Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131.532
Filtrar
1.
Nat Commun ; 15(1): 2953, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580662

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction. We have previously reported that statins prevent endothelial dysfunction through inhibition of microRNA-133a (miR-133a). This study is to investigate the effects and the underlying mechanisms of statins on HFpEF. Here, we show that statins upregulate the expression of a circular RNA (circRNA-RBCK1) which is co-transcripted with the ring-B-box-coiled-coil protein interacting with protein kinase C-1 (RBCK1) gene. Simultaneously, statins increase activator protein 2 alpha (AP-2α) transcriptional activity and the interaction between circRNA-RBCK1 and miR-133a. Furthermore, AP-2α directly interacts with RBCK1 gene promoter in endothelial cells. In vivo, lovastatin improves diastolic function in male mice under HFpEF, which is abolished by loss function of endothelial AP-2α or circRNA-RBCK1. This study suggests that statins upregulate the AP-2α/circRNA-RBCK1 signaling to suppress miR-133a in cardiac endothelial cells and prevent diastolic dysfunction in HFpEF.


Assuntos
Insuficiência Cardíaca , Inibidores de Hidroximetilglutaril-CoA Redutases , MicroRNAs , Animais , Masculino , Camundongos , Células Endoteliais/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , MicroRNAs/metabolismo , RNA Circular/genética , Volume Sistólico/fisiologia
2.
Front Immunol ; 15: 1369311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601162

RESUMO

Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses. Methods: Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes. Results: The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified. Conclusion: This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.


Assuntos
COVID-19 , Infecções por HIV , Influenza Humana , MicroRNAs , Humanos , Influenza Humana/genética , COVID-19/genética , SARS-CoV-2 , Biologia Computacional , MicroRNAs/genética , Fatores de Transcrição , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
3.
Mikrochim Acta ; 191(5): 259, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605266

RESUMO

A three-dimensional (3D) self-assembled AuNPs/Ti3C2 MXene hydrogel (AuNPs/Ti3C2 MXH) nanocomposite was prepared for the fabrication of a novel microRNA-122 electrochemical biosensor. The 3D hydrogel structure was gelated from two-dimensional MXene nanosheets with the assistance of graphite oxide and ethylenediamine. MXene hydrogels supported the in situ formation of Au nanoparticles (AuNPs) that predominantly exploring the (111) facet, and these AuNPs are utilized as carriers for hairpin DNA (hpDNA) probes, facilitating DNA hybridization. MXene acted as both a reductant and stabilizer, significantly improving the electrochemical signal. In addition, the conjugation of PAMAM dendrimer-encapsulated AuNPs and H-DNA worked as an ideal bridge to connect targets and efficient electrochemical tags, providing a high amplification efficiency for the sensing of microRNA-122. A linear relationship between the peak currents and the logarithm of the concentrations of microRNA-122 from 1.0 × 10-2 to 1.0 × 102 fM (I = 1.642 + 0.312 lgc, R2 = 0.9891), is obtained. The detection limit is  0.8 × 10-2 fM (S/N = 3). The average recovery for human serum detection ranged from 97.32 to 101.4% (RSD < 5%).


Assuntos
Nanopartículas Metálicas , MicroRNAs , Nitritos , Elementos de Transição , Humanos , Ouro/química , Nanopartículas Metálicas/química , Hidrogéis , Titânio/química , DNA/química
4.
Sci Rep ; 14(1): 8603, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615118

RESUMO

Predictive biomarkers of response to immune checkpoint-based therapies (ICI) remain a critically unmet need in the management of advanced renal cell carcinoma (RCC). The complex interplay of the tumour microenvironment (TME) and the circulating immune response has proven to be challenging to decipher. MicroRNAs have gained increasing attention for their role in post-transcriptional gene expression regulation, particularly because they can have immunomodulatory properties. We evaluated the presence of immune-specific extracellular vesicle (EV) microRNAs in the plasma of patients with metastatic RCC (mRCC) prior to initiation of ICI. We found significantly lower levels of microRNA155-3p (miR155) in responders to ICI, when compared to non-responders. This microRNA has unique immunomodulatory properties, thus providing potential biological rationale for our findings. Our results support further work in exploring microRNAs as potential biomarkers of response to immunotherapy.


Assuntos
Carcinoma de Células Renais , MicroRNA Circulante , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Neoplasias Renais/genética , Neoplasias Renais/terapia , Imunoterapia , MicroRNAs/genética , Biomarcadores , Microambiente Tumoral/genética
5.
World J Gastroenterol ; 30(11): 1470-1474, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617456

RESUMO

MicroRNAs (miRNAs) are recognized for their involvement in the regulation of gene expression and exhibit significant potential in both the prognostic assessment and treatment of hepatocellular carcinoma (HCC). HCC, like other tumors, seldom occurs in isolation; instead, it evolves within a microenvironment featuring oncogenic and tumor-suppressive elements. When combined with suitable delivery vehicles, miRNA technology provides the capability to directly engage with these elements, thereby hindering tumor formation and progression. Ongoing research in this domain holds the promise of enabling a more efficacious and multi-modal treatment approach for HCC in the near future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Microambiente Tumoral/genética
6.
World J Gastroenterol ; 30(11): 1497-1523, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617454

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.


Assuntos
Carcinoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , MicroRNAs/genética , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Epigenômica
7.
World J Gastroenterol ; 30(12): 1644-1650, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38617734

RESUMO

In this editorial, we comment on the article by Marangoni et al, published in the recent issue of the World Journal of Gastroenterology 2023; 29: 5618-5629, about "Diet as an epigenetic factor in inflammatory bowel disease". The authors emphasized the role of diet, especially the interaction with genetics, in promoting the inflammatory process in inflammatory bowel disease (IBD) patients, focusing on DNA methylation, histone modifications, and the influence of microRNAs. In this editorial, we explore the interaction between genetics, gut microbiota, and diet, in an only way. Furthermore, we provided dietary recommendations for patients with IBD. The Western diet, characterized by a low fiber content and deficiency the micronutrients, impacts short-chain fatty acids production and may be related to the pathogenesis of IBD. On the other hand, the consumption of the Mediterranean diet and dietary fibers are associated with reduced risk of IBD flares, particularly in Crohn's disease (CD) patients. According to the dietary guidance from the International Organization for the Study of Inflammatory Bowel Diseases (IOIBD), the regular consumption of fruits and vegetables while reducing the consumption of saturated, trans, dairy fat, additives, processed foods rich in maltodextrins, and artificial sweeteners containing sucralose or saccharine is recommended to CD patients. For patients with ulcerative colitis, the IOIBD recommends the increased intake of natural sources of omega-3 fatty acids and follows the same restrictive recommendations aimed at CD patients, with the possible inclusion of red meats. In conclusion, IBD is a complex and heterogeneous disease, and future studies are needed to elucidate the influence of epigenetics on diet and microbiota in IBD patients.


Assuntos
Colite Ulcerativa , Doença de Crohn , Dieta Mediterrânea , Doenças Inflamatórias Intestinais , MicroRNAs , Humanos , Doenças Inflamatórias Intestinais/genética , Doença de Crohn/genética
8.
Int Ophthalmol ; 44(1): 176, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619629

RESUMO

PURPOSE: Conventional diagnosis of primary open angle glaucoma (POAG) needs a combination of ophthalmic examinations. An efficient assay is urgently needed for a timely POAG diagnosis. We aim to explore differential expressions of circulating microRNAs (miRNA) and provide novel miRNA biomarkers for POAG diagnosis. METHODS: A total of 180 POAG patients and 210 age-related cataract (ARC) patients were enrolled. We collected aqueous humor (AH) and plasma samples from the recruited patients. The expressions of candidate miRNAs were measured using quantitative real time polymerase chain reaction. The diagnostic ability of candidate miRNAs was analyzed by receiver operating characteristic curve. RESULTS: The expressions of miR-21-5p and miR-29b-3p were downregulated significantly in AH and plasma of POAG and miR-24-3p expression was significantly increased in AH and plasma of POAG, comparing with those of ARC. A three-miRNA panel was constructed by a binary logistic regression. And the panel could differentiate between POAG and ARC with an area under the curve of 0.8867 (sensitivity = 78.0%, specificity = 83.3%) in aqueous humor and 0.7547 (sensitivity = 73.8%, specificity = 81.2%) in plasma. Next, we verified the three-miRNA panel working as a potential diagnostic biomarker stable and reliable. At last, we identified related function and regulation pathways in vitro. CONCLUSIONS: In conclusion, we built and identified a circulating three-miRNA panel as a potential diagnostic biomarker for POAG. It may be developed into an efficient assay and help improve the POAG diagnosis in the future.


Assuntos
MicroRNA Circulante , Glaucoma de Ângulo Aberto , MicroRNAs , Humanos , Glaucoma de Ângulo Aberto/diagnóstico , Glaucoma de Ângulo Aberto/genética , MicroRNAs/genética , Humor Aquoso , Biomarcadores
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38622356

RESUMO

Identifying disease-associated microRNAs (miRNAs) could help understand the deep mechanism of diseases, which promotes the development of new medicine. Recently, network-based approaches have been widely proposed for inferring the potential associations between miRNAs and diseases. However, these approaches ignore the importance of different relations in meta-paths when learning the embeddings of miRNAs and diseases. Besides, they pay little attention to screening out reliable negative samples which is crucial for improving the prediction accuracy. In this study, we propose a novel approach named MGCNSS with the multi-layer graph convolution and high-quality negative sample selection strategy. Specifically, MGCNSS first constructs a comprehensive heterogeneous network by integrating miRNA and disease similarity networks coupled with their known association relationships. Then, we employ the multi-layer graph convolution to automatically capture the meta-path relations with different lengths in the heterogeneous network and learn the discriminative representations of miRNAs and diseases. After that, MGCNSS establishes a highly reliable negative sample set from the unlabeled sample set with the negative distance-based sample selection strategy. Finally, we train MGCNSS under an unsupervised learning manner and predict the potential associations between miRNAs and diseases. The experimental results fully demonstrate that MGCNSS outperforms all baseline methods on both balanced and imbalanced datasets. More importantly, we conduct case studies on colon neoplasms and esophageal neoplasms, further confirming the ability of MGCNSS to detect potential candidate miRNAs. The source code is publicly available on GitHub https://github.com/15136943622/MGCNSS/tree/master.


Assuntos
Neoplasias do Colo , MicroRNAs , Humanos , MicroRNAs/genética , Algoritmos , Biologia Computacional/métodos , Software , Neoplasias do Colo/genética
10.
Compr Rev Food Sci Food Saf ; 23(3): e13338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38629461

RESUMO

Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.


Assuntos
MicroRNAs , Micotoxinas , Humanos , Micotoxinas/análise , MicroRNAs/genética , Contaminação de Alimentos/análise , Proteínas de Fase Aguda
11.
Arch Microbiol ; 206(5): 220, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630188

RESUMO

Extracellular proteases, such as chitinases secreted by Arthrobotrys oligospora (A. oligospora), play a crucial role in the process of nematode infection. However, post-transcriptional regulation of gene expression involving microRNAs (miRNAs) in A. oligospora remains scarcely described. Hereto, transcriptome sequencing was carried out to analyze the expression profiles of chitin-responsive miRNAs in A. oligospora. Based on the RNA-seq data, the differential expression of miRNAs (DEmiRNAs) in response to chitin was screened, identified and characterized in A. oligospora. Meanwhile, the potential target genes were predicted by the online tools miRanda and Targetscan, respectively. Furthermore, the interaction of DEmiRNA with it's target gene was validated by a dual-luciferase reporter assay system. Among 85 novel miRNAs identified, 25 miRNAs displayed significant differences in expression in A. oligospora in response to chitin. Gene Ontology (GO) analysis showed that the potential genes targeted by DEmiRNAs were enriched in the biological processes such as bio-degradation, extracellular components and cell cycle. KEGG analysis revealed that the target genes were mainly involved in Hippo, carbon and riboflavin metabolic pathway. Outstandingly, chitinase AOL_s00004g379, which is involved in the hydrolysis metabolic pathway of chitin, was confirmed to be a target gene of differential miR_70. These findings suggest that chitin-responsive miRNAs are involved in the regulation of cell proliferation, predator hyphae growth and chitinase expression through the mechanisms of post-transcriptional regulation, which provides a new perspective to the molecular mechanisms underlying miRNAs-mediated control of gene expression in A. oligospora.


Assuntos
Ascomicetos , Quitinases , MicroRNAs , Quitina , Quitinases/genética , MicroRNAs/genética
12.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612482

RESUMO

Despite serum progesterone being a widely accepted method for luteal phase support during embryo transfer cycles, debates persist regarding the optimal strategy for guiding clinical decisions on progesterone dosages to maximize reproductive outcomes. This retrospective study explored the utility of microRNA (miRNA) biomarkers in guiding personalized progesterone dosage adjustments for frozen embryo transfer (FET) cycles in 22 in vitro fertilization (IVF) patients undergoing hormone replacement therapy. Utilizing MIRA, an miRNA-based endometrial receptivity test, we analyzed patients' miRNA expression profiles before and after progesterone dosage adjustments to determine suitable dosages and assess endometrial status. Despite patients receiving identical progesterone dosages, variations in miRNA profiles were observed in the initial cycle, and all patients presented a displaced window of implantation. Following dosage adjustments based on their miRNA profiles, 91% of patients successfully transitioned their endometrium towards the receptive stages. However, two patients continued to exhibit persistent displaced receptivity despite the adjustments. Given the evident variation in endometrial status and serum progesterone levels among individuals, analyzing miRNA expression profiles may address the challenge of inter-personal variation in serum progesterone levels, to deliver more personalized dosage adjustments and facilitate personalized luteal phase support in IVF.


Assuntos
MicroRNAs , Progesterona , Feminino , Humanos , Fase Luteal , Estudos Retrospectivos , MicroRNAs/genética , Transferência Embrionária , Endométrio
13.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612530

RESUMO

Fluid overload in hemodialysis patients (HD) has been proven to be associated with inflammation. Elevated levels of the pro-inflammatory cytokine interleukin-6 (IL-6) appear to be inadequately counterbalanced by the anti-inflammatory cytokine interleukin-10 (IL-10). We initiated a cross-sectional study enrolling 40 HD patients who were categorized by a bioimpedance measurement in normovolemic (N; 23) and hypervolemic (H; 17) groups to test whether IL-10- and IL-6-related signal transduction pathways (signal transducer of transcript 3: STAT3) and/or a post-transcriptional regulating mechanism (miR-142) are impaired by hypervolemia. IL-10/IL-6 transcript and protein production by PBMCs (peripheral blood mononuclear cells) were determined. Phospho-flow cytometry was used to detect the phosphorylated forms of STAT3 (pY705 and pS727). miR-142-3p/5p levels were detected by qPCR. Hypervolemic patients were older, more frequently had diabetes, and showed higher CRP levels. IL-10 transcripts were elevated in H patients but not IL-10 protein levels. In spite of the elevated mRNA expression of the suppressor of cytokine expression 3 (SOCS3), IL-6 mRNA and protein expression were increased in immune cells of H patients. The percentage of cells staining positive for STAT3 (pY705) were comparable in both groups; in STAT3 (pS727), however, the signal needed for full transactivation was decreased in H patients. miR-142-3p, a proven target of IL-10 and IL-6, was significantly elevated in H patients. Insufficient phosphorylation of STAT3 may impair inflammatory and anti-inflammatory cytokine signaling. How far degradative mechanisms induced by elevated miR-142-3p levels contribute to an inefficient anti-inflammatory IL-10 signaling remains elusive.


Assuntos
Interleucina-10 , MicroRNAs , Humanos , Interleucina-10/genética , Interleucina-6/genética , Estudos Transversais , Leucócitos Mononucleares , Diálise Renal , Citocinas , Transdução de Sinais , Anti-Inflamatórios , RNA Mensageiro , MicroRNAs/genética , Fator de Transcrição STAT3/genética
14.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612567

RESUMO

Autophagy, a catabolic process orchestrating the degradation of proteins and organelles within lysosomes, is pivotal for maintaining cellular homeostasis. However, its dual role in cancer involves preventing malignant transformation while fostering progression and therapy resistance. Vacuole Membrane Protein 1 (VMP1) is an essential autophagic protein whose expression, per se, triggers autophagy, being present in the whole autophagic flux. In pancreatic cancer, VMP1-whose expression is linked to the Kirsten Rat Sarcoma Virus (KRAS) oncogene-significantly contributes to disease promotion, progression, and chemotherapy resistance. This investigation extends to breast cancer, colon cancer, hepatocellular carcinoma, and more, highlighting VMP1's nuanced nature, contingent on specific tissue contexts. The examination of VMP1's interactions with micro-ribonucleic acids (miRNAs), including miR-21, miR-210, and miR-124, enhances our understanding of its regulatory network in cancer. Additionally, this article discusses VMP1 gene fusions, especially with ribosomal protein S6 kinase B1 (RPS6KB1), shedding light on potential implications for tumor malignancy. By deciphering the molecular mechanisms linking VMP1 to cancer progression, this exploration paves the way for innovative therapeutic strategies to disrupt these pathways and potentially improve treatment outcomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias do Colo , Neoplasias Hepáticas , MicroRNAs , Humanos , Autofagia/genética , MicroRNAs/genética , Proteínas de Membrana
15.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612604

RESUMO

Metastasis and drug resistance are major contributors to cancer-related fatalities worldwide. In ovarian cancer (OC), a staggering 70% develop resistance to the front-line therapy, cisplatin. Despite proposed mechanisms, the molecular events driving cisplatin resistance remain unclear. Dysregulated microRNAs (miRNAs) play a role in OC initiation, progression, and chemoresistance, yet few studies have compared miRNA expression in OC samples and cell lines. This study aimed to identify key miRNAs involved in the cisplatin resistance of high-grade-serous-ovarian-cancer (HGSOC), the most common gynecological malignancy. MiRNA expression profiles were conducted on RNA isolated from formalin-fixed-paraffin-embedded human ovarian tumor samples and HGSOC cell lines. Nine miRNAs were identified in both sample types. Targeting these with oligonucleotide miRNA inhibitors (OMIs) reduced proliferation by more than 50% for miR-203a, miR-96-5p, miR-10a-5p, miR-141-3p, miR-200c-3p, miR-182-5p, miR-183-5p, and miR-1206. OMIs significantly reduced migration for miR-183-5p, miR-203a, miR-296-5p, and miR-1206. Molecular pathway analysis revealed that the nine miRNAs regulate pathways associated with proliferation, invasion, and chemoresistance through PTEN, ZEB1, FOXO1, and SNAI2. High expression of miR-1206, miR-10a-5p, miR-141-3p, and miR-96-5p correlated with poor prognosis in OC patients according to the KM plotter database. These nine miRNAs could be used as targets for therapy and as markers of cisplatin response.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , MicroRNAs/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Linhagem Celular , Oligonucleotídeos
16.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612670

RESUMO

We aimed to identify serum exosomal microRNAs (miRNAs) associated with the transition from atrial fibrillation (AF) to sinus rhythm (SR) and investigate their potential as biomarkers for the early recurrence of AF within three months post-treatment. We collected blood samples from eight AF patients at Chang Gung Memorial Hospital in Taiwan both immediately before and within 14 days following rhythm control treatment. Exosomes were isolated from these samples, and small RNA sequencing was performed. Using DESeq2 analysis, we identified nine miRNAs (16-2-3p, 22-3p, 23a-3p, 23b-3p, 125a-5p, 328-3p, 423-5p, 504-5p, and 582-3p) associated with restoration to SR. Further analysis using the DIABLO model revealed a correlation between the decreased expression of miR-125a-5p and miR-328-3p and the early recurrence of AF. Furthermore, early recurrence is associated with a longer duration of AF, presumably indicating a more extensive state of underlying cardiac remodeling. In addition, the reads were mapped to mRNA sequences, leading to the identification of 14 mRNAs (AC005041.1, ARHGEF12, AMT, ANO8, BCL11A, DIO3OS, EIF4ENIF1, G2E3-AS1, HERC3, LARS, NT5E, PITX1, SLC16A12, and ZBTB21) associated with restoration to SR. Monitoring these serum exosomal miRNA and mRNA expression patterns may be beneficial for optimizing treatment outcomes in AF patients.


Assuntos
Fibrilação Atrial , Exossomos , MicroRNAs , Humanos , Fibrilação Atrial/genética , MicroRNAs/genética , Coração , Exossomos/genética , RNA Mensageiro , Anoctaminas
17.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612677

RESUMO

Renal cell carcinoma (RCC) remains a formidable diagnostic challenge, especially in the context of small renal masses. The quest for non-invasive screening tools and biomarkers has steered research towards liquid biopsy, focusing on microRNAs (miRNAs), exosomes, and circulating tumor cells (CTCs). MiRNAs, small non-coding RNAs, exhibit notable dysregulation in RCC, offering promising avenues for diagnosis and prognosis. Studies underscore their potential across various biofluids, including plasma, serum, and urine, for RCC detection and subtype characterization. Encouraging miRNA signatures show correlations with overall survival, indicative of their future relevance in RCC management. Exosomes, with their diverse molecular cargo, including miRNAs, emerge as enticing biomarkers, while CTCs, emanating from primary tumors into the bloodstream, provide valuable insights into cancer progression. Despite these advancements, clinical translation necessitates further validation and standardization, encompassing larger-scale studies and robust evidence generation. Currently lacking approved diagnostic assays for renal cancer, the potential future applications of liquid biopsy in follow-up care, treatment selection, and outcome prediction in RCC patients are profound. This review aims to discuss and highlight recent advancements in liquid biopsy for RCC, exploring their strengths and weaknesses in the comprehensive management of this disease.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Medicina de Precisão , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , MicroRNAs/genética , Biópsia Líquida , Biomarcadores
18.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612703

RESUMO

In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and to explore their possible regulatory network using bioinformatic approaches. AA had a higher impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692) and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division (GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a. Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1. Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs, suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory mechanisms in response to pro-growth signals.


Assuntos
Antifibrinolíticos , MicroRNAs , RNA Longo não Codificante , Dourada , Animais , Aminoácidos , Dourada/genética , RNA Longo não Codificante/genética , 60515 , Fator de Crescimento Insulin-Like I/genética , MicroRNAs/genética , Mioblastos , RNA Mensageiro/genética , Sarcômeros
19.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612727

RESUMO

Pancreatic cancer remains a formidable malignancy characterized by high mortality rates, primarily attributable to late-stage diagnosis and a dearth of effective therapeutic interventions. The identification of reliable biomarkers holds paramount importance in enhancing early detection, prognostic evaluation, and targeted treatment modalities. Small non-coding RNAs, particularly microRNAs, have emerged as promising candidates for pancreatic cancer biomarkers in recent years. In this review, we delve into the evolving role of cellular and circulating miRNAs, including exosomal miRNAs, in the diagnosis, prognosis, and therapeutic targeting of pancreatic cancer. Drawing upon the latest research advancements in omics data-driven biomarker discovery, we also perform a case study using public datasets and address commonly identified research discrepancies, challenges, and limitations. Lastly, we discuss analytical approaches that integrate multimodal analyses incorporating clinical and molecular features, presenting new insights into identifying robust miRNA-centric biomarkers.


Assuntos
Pesquisa Biomédica , MicroRNA Circulante , MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Pâncreas
20.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612763

RESUMO

Idiopathic intellectual disability (IID) encompasses the cases of intellectual disability (ID) without a known cause and represents approximately 50% of all cases. Neural progenitor cells (NPCs) from the olfactory neuroepithelium (NEO) contain the same information as the cells found in the brain, but they are more accessible. Some miRNAs have been identified and associated with ID of known etiology. However, in idiopathic ID, the effect of miRNAs is poorly understood. The aim of this study was to determine the miRNAs regulating the expression of mRNAs that may be involved in development of IID. Expression profiles were obtained using NPC-NEO cells from IID patients and healthy controls by microarray. A total of 796 miRNAs and 28,869 mRNAs were analyzed. Several miRNAs were overexpressed in the IID patients compared to controls. miR-25 had the greatest expression. In silico analysis showed that ROBO2 was the target for miR-25, with the highest specificity and being the most down-regulated. In vitro assay showed an increase of miR-25 expression induced a decrease in ROBO2 expression. In neurodevelopment, ROBO2 plays a crucial role in episodic learning and memory, so its down-regulation, caused by miR-25, could have a fundamental role in the intellectual disability that, until now, has been considered idiopathic.


Assuntos
Deficiência Intelectual , MicroRNAs , Humanos , Deficiência Intelectual/genética , MicroRNAs/genética , Encéfalo , Regulação para Baixo/genética , Aprendizagem , RNA Mensageiro , 60696 , Receptores Imunológicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...