Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.138
Filtrar
1.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617541

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Proteínas Ribossômicas/genética , Proteínas Nucleares , Ribossomos/genética , Proteínas Mitocondriais
2.
Nat Commun ; 15(1): 3296, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632236

RESUMO

DEAD-box ATPases play crucial roles in guiding rRNA restructuring events during the biogenesis of large (60S) ribosomal subunits, but their precise molecular functions are currently unknown. In this study, we present cryo-EM reconstructions of nucleolar pre-60S intermediates that reveal an unexpected, alternate secondary structure within the nascent peptidyl-transferase-center (PTC). Our analysis of three sequential nucleolar pre-60S intermediates reveals that the DEAD-box ATPase Dbp10/DDX54 remodels this alternate base pairing and enables the formation of the rRNA junction that anchors the mature form of the universally conserved PTC A-loop. Post-catalysis, Dbp10 captures rRNA helix H61, initiating the concerted exchange of biogenesis factors during late nucleolar 60S maturation. Our findings show that Dbp10 activity is essential for the formation of the ribosome active site and reveal how this function is integrated with subsequent assembly steps to drive the biogenesis of the large ribosomal subunit.


Assuntos
Peptidil Transferases , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ribossomos/genética , RNA Ribossômico/genética , RNA Helicases DEAD-box/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Proteínas Ribossômicas/genética
3.
Int J Oncol ; 64(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639179

RESUMO

The exosomal pathway is an essential mechanism that regulates the abnormal content of microRNAs (miRNAs) in hepatocellular carcinoma (HCC). The directional transport of miRNAs requires the assistance of RNA­binding proteins (RBPs). The present study found that RBPs participate in the regulation of miRNA content through the exosomal pathway in HCC cells. First, differential protein expression profiles in the serum exosomes of patients with HCC and benign liver disease were detected using mass spectrometry. The results revealed that ribosomal protein L9 (RPL9) was highly expressed in serum exosomes of patients with HCC. In addition, the downregulation of RPL9 markedly suppressed the proliferation, migration and invasion of HCC cells and reduced the biological activity of HCC­derived exosomes. In addition, using miRNA microarrays, the changes in exosomal miRNA profiles in HCC cells caused by RPL9 knockdown were examined. miR­24­3p and miR­185­5p were most differentially expressed, as verified by reverse transcription­quantitative PCR. Additionally, using RNA immunoprecipitation, it was found that RPL9 was directly bound to the two miRNAs and immunofluorescence assays confirmed that RPL9 was able to carry miRNAs into recipient cells via exosomes. Overexpression of miR­24­3p in cells increased the accumulation of miR­24­3p in exosomes and simultaneously upregulated RPL9. Excessive expression of miR­24­3p in exosomes also increased their bioactivity. Exosome­mediated miRNA regulation and transfer require the involvement of RBPs. RPL9 functions as an oncogene, can directly bind to specific miRNAs and can be co­transported to receptor cells through exosomes, thereby exerting its biological functions. These findings provide a novel approach for modulating miRNA profiles in HCC.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , MicroRNAs , Proteínas Ribossômicas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Exossomos/metabolismo , Oncogenes/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regulação Neoplásica da Expressão Gênica
4.
Mol Cell ; 84(8): 1400-1402, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640892

RESUMO

Nucleolar stress has been consistently linked to age-related diseases. In this issue, Sirozh et al.1 find that the common molecular signature of nucleolar stress is the accumulation of free ribosomal proteins, which leads to premature aging in mice; however, it can be reversed by mTOR inhibition.


Assuntos
Nucléolo Celular , Proteínas Ribossômicas , Camundongos , Animais , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , RNA Ribossômico/metabolismo
5.
Biomolecules ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540739

RESUMO

ICT1 is an Arabidopsis thaliana line that overexpresses the gene encoding the S30 ribosomal subunit, leading to tolerance to exogenous indole-3-carbinol. Indole-3-carbinol (I3C) is a protective chemical formed as a breakdown of I3M in cruciferous vegetables. The overexpression of S30 in ICT1 results in transcriptional changes that prime the plant for the I3C, or biotic insult. Emerging evidence suggests that ribosomal proteins play important extra-ribosomal roles in various biochemical and developmental processes, such as transcription and stress resistance. In an attempt to elucidate the mechanism leading to I3C and stress resistance in ICT1, and using a multi-pronged approach employing transcriptomics, metabolomics, phenomics, and physiological studies, we show that overexpression of S30 leads to specific transcriptional alterations, which lead to both changes in metabolites connected to biotic and oxidative stress tolerance and, surprisingly, to photomorphogenesis.


Assuntos
Arabidopsis , Proteínas Ribossômicas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse Oxidativo , Desenvolvimento Vegetal/genética
6.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542224

RESUMO

Regulation of mRNA translation is a crucial step in controlling gene expression in stressed cells, impacting many pathologies, including heart ischemia. In recent years, ribosome heterogeneity has emerged as a key control mechanism driving the translation of subsets of mRNAs. In this study, we investigated variations in ribosome composition in human cardiomyocytes subjected to endoplasmic reticulum stress induced by tunicamycin treatment. Our findings demonstrate that this stress inhibits global translation in cardiomyocytes while activating internal ribosome entry site (IRES)-dependent translation. Analysis of translating ribosome composition in stressed and unstressed cardiomyocytes was conducted using mass spectrometry. We observed no significant changes in ribosomal protein composition, but several mitochondrial ribosomal proteins (MRPs) were identified in cytosolic polysomes, showing drastic variations between stressed and unstressed cells. The most notable increase in polysomes of stressed cells was observed in MRPS15. Its interaction with ribosomal proteins was confirmed by proximity ligation assay (PLA) and immunoprecipitation, suggesting its intrinsic role as a ribosomal component during stress. Knock-down or overexpression experiments of MRPS15 revealed its role as an activator of IRES-dependent translation. Furthermore, polysome profiling after immunoprecipitation with anti-MRPS15 antibody revealed that the "MRPS15 ribosome" is specialized in translating mRNAs involved in the unfolded protein response.


Assuntos
Miócitos Cardíacos , Proteínas Ribossômicas , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Miócitos Cardíacos/metabolismo , Ribossomos/metabolismo , Polirribossomos/metabolismo , Citosol/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas
7.
Biosystems ; 238: 105196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537772

RESUMO

Protein domain repeats are known to arise due to tandem duplications of internal genes. However, the understanding of the underlying mechanisms of this process is incomplete. The goal of this work was to investigate the mechanism of occurrence of repeat expansion based on studying the sequences of 1324 rpsA genes of bacterial S1 ribosomal proteins containing different numbers of S1 structural domains. The rpsA gene encodes ribosomal S1 protein, which is essential for cell viability as it interacts with both mRNA and proteins. Gene ontology (GO) analysis of S1 domains in ribosomal S1 proteins revealed that bacterial protein sequences in S1 mainly have 3 types of molecular functions: RNA binding activity, nucleic acid activity, and ribosome structural component. Our results show that the maximum value of rpsA gene identity for full-length proteins was found for S1 proteins containing six structural domains (58%). Analysis of consensus sequences showed that parts of the rpsA gene encoding separate S1 domains have no a strictly repetitive structure between groups containing different numbers of S1 domains. At the same time, gene regions encoding some conserved residues that form the RNA-binding site remain conserved. The detected phylogenetic similarity suggests that the proposed fold of the rpsA translation initiation region of Escherichia coli has functional value and is important for translational control of rpsA gene expression in other bacterial phyla, but not only in gamma Proteobacteria.


Assuntos
Bactérias , Proteínas Ribossômicas , Sequência de Bases , Filogenia , Composição de Bases , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA/metabolismo , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474062

RESUMO

Several types of mood disorders lie along a continuum, with nebulous boundaries between them. Understanding the mechanisms that contribute to mood disorder complexity is critical for effective treatment. However, present treatments are largely centered around neurotransmission and receptor-based hypotheses, which, given the high instance of treatment resistance, fail to adequately explain the complexities of mood disorders. In this opinion piece, based on our recent results, we propose a ribosome hypothesis of mood disorders. We suggest that any hypothesis seeking to explain the diverse nature of mood disorders must incorporate infrastructure diversity that results in a wide range of effects. Ribosomes, with their mobility across neurites and complex composition, have the potential to become specialized during stress; thus, ribosome diversity and dysregulation are well suited to explaining mood disorder complexity. Here, we first establish a framework connecting ribosomes to the current state of knowledge associated with mood disorders. Then, we describe the potential mechanisms through which ribosomes could homeostatically regulate systems to manifest diverse mood disorder phenotypes and discuss approaches for substantiating the ribosome hypothesis. Investigating these mechanisms as therapeutic targets holds promise for transdiagnostic avenues targeting mood disorders.


Assuntos
Transtornos do Humor , Ribossomos , Humanos , Ribossomos/genética , Proteínas Ribossômicas/genética
9.
BMC Cancer ; 24(1): 334, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475740

RESUMO

BACKGROUND: Ribosomal RNA processing protein 15 (RRP15) has been found to regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the extent to which it contributes to the spread of HCC cells remains uncertain. Thus, the objective of this research was to assess the biological function of RRP15 in the migration of HCC. METHODS: The expression of RRP15 in HCC tissue microarray (TMA), tumor tissues and cell lines were determined. In vitro, the effects of RRP15 knockdown on the migration, invasion and adhesion ability of HCC cells were assessed by wound healing assay, transwell and adhesion assay, respectively. The effect of RRP15 knockdown on HCC migration was also evaluated in vivo in a mouse model. RESULTS: Bioinformatics analysis showed that high expression of RRP15 was significantly associated with low survival rate of HCC. The expression level of RRP15 was strikingly upregulated in HCC tissues and cell lines compared with the corresponding controls, and TMA data also indicated that RRP15 was a pivotal prognostic factor for HCC. RRP15 knockdown in HCC cells reduced epithelial-to-mesenchymal transition (EMT) and inhibited migration in vitro and in vivo, independent of P53 expression. Mechanistically, blockade of RRP15 reduced the protein level of the transcription factor POZ/BTB and AT hook containing zinc finger 1 (PATZ1), resulting in decreased expression of the downstream genes encoding laminin 5 subunits, LAMC2 and LAMB3, eventually suppressing the integrin ß4 (ITGB4)/focal adhesion kinase (FAK)/nuclear factor κB kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. CONCLUSIONS: RRP15 promotes HCC migration by activating the LAMC2/ITGB4/FAK pathway, providing a new target for future HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Processamento Pós-Transcricional do RNA , Proteínas Ribossômicas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , Fatores de Transcrição/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
10.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474204

RESUMO

Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.


Assuntos
Proteínas de Bactérias , Proteínas Ribossômicas , Proteínas Ribossômicas/metabolismo , Proteínas de Bactérias/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas , Bactérias/metabolismo , Escherichia coli/metabolismo , RNA Ribossômico/metabolismo
11.
Cells ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474347

RESUMO

Long-read transcriptome sequencing provides us with a convenient tool for the thorough study of biological processes such as neuronal plasticity. Here, we aimed to perform transcriptional profiling of rat hippocampal primary neuron cultures after stimulation with picrotoxin (PTX) to further understand molecular mechanisms of neuronal activation. To overcome the limitations of short-read RNA-Seq approaches, we performed an Oxford Nanopore Technologies MinION-based long-read sequencing and transcriptome assembly of rat primary hippocampal culture mRNA at three time points after the PTX activation. We used a specific approach to exclude uncapped mRNAs during sample preparation. Overall, we found 23,652 novel transcripts in comparison to reference annotations, out of which ~6000 were entirely novel and mostly transposon-derived loci. Analysis of differentially expressed genes (DEG) showed that 3046 genes were differentially expressed, of which 2037 were upregulated and 1009 were downregulated at 30 min after the PTX application, with only 446 and 13 genes differentially expressed at 1 h and 5 h time points, respectively. Most notably, multiple genes encoding ribosomal proteins, with a high basal expression level, were downregulated after 30 min incubation with PTX; we suggest that this indicates redistribution of transcriptional resources towards activity-induced genes. Novel loci and isoforms observed in this study may help us further understand the functional mRNA repertoire in neuronal plasticity processes. Together with other NGS techniques, differential gene expression analysis of sequencing data obtained using MinION platform might provide a simple method to optimize further study of neuronal plasticity.


Assuntos
Hipocampo , Proteínas Ribossômicas , Ratos , Animais , Picrotoxina , Antagonistas GABAérgicos , Regulação para Baixo , RNA Mensageiro , Ácido gama-Aminobutírico
12.
J Cell Mol Med ; 28(6): e18115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436544

RESUMO

Ovarian cancer is one of the most common gynaecological malignancies with poor prognosis and lack of effective treatment. The improvement of the situation of ovarian cancer urgently requires the exploration of its molecular mechanism to develop more effective molecular targeted drugs. In this study, the role of human ribosomal protein l35a (RPL35A) in ovarian cancer was explored in vitro and in vivo. Our data identified that RPL35A expression was abnormally elevated in ovarian cancer. Clinically, high expression of RPL35A predicted short survival and poor TNM staging in patients with ovarian cancer. Functionally, RPL35A knock down inhibited ovarian cancer cell proliferation and migration, enhanced apoptosis, while overexpression had the opposite effect. Mechanically, RPL35A promoted the direct binding of transcription factor YY1 to CTCF in ovarian cancer cells. Consistently, RPL35A regulated ovarian cancer progression depending on CTCF in vitro and in vivo. Furthermore, RPL35A affected the proliferation and apoptosis of ovarian cancer cells through PPAR signalling pathway. In conclusion, RPL35A drove ovarian cancer progression by promoting the binding of YY1 and CTCF promoter, and inhibiting this process may be an effective strategy for targeted therapy of this disease.


Assuntos
Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Proteínas Ribossômicas , Feminino , Humanos , Apoptose/genética , Proliferação de Células/genética , Neoplasias Ovarianas/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Fator de Ligação a CCCTC/genética
13.
Cell ; 187(5): 1314-1314.e1, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428399

RESUMO

Ribosome production is essential for cell growth. Approximately 200 assembly factors drive this complicated pathway that starts in the nucleolus and ends in the cytoplasm. A large number of structural snapshots of the pre-60S pathway have revealed the principles behind large subunit synthesis. To view this SnapShot, open or download the PDF.


Assuntos
Nucléolo Celular , Células Eucarióticas , Ribossomos , Nucléolo Celular/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Células Eucarióticas/química , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo
14.
Medicine (Baltimore) ; 103(9): e37123, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428846

RESUMO

Ketamine is the only intravenous narcotic that has sedative, analgesic, and anesthetic effects. However, the role of Flt3l and ribosomal protein S15 (Rps15) in ketamine anesthesia remains unclear. GSE26364 and GSE93041 were downloaded from gene expression omnibus. Multiple datasets were merged and batched. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. Construction and analysis of protein-protein interaction network. Gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome were performed. A heat map of gene expression was drawn. TargetScan was used to screen miRNAs regulating DEGs. 882 DEGs were identified. According to the GO analysis, these DEGs were mainly enriched in cell differentiation, extracellular region, and cytoplasm. The Kyoto Encyclopedia of Gene and Genome analysis revealed enrichment in pathways such as the PPAR signaling pathway, TNF signaling pathway, Hippo signaling pathway, and IL-17 signaling pathway. In the Metascape enrichment analysis, GO enrichment categories included leukocyte differentiation, negative regulation of CREB transcription factor activity, and positive regulation of cell cycle. The protein-protein interaction network showed 10 core genes (Rpl7, Rpl18, Rps15, Rpl7l1, Flt3l, Rps16, Eprs, Rps19, Rps28, Rplp2).Gene expression heatmap showed that core genes (Rplp2, Flt3l, Rps15) were highly expressed in samples treated with ketamine anesthesia. Flt3l and Rps15 are highly expressed during ketamine anesthesia, and may be molecular targets.


Assuntos
Anestesia , Ketamina , Proteínas Ribossômicas , Humanos , Biologia Computacional , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Ketamina/administração & dosagem , Ketamina/metabolismo , MicroRNAs/genética , Proteínas Ribossômicas/metabolismo , Proteínas de Membrana/metabolismo
15.
Int J Biol Macromol ; 263(Pt 1): 130348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395274

RESUMO

Enzymes of the GNAT (GCN5-relate N-acetyltransferases) superfamily are important regulators of cell growth and development. They are functionally diverse and share low amino acid sequence identity, making functional annotation difficult. In this study, we report the function and structure of a new ribosomal enzyme, Nα-acetyl transferase from Bacillus cereus (RimLBC), a protein that was previously wrongly annotated as an aminoglycosyltransferase. Firstly, extensive comparative amino acid sequence analyses suggested RimLBC belongs to a cluster of proteins mediating acetylation of the ribosomal protein L7/L12. To assess if this was the case, several well established substrates of aminoglycosyltransferases were screened. The results of these studies did not support an aminoglycoside acetylating function for RimLBC. To gain further insight into RimLBC biological role, a series of studies that included MALDI-TOF, isothermal titration calorimetry, NMR, X-ray protein crystallography, and site-directed mutagenesis confirmed RimLBC affinity for Acetyl-CoA and that the ribosomal protein L7/L12 is a substrate of RimLBC. Last, we advance a mechanistic model of RimLBC mode of recognition of its protein substrates. Taken together, our studies confirmed RimLBC as a new ribosomal Nα-acetyltransferase and provide structural and functional insights into substrate recognition by Nα-acetyltransferases and protein acetylation in bacteria.


Assuntos
Acetiltransferases , Bacillus cereus , Acetiltransferases/química , Bacillus cereus/metabolismo , Sequência de Aminoácidos , Acetilcoenzima A/metabolismo , Proteínas Ribossômicas/metabolismo , Cristalografia por Raios X
16.
Commun Biol ; 7(1): 196, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368456

RESUMO

Ribosomes are key to cellular self-fabrication and limit growth rate. While most enzymes are proteins, ribosomes consist of 1/3 protein and 2/3 ribonucleic acid (RNA) (in E. coli).Here, we develop a mechanistic model of a self-fabricating cell, validated across diverse growth conditions. Through resource balance analysis (RBA), we explore the variation in maximum growth rate with ribosome composition, assuming constant kinetic parameters.Our model highlights the importance of RNA instability. If we neglect it, RNA synthesis is always cheaper than protein synthesis, leading to an RNA-only ribosome at maximum growth rate. Upon accounting for RNA turnover, we find that a mixed ribosome composed of RNA and proteins maximizes growth rate. To account for RNA turnover, we explore two scenarios regarding the activity of RNases. In (a) degradation is proportional to RNA content. In (b) ribosomal proteins cooperatively mitigate RNA instability by protecting it from misfolding and subsequent degradation. In both cases, higher protein content elevates protein synthesis costs and simultaneously lowers RNA turnover expenses, resulting in mixed RNA-protein ribosomes. Only scenario (b) aligns qualitatively with experimental data across varied growth conditions.Our research provides fresh insights into ribosome biogenesis and evolution, paving the way for understanding protein-rich ribosomes in archaea and mitochondria.


Assuntos
Escherichia coli , Ribossomos , Escherichia coli/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA/metabolismo
17.
Int J Cancer ; 154(12): 2162-2175, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38353498

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, often diagnosed at stages that dis-qualify for surgical resection. Neoadjuvant therapies offer potential tumor regression and improved resectability. Although features of the tumor biology (e.g., molecular markers) may guide adjuvant therapy, biological alterations after neoadjuvant therapy remain largely unexplored. We performed mass spectrometry to characterize the proteomes of 67 PDAC resection specimens of patients who received either neoadjuvant chemo (NCT) or chemo-radiation (NCRT) therapy. We employed data-independent acquisition (DIA), yielding a proteome coverage in excess of 3500 proteins. Moreover, we successfully integrated two publicly available proteome datasets of treatment-naïve PDAC to unravel proteome alterations in response to neoadjuvant therapy, highlighting the feasibility of this approach. We found highly distinguishable proteome profiles. Treatment-naïve PDAC was characterized by enrichment of immunoglobulins, complement and extracellular matrix (ECM) proteins. Post-NCT and post-NCRT PDAC presented high abundance of ribosomal and metabolic proteins as compared to treatment-naïve PDAC. Further analyses on patient survival and protein expression identified treatment-specific prognostic candidates. We present the first proteomic characterization of the residual PDAC mass after NCT and NCRT, and potential protein candidate markers associated with overall survival. We conclude that residual PDAC exhibits fundamentally different proteome profiles as compared to treatment-naïve PDAC, influenced by the type of neoadjuvant treatment. These findings may impact adjuvant or targeted therapy options.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Terapia Neoadjuvante , Proteínas Ribossômicas , Proteoma , Neoplasia Residual , Proteômica , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Ativação do Complemento , Metabolismo Energético
18.
J Exp Clin Cancer Res ; 43(1): 45, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326908

RESUMO

BACKGROUND: Metastasis is one of the leading cause contributes to treatment failure and poor prognosis of hepatocellular carcinoma (HCC) patients. The underlying mechanism of HCC metastasis remains to be determined. Although several RNA binding proteins (RBPs) have been found to participate in tumorigenesis and progression of liver cancer, the role of RBPs in HCC patients with extrahepatic metastases is poorly understood. METHODS: By performing RNA-seq of primary HCC tissues (including HCC with extrahepatic metastasis and those did not develop metastasis), we identified a set of HCC metastasis-associated RBPs candidates. Among which, ribosomal protein S7 (RPS7) was found to be remarkably increased in HCC tissues and be strongly related to HCC poor survival. Overexpression or CRISPR-Cas9-mediated knockout were applied to investigate the role of RPS7 on the metastasis-associated phenotypes of HCC cells. RNA sequencing, RIP, RNA-pull down, dual luciferase reporter assay, nascent RNA capture assay, and RNA decay and so on, were applied to reveal the underlying mechanism of RPS7 induced HCC metastasis. RESULTS: Gain- and loss- of function analyses revealed that RPS7 promoted HCC cells adhesion, migration and invasion capabilities, as well as lung metastasis. Mechanistically, we uncovered that lysyl oxidase-like 2 (LOXL2) was a critical downstream target of RPS7. RPS7 could stabilize LOXL2 mRNA by binding to AUUUA motifs in the 3155-3375 region of the 3'UTR of LOXL2 mRNA, thus increased LOXL2 expression via elevating LOXL2 mRNA abundance. Further research revealed that LOXL2 could accelerate focal adhesion formation through maintaining the protein stability of ITGB1 and activating ITGB1-mediated FAK/SRC signaling pathway, and thereby contribute to the pro-metastasis effect of RPS7. CONCLUSIONS: Taken together, our data reveal a novel function of RPS7 in HCC metastasis, also reveal the critical roles of the RPS7/LOXL2/ITGB1 axis in HCC metastasis and shed new light on the exploration of molecular drugs against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Ribossômicas , Humanos , Aminoácido Oxirredutases/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Ribossômicas/metabolismo , RNA , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
19.
J Mol Biol ; 436(6): 168496, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365086

RESUMO

Stalling of ribosomes engaged in protein synthesis can lead to significant defects in the function of newly synthesized proteins and thereby impair protein homeostasis. Consequently, partially synthesized polypeptides resulting from translation stalling are recognized and eliminated by several quality control mechanisms. First, if translation elongation reactions are halted prematurely, a quality control mechanism called ribosome-associated quality control (RQC) initiates the ubiquitination of the nascent polypeptide chain and subsequent proteasomal degradation. Additionally, when ribosomes with defective codon recognition or peptide-bond formation stall during translation, a quality control mechanism known as non-functional ribosomal RNA decay (NRD) leads to the degradation of malfunctioning ribosomes. In both of these quality control mechanisms, E3 ubiquitin ligases selectively recognize ribosomes in distinct translation-stalling states and ubiquitinate specific ribosomal proteins. Significant efforts have been devoted to characterize E3 ubiquitin ligase sensing of ribosome 'collision' or 'stalling' and subsequent ribosome is rescued. This article provides an overview of our current understanding of the molecular mechanisms and physiological functions of ribosome dynamics control and quality control of abnormal translation.


Assuntos
Elongação Traducional da Cadeia Peptídica , Estabilidade de RNA , Ribossomos , Peptídeos/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Humanos , Animais , RNA Mensageiro/metabolismo
20.
Nature ; 627(8003): 445-452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383785

RESUMO

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Sítios de Ligação , Biocatálise , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Ligação Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , RNA de Transferência/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...