acids Res ; 46(21): 11274-11286, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30357352

RESUMO

The evolutionarily conserved nucleoplasmin family of histone chaperones has two paralogues in Drosophila, named Nucleoplasmin-Like Protein (NLP) and Nucleophosmin (NPH). NLP localizes to the centromere, yet molecular underpinnings of this localization are unknown. Moreover, similar to homologues in other organisms, NLP forms a pentamer in vitro, but the biological significance of its oligomerization has not been explored. Here, we characterize the oligomers formed by NLP and NPH in vivo and find that oligomerization of NLP is required for its localization at the centromere. We can further show that oligomerization-deficient NLP is unable to bind the centromeric protein Hybrid Male Rescue (HMR), which in turn is required for targeting the NLP oligomer to the centromere. Finally, using super-resolution microscopy we find that NLP and HMR largely co-localize in domains that are immediately adjacent to, yet distinct from centromere domains defined by the centromeric histone dCENP-A.


Assuntos
Proteína Centromérica A/química , Centrômero/química , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Proteínas Nucleares/química , Nucleoplasminas/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Cromatina/química , Cromatina/metabolismo , Clonagem Molecular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Expressão Gênica , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Nucleoplasminas/genética , Nucleoplasminas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
Biochim Biophys Acta Gene Regul Mech ; 1861(8): 743-751, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30012467

RESUMO

Fertilization requires decondensation of promatine-condensed sperm chromatin, a dynamic process serving as an attractive system for the study of chromatin reprogramming. Nucleoplasmin is a key factor in regulating nucleosome assembly as a chaperone during fertilization process. However, knowledge on nucleoplasmin in chromatin formation remains elusive. Herein, magnetic tweezers (MT) and a chromatin assembly system were used to study the nucleoplasmin-mediated DNA decondensation/condensation at the single-molecular level in vitro. We found that protamine induces DNA condensation in a stepwise manner. Once DNA was condensed, nucleoplasmin, polyglutamic acid, and RNA could remove protamine from the DNA at different rates. The affinity binding of the different polyanions with protamine suggests chaperone-mediated chromatin decondensation activity occurs through protein-protein interactions. After decondensation, both RNA and polyglutamic acid prevented the transfer of histones onto the naked DNA. In contrast, nucleoplasmin is able to assist the histone transfer process, even though it carries the same negative charge as RNA and polyglutamic acid. These observations imply that the chaperone effects of nucleoplasmin during the decondensation/condensation process may be driven by specific spatial configuration of its acidic pentamer structure, rather than by electrostatic interaction. Our findings offer a novel molecular understanding of nucleoplasmin in sperm chromatin decondensation and subsequent developmental chromatin reprogramming at individual molecular level.


Assuntos
DNA/química , Nucleoplasminas/metabolismo , Animais , DNA/metabolismo , Histonas/metabolismo , Cinética , Ácido Poliglutâmico/metabolismo , Protaminas/metabolismo , RNA/metabolismo , Ressonância de Plasmônio de Superfície , Xenopus laevis
19.
Cell Rep ; 23(13): 3920-3932, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949774

RESUMO

The question of whether retained histones in the sperm genome localize to gene-coding regions or gene deserts has been debated for years. Previous contradictory observations are likely caused by the non-uniform sensitivity of sperm chromatin to micrococcal nuclease (MNase) digestion. Sperm chromatin has a highly condensed but heterogeneous structure and is composed of 90%∼99% protamines and 1%∼10% histones. In this study, we utilized nucleoplasmin (NPM) to improve the solubility of sperm chromatin by removing protamines in vitro. NPM treatment efficiently solubilized histones while maintaining quality and quantity. Chromatin immunoprecipitation sequencing (ChIP-seq) analyses using NPM-treated sperm demonstrated the predominant localization of H4 to distal intergenic regions, whereas modified histones exhibited a modification-dependent preferential enrichment in specific genomic elements, such as H3K4me3 at CpG-rich promoters and H3K9me3 in satellite repeats, respectively, implying the existence of machinery protecting modified histones from eviction.


Assuntos
Histonas/metabolismo , Espermatozoides/metabolismo , Animais , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Ilhas de CpG , Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Repetições de Microssatélites/genética , Nucleoplasminas/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Protaminas/metabolismo
20.
Nat Commun ; 8(1): 2215, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263320

RESUMO

Nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowed us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.


Assuntos
Histonas/metabolismo , Nucleoplasminas/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Cromatina , Cristalografia por Raios X , Chaperonas de Histonas/metabolismo , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Nucleossomos/metabolismo , Ligação Proteica , Espalhamento a Baixo Ângulo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...