Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
PLoS One ; 19(1): e0296790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38227598

RESUMO

SpinoCerebellar Ataxia type 7 (SCA7) is an inherited disorder caused by CAG triplet repeats encoding polyglutamine expansion in the ATXN7 protein, which is part of the transcriptional coactivator complex SAGA. The mutation primarily causes neurodegeneration in the cerebellum and retina, as well as several forebrain structures. The SCA7140Q/5Q knock-in mouse model recapitulates key disease features, including loss of vision and motor performance. To characterize the temporal progression of brain degeneration of this model, we performed a longitudinal study spanning from early to late symptomatic stages using high-resolution magnetic resonance imaging (MRI) and in vivo 1H-magnetic resonance spectroscopy (1H-MRS). Compared to wild-type mouse littermates, MRI analysis of SCA7 mice shows progressive atrophy of defined brain structures, with the striatum, thalamus and cortex being the first and most severely affected. The volume loss of these structures coincided with increased motor impairments in SCA7 mice, suggesting an alteration of the sensory-motor network, as observed in SCA7 patients. MRI also reveals atrophy of the hippocampus and anterior commissure at mid-symptomatic stage and the midbrain and brain stem at late stage. 1H-MRS of hippocampus, a brain region previously shown to be dysfunctional in patients, reveals early and progressive metabolic alterations in SCA7 mice. Interestingly, abnormal glutamine accumulation precedes the hippocampal atrophy and the reduction in myo-inositol and total N-acetyl-aspartate concentrations, two markers of glial and neuronal damage, respectively. Together, our results indicate that non-cerebellar alterations and glial and neuronal metabolic impairments may play a crucial role in the development of SCA7 mouse pathology, particularly at early stages of the disease. Degenerative features of forebrain structures in SCA7 mice correspond to current observations made in patients. Our study thus provides potential biomarkers that could be used for the evaluation of future therapeutic trials using the SCA7140Q/5Q model.


Assuntos
Ataxias Espinocerebelares , Humanos , Camundongos , Animais , Estudos Longitudinais , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxina-7/genética , Imageamento por Ressonância Magnética , Prosencéfalo/metabolismo , Espectroscopia de Ressonância Magnética , Atrofia/patologia
2.
Cells ; 12(23)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067163

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant inherited disease characterized by progressive ataxia and retinal degeneration. SCA7 belongs to a group of neurodegenerative diseases caused by an expanded CAG repeat in the disease-causing gene, resulting in aberrant polyglutamine (polyQ) protein synthesis. PolyQ ataxin-7 is prone to aggregate in intracellular inclusions, perturbing cellular processes leading to neuronal death in specific regions of the central nervous system (CNS). Currently, there is no treatment for SCA7; however, a promising approach successfully applied to other polyQ diseases involves the clearance of polyQ protein aggregates through pharmacological activation of autophagy. Nonetheless, the blood-brain barrier (BBB) poses a challenge for delivering drugs to the CNS, limiting treatment effectiveness. This study aimed to develop a polymeric nanocarrier system to deliver therapeutic agents across the BBB into the CNS. We prepared poly(lactic-co-glycolic acid) nanoparticles (NPs) modified with Poloxamer188 and loaded with rapamycin to enable NPs to activate autophagy. We demonstrated that these rapamycin-loaded NPs were successfully taken up by neuronal and glial cells, demonstrating high biocompatibility without adverse effects. Remarkably, rapamycin-loaded NPs effectively cleared mutant ataxin-7 aggregates in a SCA7 glial cell model, highlighting their potential as a therapeutic approach to fight SCA7 and other polyQ diseases.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxina-7/genética , Ataxina-7/metabolismo , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética , Neurônios/metabolismo , Neuroglia/metabolismo , Sirolimo
3.
Neurol Neurochir Pol ; 57(3): 310-313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283503

RESUMO

INTRODUCTION: We present the first two Polish families diagnosed with spinocerebellar ataxia type 7 (SCA7) and draw attention to cardiac involvement as a new potential manifestation of this disease. MATERIAL AND METHODS: Two well-documented kindreds are presented. RESULTS: The proband from Family 1 presented aged 54 years with vision worsening followed by progressive imbalance. Brain MRI demonstrated cerebellar atrophy. Genetic testing confirmed CAG repeat expansion (42/10) in ATXN7 gene. The proband from Family 2 developed imbalance at age 20, followed by progressive deterioration of vision. Brain MRI revealed cerebellar atrophy. Additionally, she developed chronic congestive heart failure and, at age 38, had cardiomyopathy with an ejection fraction of 20% and significant mitral and tricuspid regurgitation. Genetic analysis found abnormal CAG expansion in the ATXN7 (46/10). CONCLUSIONS AND CLINICAL IMPLICATIONS: Vision loss due to pigmentary retinal degeneration is the distinguishing feature of SCA7 and often the initial manifestation. Although SCA7 is one of the most common SCAs in Sweden, it has never been reported in neighbouring Poland. Until now, cardiac abnormalities have only been described in infantile-onset SCA7 with large CAG repeats. The observed cardiac involvement in Family 2 may be coincidental, albeit a new possible manifestation of SCA7 cannot be excluded.


Assuntos
Ataxias Espinocerebelares , Feminino , Humanos , Adulto Jovem , Adulto , Polônia , Ataxina-7/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Testes Genéticos , Atrofia
4.
Genetics ; 224(3)2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075097

RESUMO

Ataxin-7 maintains the integrity of Spt-Ada-Gcn5-Acetyltransferase (SAGA), an evolutionarily conserved coactivator in stimulating preinitiation complex (PIC) formation for transcription initiation, and thus, its upregulation or downregulation is associated with various diseases. However, it remains unknown how ataxin-7 is regulated that could provide new insights into disease pathogenesis and therapeutic interventions. Here, we show that ataxin-7's yeast homologue, Sgf73, undergoes ubiquitylation and proteasomal degradation. Impairment of such regulation increases Sgf73's abundance, which enhances recruitment of TATA box-binding protein (TBP) (that nucleates PIC formation) to the promoter but impairs transcription elongation. Further, decreased Sgf73 level reduces PIC formation and transcription. Thus, Sgf73 is fine-tuned by ubiquitin-proteasome system (UPS) in orchestrating transcription. Likewise, ataxin-7 undergoes ubiquitylation and proteasomal degradation, alteration of which changes ataxin-7's abundance that is associated with altered transcription and cellular pathologies/diseases. Collectively, our results unveil a novel UPS regulation of Sgf73/ataxin-7 for normal cellular health and implicate alteration of such regulation in diseases.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Ataxina-7/genética , Ataxina-7/metabolismo , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Histona Acetiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
PLoS One ; 17(10): e0275580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36251631

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease caused by a trinucleotide CAG repeat. SCA7 predominantly causes a loss of photoreceptors in the retina and Purkinje cells of the cerebellum. Severe infantile-onset SCA7 also causes renal and cardiac irregularities. Previous reports have shown that SCA7 results in increased susceptibility to DNA damage. Since DNA damage can lead to accumulation of senescent cells, we hypothesized that SCA7 causes an accumulation of senescent cells over the course of disease. A 140-CAG repeat SCA7 mouse model was evaluated for signs of disease-specific involvement in the kidney, heart, and cerebellum, tissues that are commonly affected in the infantile form. We found evidence of significant renal abnormality that coincided with an accumulation of senescent cells in the kidneys of SCA7140Q/5Q mice, based on histology findings in addition to RT-qPCR for the cell cycle inhibitors p16Ink4a and p21Cip1 and senescence-associated ß-galactosidase (SA-ßgal) staining, respectively. The Purkinje layer in the cerebellum of SCA7140Q/5Q mice also displayed SA-ßgal+ cells. These novel findings offer evidence that senescent cells accumulate in affected tissues and may possibly contribute to SCA7's specific phenotype.


Assuntos
Proteínas do Tecido Nervoso , Ataxias Espinocerebelares , Animais , Ataxina-7/genética , Modelos Animais de Doenças , Galactosidases , Camundongos , Proteínas do Tecido Nervoso/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Repetições de Trinucleotídeos
6.
Mol Neurobiol ; 59(8): 5236-5251, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689166

RESUMO

Spinocerebellar ataxia type 7 (SCA7) and other polyglutamine (polyQ) diseases are caused by expansions of polyQ repeats in disease-specific proteins. Aggregation of the polyQ proteins resulting in various forms of cellular stress, that could induce the stress granule (SG) response, is believed to be a common pathological mechanism in these disorders. SGs can contribute to cell survival but have also been suggested to exacerbate disease pathology by seeding protein aggregation. In this study, we show that two SG-related proteins, TDP-43 and TIA1, are sequestered into the aggregates formed by polyQ-expanded ATXN7 in SCA7 cells. Interestingly, mutant ATXN7 also localises to induced SGs, and this association altered the shape of the SGs. In spite of this, neither the ability to induce nor to disassemble SGs, in response to arsenite stress induction or relief, was affected in SCA7 cells. Moreover, we could not observe any change in the number of ATXN7 aggregates per cell following SG induction, although a small, non-significant, increase in total aggregated ATXN7 material could be detected using filter trap. However, mutant ATXN7 expression in itself increased the speckling of the SG-nucleating protein G3BP1 and the SG response. Taken together, our results indicate that the SG response is induced, and although some key modulators of SGs show altered behaviour, the dynamics of SGs appear normal in the presence of mutant ATXN7.


Assuntos
DNA Helicases , Ataxias Espinocerebelares , Ataxina-7/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ataxias Espinocerebelares/genética , Grânulos de Estresse , Antígeno-1 Intracelular de Células T/metabolismo
7.
Thorac Cancer ; 13(11): 1597-1610, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445786

RESUMO

BACKGROUND: Circular RNAs (circRNAs) participate in the occurrence and progression of many cancers. CircRNA ataxin 7 (circATXN7) (circBase ID: hsa_circ_0066436) plays a promoting influence on gastric cancer progression. However, the biological role of circATXN7 in non-small cell lung cancer (NSCLC) is indistinct. METHODS: Levels of circATXN7, microRNA (miR)-7-5p, and profilin 2 (PFN2) mRNA were detected using quantitative real-time polymerase chain reaction (RT-qPCR). Proliferation, apoptosis, metastasis, and invasion were analyzed using cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays. Protein levels were analyzed using western blotting (WB) and immunohistochemistry (IHC). The relationship between circATXN7 or PFN2 and miR-7-5p was analyzed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The biological function of circATXN7 was verified by xenograft assay. RESULTS: CircATXN7 and PFN2 were highly expressed in NSCLC, whereas miR-7-5p expression had the opposite trend. CircATXN7 overexpression constrained apoptosis and promoted proliferation, metastasis, invasion, and epithelial-mesenchymal transition of NSCLC cells, but circATXN7 silencing played the opposing influence and repressed xenograft tumor growth in vivo. CircATXN7 served as a miR-7-5p sponge, and circATXN7 regulated malignant behaviors of NSCLC cells through sponging miR-7-5p. PFN2 acted as a miR-7-5p target. PFN2 silencing overturned the promoting effect of miR-7-5p inhibitor on NSCLC cell malignancy, while PFN2 overexpression reversed the inhibitory impact of miR-7-5p mimic on NSCLC cell malignancy. CONCLUSION: CircATXN7 accelerated the malignancy of NSCLC cells through adsorbing miR-7-5p and upregulating PFN2, offering evidence to support circATXN7 as a target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Ataxina-7/genética , Ataxina-7/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/genética , Regulação para Baixo , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Profilinas/genética , Profilinas/metabolismo , RNA Circular/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-34870541

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant hereditary neurodegenerative disease caused by the expansion of a CAG-repeat in the ataxin-7 (ATXN7) gene, usually characterized by progressive cerebellar ataxia and retinal dystrophy. We report the case of a 45-year-old woman presenting with a rapid-onset amyotrophic lateral sclerosis (ALS) phenotype associated with a 39-CAG-repeat expansion in ATXN7. This patient had neither ataxia nor retinal dystrophy, but she had an oculomotor cerebellar syndrome and a family history suggestive of SCA7. In SCA7, shorter expansions may be associated with less severe and incomplete clinical phenotypes, which could explain the patient's phenotype. Unknown genetic and environmental factors may also influence the patient's phenotype. We suggest that a pathological expansion in ATXN7 should be considered in cases of ALS-like phenotype, particularly when associated with oculomotor abnormalities or a family history of ataxia or blindness.


Assuntos
Esclerose Amiotrófica Lateral , Distrofias Retinianas , Ataxias Espinocerebelares , Esclerose Amiotrófica Lateral/complicações , Esclerose Amiotrófica Lateral/diagnóstico , Esclerose Amiotrófica Lateral/genética , Ataxina-7/genética , Feminino , Humanos , Fenótipo , Distrofias Retinianas/complicações , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
9.
Anticancer Drugs ; 33(1): e700-e710, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845164

RESUMO

Breast cancer is a frequent tumor threatening the health of women. Circular RNAs (circRNAs) play vital roles in cancer progression and chemoresistance. Herein, we mainly investigate the role and potential mechanism of circRNA ataxin 7 (circATXN7; circ_0066436) in breast cancer. RNA expression levels were detected via quantitative real-time PCR (qPCR), western blot and immunohistochemistry. Cell viability and half inhibitory concentration (IC50) of doxorubicin were assessed by cell counting kit-8 (CCK-8) method. Cell proliferation, migration and invasion were determined by CCK-8, 5-ethynyl-2'-deoxyuridine, colony formation and transwell assays. The binding relationship between microRNA-149-5p (miR-149-5p) and circATXN7 or homeobox A11 (HOXA11) was validated via dual-luciferase reporter assay and RNA immunoprecipitation assay. Xenograft assay was conducted to analyze the effect of circATXN7 on doxorubicin resistance of breast cancer. CircATXN7 and HOXA11 levels were enhanced, whereas miR-149-5p level was declined in breast cancer tissues and cells. CircATXN7 silencing suppressed breast cancer development and doxorubicin resistance. Additionally, circATXN7 upregulated HOXA11 via absorbing miR-149-5p, thereby inducing breast cancer cell progression and reducing doxorubicin sensitivity. Besides, depletion of circATXN7 enhanced doxorubicin sensitivity in vivo. Interference of circATXN7 inhibited breast cancer progression and doxorubicin resistance via mediating miR-149-5p/HOXA11 axis, which might provide a possible biomarker for breast cancer therapy.


Assuntos
Ataxina-7/farmacologia , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Homeodomínio/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , RNA Circular/farmacologia , Animais , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Ligação Proteica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Rep ; 37(9): 110062, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34852229

RESUMO

A common mechanism in inherited ataxia is a vulnerability of DNA damage. Spinocerebellar ataxia type 7 (SCA7) is a CAG-polyglutamine-repeat disorder characterized by cerebellar and retinal degeneration. Polyglutamine-expanded ataxin-7 protein incorporates into STAGA co-activator complex and interferes with transcription by altering histone acetylation. We performed chromatic immunoprecipitation sequencing ChIP-seq on cerebellum from SCA7 mice and observed increased H3K9-promoter acetylation in DNA repair genes, resulting in increased expression. After detecting increased DNA damage in SCA7 cells, mouse primary cerebellar neurons, and patient stem-cell-derived neurons, we documented reduced homology-directed repair (HDR) and single-strand annealing (SSA). To evaluate repair at endogenous DNA in native chromosome context, we modified linear amplification-mediated high-throughput genome-wide translocation sequencing and found that DNA translocations are less frequent in SCA7 models, consistent with decreased HDR and SSA. Altered DNA repair function in SCA7 may predispose the subject to excessive DNA damage, leading to neuron demise and highlights DNA repair as a therapy target.


Assuntos
Ataxina-7/metabolismo , Doenças Cerebelares/patologia , Reparo do DNA , Histonas/metabolismo , Neurônios/patologia , Peptídeos/genética , Ataxias Espinocerebelares/complicações , Acetilação , Animais , Ataxina-7/genética , Doenças Cerebelares/etiologia , Doenças Cerebelares/metabolismo , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Neurônios/metabolismo
11.
J Neurogenet ; 35(4): 370-380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34159894

RESUMO

Spinocerebellar Ataxia (SCA) is a heterogeneous adult-onset disorder with an autosomal dominant inheritance pattern mainly caused by triplet repeat expansions. Clinical diagnosis of SCA is based on phenotypic features followed by confirmation through molecular diagnosis. To identify status of repeat range in Indian SCA cases and provide extended family screening, we enrolled 70 clinical SCA suspects. For molecular diagnosis, multiplex PCR (M-PCR) was used for common Indian SCA subtypes 1, 2, 3, 6, 7, 10, 12 and 17. TP-PCR was further used in SCA2, 7 and 10 to identify larger expansions. Eighteen out of 70 SCA suspects (25%) were found to be positive for various SCA subtypes- (5 SCA1 (28%), 6 SAC2 (34%), 2 SCA3 (12%), 3 SCA7 (16%) and one each for SCA6 (1%) and SCA17 (1%) subtypes). Genetic counselling and extended family screening were offered to all positive cases and yielded additional nine cases. We have established M-PCR and TP-PCR to detect the CAG repeat expansion in SCA suspects. This method can confirm SCA subtypes in a reliable, rapid and cost-effective way. Genetic characterization of SCA-related genes has great clinical relevance, as it could provide additional information and guidance to clinicians and family members regarding prognosis.


Assuntos
Aconselhamento Genético , Ataxias Espinocerebelares , Adulto , Ataxina-7 , Ataxinas , Humanos , Proteínas do Tecido Nervoso , Ataxias Espinocerebelares/genética
12.
Dis Model Mech ; 14(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34160002

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant neurodegenerative disorder caused by a CAG repeat expansion in the coding region of the ataxin-7 gene. Infantile-onset SCA7 patients display extremely large repeat expansions (>200 CAGs) and exhibit progressive ataxia, dysarthria, dysphagia and retinal degeneration. Severe hypotonia, aspiration pneumonia and respiratory failure often contribute to death in affected infants. To better understand the features of respiratory and upper airway dysfunction in SCA7, we examined breathing and putative phrenic and hypoglossal neuropathology in a knock-in mouse model of early-onset SCA7 carrying an expanded allele with 266 CAG repeats. Whole-body plethysmography was used to measure awake spontaneously breathing SCA7-266Q knock-in mice at baseline in normoxia and during a hypercapnic/hypoxic respiratory challenge at 4 and 8 weeks, before and after the onset of disease. Postmortem studies included quantification of putative phrenic and hypoglossal motor neurons and microglia, and analysis of ataxin-7 aggregation at end stage. SCA7-266Q mice had profound breathing deficits during a respiratory challenge, exhibiting reduced respiratory output and a greater percentage of time in apnea. Histologically, putative phrenic and hypoglossal motor neurons of SCA7 mice exhibited a reduction in number accompanied by increased microglial activation, indicating neurodegeneration and neuroinflammation. Furthermore, intranuclear ataxin-7 accumulation was observed in cells neighboring putative phrenic and hypoglossal motor neurons in SCA7 mice. These findings reveal the importance of phrenic and hypoglossal motor neuron pathology associated with respiratory failure and upper airway dysfunction, which are observed in infantile-onset SCA7 patients and likely contribute to their early death.


Assuntos
Degeneração Retiniana , Ataxias Espinocerebelares , Animais , Ataxina-7 , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/patologia
13.
Pan Afr Med J ; 38: 162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995769

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a rare autosomal dominant neurodegenerative disease. Its clinical presentation is a progressive cerebellar ataxia associated with cone and retinal dystrophy. The CAG repeat expansion in the ataxin-7 gene (ATXN7) causes spinocerebellar ataxia type 7 - a mutation that results in the degeneration of the brain stem cells, retina and cerebellum. We report in this study the clinical and genetic features of a new Moroccan family of SCA7, from the South of Morocco. We performed the molecular genetic testing to confirm the diagnosis of SCA7. The objective of this study is to report a new Moroccan case of SCA7 and to illustrate the role of the geneticist in the diagnosis, management and development of genetic counseling of SCA7 disease.


Assuntos
Ataxina-7/genética , Ataxias Espinocerebelares/diagnóstico , Adolescente , Adulto , Feminino , Testes Genéticos , Humanos , Masculino , Marrocos , Mutação , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Adulto Jovem
14.
Mol Vis ; 27: 221-232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012225

RESUMO

Purpose: To evaluate the retinal phenotype and genetic features of Chinese patients with spinocerebellar ataxia type 7 (SCA7). Methods: Detailed ophthalmic examinations, including electroretinograms, fundus photography, fundus autofluorescence and optical coherence tomography, were performed to analyse the retinal lesions of patients with SCA7. A molecular genetic analysis was completed to confirm the number of CAG repeats in ATXN7 gene on the patients and their family members. Results: Eight patients from three families with SCA7 were included in this study. Trinucleotide repeat was expanded from 43 to 113 in the affected patients. The affected patients were characterized by different degrees of cone-rod dystrophy, which is positively related to the number of CAG repeats and age. All patients complained of progressive bilateral visual loss, and most cases reported visual disturbance earlier than gait movement or dysarthria. A coarse granular appearance of the macular region on scanning laser ophthalmoscopy, hypofluorescence in the macula on autofluorescence, retinal atrophy on optic coherence tomography, depression of multifocal electroretinograms and prominent abnormalities in cone-mediated responses on electrograms are the general features of SCA7-related retinopathy. Hyperreflective dots in the outer retinal layers and choroidal vessel layers are a common sign in optic coherence tomography in the advanced stage. Conclusions: SCA7 shows a cone-rod dystrophy phenotype. The multimodal imaging of the retina is beneficial to detect the early lesions of cone-rod dystrophy related to SCA7.


Assuntos
Ataxina-7/genética , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Adolescente , Adulto , Povo Asiático/genética , Pré-Escolar , China/epidemiologia , Eletrorretinografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Oftalmoscopia , Imagem Óptica , Linhagem , Tomografia de Coerência Óptica , Repetições de Trinucleotídeos
15.
PLoS One ; 16(2): e0247434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626063

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the ATXN7 gene. Patients with this disease suffer from a degeneration of their cerebellar Purkinje neurons and retinal photoreceptors that result in a progressive ataxia and loss of vision. As with many neurodegenerative diseases, studies of pathogenesis have been hindered by a lack of disease-relevant models. To this end, we have generated induced pluripotent stem cells (iPSCs) from a cohort of SCA7 patients in South Africa. First, we differentiated the SCA7 affected iPSCs into neurons which showed evidence of a transcriptional phenotype affecting components of STAGA (ATXN7 and KAT2A) and the heat shock protein pathway (DNAJA1 and HSP70). We then performed electrophysiology on the SCA7 iPSC-derived neurons and found that these cells show features of functional aberrations. Lastly, we were able to differentiate the SCA7 iPSCs into retinal photoreceptors that also showed similar transcriptional aberrations to the SCA7 neurons. Our findings give technical insights on how iPSC-derived neurons and photoreceptors can be derived from SCA7 patients and demonstrate that these cells express molecular and electrophysiological differences that may be indicative of impaired neuronal health. We hope that these findings will contribute towards the ongoing efforts to establish the cell-derived models of neurodegenerative diseases that are needed to develop patient-specific treatments.


Assuntos
Marcadores Genéticos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/fisiologia , Retina/fisiologia , Ataxias Espinocerebelares/fisiopatologia , Ataxina-7/genética , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Histona Acetiltransferases/genética , Humanos , Células-Tronco Pluripotentes Induzidas/química , Modelos Biológicos , Neurônios/química , Neurônios/citologia , Cultura Primária de Células , Retina/química , Retina/citologia , África do Sul , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
16.
Mol Cell Neurosci ; 110: 103584, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338633

RESUMO

Polyglutamine (polyQ) diseases, such as Spinocerebellar ataxia type 7 (SCA7), are caused by expansions of polyQ repeats in disease specific proteins. The sequestration of vital proteins into aggregates formed by polyQ proteins is believed to be a common pathological mechanism in these disorders. The RNA-binding protein FUS has been observed in polyQ aggregates, though if disruption of this protein plays a role in the neuronal dysfunction in SCA7 or other polyQ diseases remains unclear. We therefore analysed FUS localisation and function in a stable inducible PC12 cell model expressing the SCA7 polyQ protein ATXN7. We found that there was a high degree of FUS sequestration, which was associated with a more cytoplasmic FUS localisation, as well as a decreased expression of FUS regulated mRNAs. In contrast, the role of FUS in the formation of γH2AX positive DNA damage foci was unaffected. In fact, a statistical increase in the number of γH2AX foci, as well as an increased trend of single and double strand DNA breaks, detected by comet assay, could be observed in mutant ATXN7 cells. These results were further corroborated by a clear trend towards increased DNA damage in SCA7 patient fibroblasts. Our findings suggest that both alterations in the RNA regulatory functions of FUS, and increased DNA damage, may contribute to the pathology of SCA7.


Assuntos
Ataxina-7/genética , Dano ao DNA , Proteína FUS de Ligação a RNA/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , Ataxina-7/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Células PC12 , Peptídeos/química , Peptídeos/genética , Transporte Proteico , Ratos , Ataxias Espinocerebelares/genética
17.
Biochim Biophys Acta Gene Regul Mech ; 1864(2): 194630, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32911111

RESUMO

The Spt-Ada-Gcn5 Acetyltransferase (SAGA) chromatin modifying complex is a critical regulator of gene expression and is highly conserved across species. Subunits of SAGA arrange into discrete modules with lysine aceyltransferase and deubiquitinase activities housed separately. Mutation of the SAGA deubiquitinase module can lead to substantial biological misfunction and diseases such as cancer, neurodegeneration, and blindness. Here, we review the structure and functions of the SAGA deubiquitinase module and regulatory mechanisms acting to control these.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Complexos Multienzimáticos/metabolismo , Transativadores/metabolismo , Ativação Transcricional , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Arabidopsis/enzimologia , Aspergillus nidulans/enzimologia , Ataxina-7/genética , Cegueira/genética , Enzimas Desubiquitinantes/genética , Drosophila/enzimologia , Histonas/metabolismo , Humanos , Camundongos , Complexos Multienzimáticos/genética , Mutação , Neoplasias/genética , Doenças Neurodegenerativas/genética , Peptídeos/genética , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Transativadores/genética , Fatores de Transcrição de p300-CBP/genética
18.
Cerebellum ; 20(3): 384-391, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33196954

RESUMO

The aim of this study is to propose a classification system for the spinocerebellar ataxia type 7 retinal degeneration (SCA7-RD). Twenty patients with molecularly confirmed SCA7 underwent slit lamp examination, fundus photography, and optical coherence tomography (Spectralis®). Scale for the Assessment and Rating of Ataxia (SARA) and International Cooperative Ataxia Rating Scale (ICARS) were applied, and age, sex, age at symptom onset, and number of CAG expansions were recorded. After analyzing the ophthalmological findings in each participant, a panel of retinal disease experts created a qualitative classification system for SCA7-RD comprising four stages. We assessed the correlations of retinal degeneration severity with SARA and ICARS scores, number of CAG repeats in ATXN7 allele, and age at symptom onset. We graded retinal degeneration as stage 1 in nine participants, as stage 2 in five, and as stage 3 in six. No differences in age and visual symptoms duration were found between groups. SARA and ICARS scores correlated with the severity of SCA7-RD on the classification system (p = 0.024 and p = 0.014, respectively). After adjusting for disease duration, retinal disease stage association with SARA and ICARS scores remained significant (ANCOVA, p < 0.05). The classification system for SCA7-RD was able to characterize different disease stages representing the landmarks in the cone-rod dystrophy natural history. Neurodegeneration appears to occur in parallel in the cerebellum and in the visual pathway. We conclude that retinal degeneration in SCA7 is a potential biomarker of the neurological phenotype severity.


Assuntos
Degeneração Retiniana/classificação , Degeneração Retiniana/etiologia , Ataxias Espinocerebelares/complicações , Adulto , Idade de Início , Envelhecimento , Ataxina-7/genética , Cerebelo/diagnóstico por imagem , Feminino , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Retina/diagnóstico por imagem , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/diagnóstico por imagem , Células Fotorreceptoras Retinianas Bastonetes , Ataxias Espinocerebelares/diagnóstico por imagem , Tomografia de Coerência Óptica , Repetições de Trinucleotídeos , Testes Visuais , Vias Visuais/diagnóstico por imagem , Adulto Jovem
19.
Eur J Neurol ; 27(11): 2267-2276, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32558018

RESUMO

BACKGROUND AND PURPOSE: Childhood-onset autosomal dominant cerebellar ataxia type 7 (SCA7) is a severe disease which leads to premature loss of ambulation and death. Early diagnosis of SCA7 is of major importance for genetic counselling and still relies on specific genetic testing, driven by clinical expertise. However, the precise phenotype and natural history of paediatric SCA7 has not yet been fully described. Our aims were to describe the natural history of SCA7 in a large multicentric series of children of all ages, and to find correlates to variables defining this natural history. METHODS: We collected and analysed clinical data from 28 children with proven SCA7. All had clinical manifestations of SCA7 and either a definite number of CAG repeats in ATXN7 or a long expansion > 100 CAG. RESULTS: We identified four clinical presentation patterns related to age at onset. Children of all age groups had cerebellar atrophy and retinal dystrophy. Our data, combined with those in the literature, suggest that definite ranges of CAG repeats determine paediatric SCA7 subtypes. The number of CAG repeats inversely correlated to all variables of the natural history. Age at gait ataxia onset correlated accurately to age at loss of walking ability and to age at death. CONCLUSION: SCA7 in children has four presentation patterns that are roughly correlated to the number of CAG repeats. Our depiction of the natural history of SCA7 in children may help in monitoring the effect of future therapeutic trials.


Assuntos
Ataxias Espinocerebelares , Ataxina-7 , Criança , Testes Genéticos , Humanos , Fenótipo , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética
20.
Bioorg Med Chem ; 28(1): 115175, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767406

RESUMO

Polyglutamine diseases are a class of neurodegenerative diseases associated with the accumulation of aggregated mutant proteins. We previously developed a class of degradation-inducing agents targeting the ß-sheet-rich structure typical of such aggregates, and we showed that these agents dose-, time-, and proteasome-dependently decrease the intracellular level of mutant huntingtin with an extended polyglutamine tract, which correlates well with the severity of Huntington's disease. Here, we demonstrate that the same agents also deplete other polyglutamine disease-related proteins: mutant ataxin-3 and ataxin-7 in cells from spino-cerebellar ataxia patients, and mutant atrophin-1 in cells from dentatorubral-pallidoluysian atrophy patients. Targeting cross-ß-sheet structure could be an effective design strategy to develop therapeutic agents for multiple neurodegenerative diseases.


Assuntos
Ataxina-3/antagonistas & inibidores , Ataxina-7/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Ataxina-3/genética , Ataxina-7/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Humanos , Estrutura Molecular , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Proteínas Repressoras/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...