Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.270
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2317197121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579011

RESUMO

Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.


Assuntos
Neomicina , Riboswitch , Neomicina/metabolismo , Neomicina/farmacologia , Simulação de Dinâmica Molecular , Riboswitch/genética , Mutação , Conformação Molecular , Conformação de Ácido Nucleico , Ligantes
2.
Front Immunol ; 15: 1360063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558809

RESUMO

Hepatocellular carcinoma (HCC) and solid cancers with liver metastases are indications with high unmet medical need. Interleukin-12 (IL-12) is a proinflammatory cytokine with substantial anti-tumor properties, but its therapeutic potential has not been realized due to severe toxicity. Here, we show that orthotopic liver tumors in mice can be treated by targeting hepatocytes via systemic delivery of adeno-associated virus (AAV) vectors carrying the murine IL-12 gene. Controlled cytokine production was achieved in vivo by using the tetracycline-inducible K19 riboswitch. AAV-mediated expression of IL-12 led to STAT4 phosphorylation, interferon-γ (IFNγ) production, infiltration of T cells and, ultimately, tumor regression. By detailed analyses of efficacy and tolerability in healthy and tumor-bearing animals, we could define a safe and efficacious vector dose. As a potential clinical candidate, we characterized vectors carrying the human IL-12 (huIL-12) gene. In mice, bioactive human IL-12 was expressed in a vector dose-dependent manner and could be induced by tetracycline, suggesting tissue-specific AAV vectors with riboswitch-controlled expression of highly potent proinflammatory cytokines as an attractive approach for vector-based cancer immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Riboswitch , Camundongos , Humanos , Animais , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Terapia Genética , Interleucina-12/genética , Interleucina-12/metabolismo , Tetraciclina/farmacologia
3.
Nat Commun ; 15(1): 2161, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461302

RESUMO

Human and animal tuberculosis is caused by the Mycobacterium tuberculosis Complex (MTBC), which has evolved a genomic decay of cobalamin (vitamin B12) biosynthetic genes. Accordingly, and in sharp contrast to environmental, opportunistic and ancestor mycobacteria; we demonstrate that M. tuberculosis (Mtb), M. africanum, and animal-adapted lineages, lack endogenous production of cobalamin, yet they retain the capacity for exogenous uptake. A B12 anemic model in immunocompromised and immunocompetent mice, demonstrates improved survival, and lower bacteria in organs, in B12 anemic animals infected with Mtb relative to non-anemic controls. Conversely, no differences were observed between mice groups infected with M. canettii, an ancestor mycobacterium which retains cobalamin biosynthesis. Interrogation of the B12 transcriptome in three MTBC strains defined L-methionine synthesis by metE and metH genes as a key phenotype. Expression of metE is repressed by a cobalamin riboswitch, while MetH requires the cobalamin cofactor. Thus, deletion of metE predominantly attenuates Mtb in anemic mice; although inactivation of metH exclusively causes attenuation in non-anemic controls. Here, we show how sub-physiological levels of B12 in the host antagonizes Mtb virulence, and describe a yet unknown mechanism of host-pathogen cross-talk with implications for B12 anemic populations.


Assuntos
Mycobacterium tuberculosis , Riboswitch , Tuberculose , Animais , Humanos , Camundongos , Vitamina B 12/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Virulência/genética
4.
Wiley Interdiscip Rev RNA ; 15(2): e1832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38448799

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that play a fundamental role in enabling miRNA-mediated target repression, a post-transcriptional gene regulatory mechanism preserved across metazoans. Loss of certain animal miRNA genes can lead to developmental abnormalities, disease, and various degrees of embryonic lethality. These short RNAs normally guide Argonaute (AGO) proteins to target RNAs, which are in turn translationally repressed and destabilized, silencing the target to fine-tune gene expression and maintain cellular homeostasis. Delineating miRNA-mediated target decay has been thoroughly examined in thousands of studies, yet despite these exhaustive studies, comparatively less is known about how and why miRNAs are directed for decay. Several key observations over the years have noted instances of rapid miRNA turnover, suggesting endogenous means for animals to induce miRNA degradation. Recently, it was revealed that certain targets, so-called target-directed miRNA degradation (TDMD) triggers, can "trigger" miRNA decay through inducing proteolysis of AGO and thereby the bound miRNA. This process is mediated in animals via the ZSWIM8 ubiquitin ligase complex, which is recruited to AGO during engagement with triggers. Since its discovery, several studies have identified that ZSWIM8 and TDMD are indispensable for proper animal development. Given the rapid expansion of this field of study, here, we summarize the key findings that have led to and followed the discovery of ZSWIM8-dependent TDMD. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Development.


Assuntos
MicroRNAs , Riboswitch , Animais , MicroRNAs/genética , Interferência de RNA , Proteínas Argonautas/genética
5.
J Biol Chem ; 300(3): 105730, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336293

RESUMO

Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.


Assuntos
Ligantes , RNA Mensageiro , Riboswitch , Bactérias/genética , Bactérias/metabolismo , Riboswitch/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação Bacteriana da Expressão Gênica
6.
mSystems ; 9(3): e0087723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38349171

RESUMO

Since the 1980s, the development of new drug classes for the treatment of multidrug-resistant Klebsiella pneumoniae has become limited, highlighting the urgent need for novel antibiotics. To address this challenge, this study aimed to explore the synergistic interactions between chemical compounds and representative antibiotics, such as carbapenem and colistin. The primary objective of this study was not only to mitigate the adverse impact of multidrug-resistant K. pneumoniae on public health but also to establish a sustainable balance among humans, animals, and the environment. Phenotypical measurements were conducted using the broth microdilution technique to determine the drug sensitivity of bacterial strains. Additionally, a genotypical approach was employed, involving traditional RNA sequencing analysis to identify differentially expressed genes and the computational ANNOgesic tool to detect noncoding RNAs. This study revealed the existence of various pathways and regulatory RNA elements that form a functional network. These pathways, characterized by the expression of specific genes, contribute to the combined treatment effect and bacterial survival strategies. The connections between pathways are facilitated by regulatory RNA elements that respond to environmental changes. These findings suggest an adaptive response of bacteria to harsh environmental conditions.IMPORTANCENoncoding RNAs were identified as key players in post-transcriptional regulation. Moreover, this study predicted the presence of novel small regulatory RNAs that interact with target genes, as well as the involvement of riboswitches and RNA thermometers in conjunction with associated genes. These findings will contribute to the discovery of potential antimicrobial therapeutic candidates. Overall, this study offers valuable insights into the synergistic effects of chemical compounds and antibiotics, highlighting the role of regulatory RNA elements in bacterial response, and survival strategies. The identification of novel noncoding RNAs and their interactions with target genes, riboswitches, and RNA thermometers holds promise for the development of antimicrobial therapies.


Assuntos
Klebsiella pneumoniae , Riboswitch , Animais , Humanos , Klebsiella pneumoniae/genética , Redes Reguladoras de Genes/genética , Antibacterianos/farmacologia , Colistina/metabolismo
7.
ACS Chem Biol ; 19(3): 607-618, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412235

RESUMO

Translational riboswitches located in the 5' UTR of the messenger RNA (mRNA) regulate translation through variation of the accessibility of the ribosome binding site (RBS). These are the result of conformational changes in the riboswitch RNA governed by ligand binding. Here, we use a combination of single-molecule colocalization techniques (Single-Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) and Single-Molecule Kinetic Analysis of Ribosome Binding (SiM-KARB)) and microscale thermophoresis (MST) to investigate the adenine-sensing riboswitch in Vibrio vulnificus, focusing on the changes of accessibility between the ligand-free and ligand-bound states. We show that both methods faithfully report on the accessibility of the RBS within the riboswitch and that both methods identify an increase in accessibility upon adenine binding. Expanding on the regulatory context, we show the impact of the ribosomal protein S1 on the unwinding of the RNA secondary structure, thereby favoring ribosome binding even for the apo state. The determined rate constants suggest that binding of the ribosome is faster than the time required to change from the ON state to the OFF state, a prerequisite for efficient regulation decision.


Assuntos
Riboswitch , Adenina/química , Ligantes , Cinética , Ribossomos/metabolismo , Conformação de Ácido Nucleico
8.
Nucleic Acids Res ; 52(6): 3164-3179, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375901

RESUMO

The capacity of riboswitches to undergo conformational changes in response to binding their native ligands is closely tied to their functional roles and is an attractive target for antimicrobial drug design. Here, we established a probe-based fluorescence anisotropy assay to monitor riboswitch conformational switching with high sensitivity and throughput. Using the Bacillus subtillis yitJ S-Box (SAM-I), Fusobacterium nucleatum impX RFN element of (FMN) and class-I cyclic-di-GMP from Vibrio cholerae riboswitches as model systems, we developed short fluorescent DNA probes that specifically recognize either ligand-free or -bound riboswitch conformational states. We showed that increasing concentrations of native ligands cause measurable and reproducible changes in fluorescence anisotropy that correlate with riboswitch conformational changes observed by native gel analysis. Furthermore, we applied our assay to several ligand analogues and confirmed that it can discriminate between ligands that bind, triggering the native conformational change, from those that bind without causing the conformational change. This new platform opens the possibility of high-throughput screening compound libraries to identify potential new antibiotics that specifically target functional conformational changes in riboswitches.


Assuntos
Ensaios de Triagem em Larga Escala , Riboswitch , Polarização de Fluorescência , Ligantes , Conformação de Ácido Nucleico , Sondas de DNA/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Bactérias/genética , Bactérias/metabolismo
9.
RNA ; 30(4): 381-391, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38253429

RESUMO

Bacterial riboswitches are molecular structures that play a crucial role in controlling gene expression to maintain cellular balance. The Escherichia coli lysC riboswitch has been previously shown to regulate gene expression through translation initiation and mRNA decay. Recent research suggests that lysC gene expression is also influenced by Rho-dependent transcription termination. Through a series of in silico, in vitro, and in vivo experiments, we provide experimental evidence that the lysC riboswitch directly and indirectly modulates Rho transcription termination. Our study demonstrates that Rho-dependent transcription termination plays a significant role in the cotranscriptional regulation of lysC expression. Together with previous studies, our work suggests that lysC expression is governed by a lysine-sensing riboswitch that regulates translation initiation, transcription termination, and mRNA degradation. Notably, both Rho and RNase E target the same region of the RNA molecule, implying that RNase E may degrade Rho-terminated transcripts, providing a means to selectively eliminate these incomplete messenger RNAs. Overall, this study sheds light on the complex regulatory mechanisms used by bacterial riboswitches, emphasizing the role of transcription termination in the control of gene expression and mRNA stability.


Assuntos
Riboswitch , Riboswitch/genética , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição Gênica , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo
10.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255809

RESUMO

Antibiotic resistance remains a pressing global concern, with most antibiotics targeting the bacterial ribosome or a limited range of proteins. One class of underexplored antibiotic targets is bacterial riboswitches, structured RNA elements that regulate key biosynthetic pathways by binding a specific ligand. We developed a methodology termed Fluorescent Ligand Equilibrium Displacement (FLED) to rapidly discover small molecules that bind the flavin mononucleotide (FMN) riboswitch. FLED leverages intrinsically fluorescent FMN and the quenching effect on RNA binding to create a label-free, in vitro method to identify compounds that can bind the apo population of riboswitch in a system at equilibrium. The response difference between known riboswitch ligands and controls demonstrates the robustness of the method for high-throughput screening. An existing drug discovery library that was screened using FLED resulted in a final hit rate of 0.67%. The concentration response of each hit was determined and revealed a variety of approximate effective concentration values. Our preliminary screening data support the use of FLED to identify small molecules for medicinal chemistry development as FMN riboswitch-targeted antibiotic compounds. This robust, label-free, and cell-free method offers a strong alternative to other riboswitch screening methods and can be adapted to a variety of laboratory setups.


Assuntos
Riboswitch , Ligantes , Antibacterianos/farmacologia , Química Farmacêutica , Corantes , RNA
11.
Sci Rep ; 14(1): 2377, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287027

RESUMO

Leveraging riboswitches, non-coding mRNA fragments pivotal to gene regulation, poses a challenge in effectively selecting and enriching these functional genetic sensors, which can toggle between ON and OFF states in response to their cognate inducers. Here, we show our engineered phage T7, enabling the evolution of a theophylline riboswitch. We have replaced T7's DNA polymerase with a transcription factor controlled by a theophylline riboswitch and have created two types of host environments to propagate the engineered phage. Both types host an error-prone T7 DNA polymerase regulated by a T7 promoter along with another critical gene-either cmk or pifA, depending on the host type. The cmk gene is necessary for T7 replication and is used in the first host type for selection in the riboswitch's ON state. Conversely, the second host type incorporates the pifA gene, leading to abortive T7 infections and used for selection in the riboswitch's OFF state. This dual-selection system, termed T7AE, was then applied to a library of 65,536 engineered T7 phages, each carrying randomized riboswitch variants. Through successive passage in both host types with and without theophylline, we observed an enrichment of phages encoding functional riboswitches that conferred a fitness advantage to the phage in both hosts. The T7AE technique thereby opens new pathways for the evolution and advancement of gene switches, including non-coding RNA-based switches, setting the stage for significant strides in synthetic biology.


Assuntos
Bacteriófagos , Riboswitch , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Riboswitch/genética , Teofilina/farmacologia , Bacteriófagos/genética , DNA Polimerase Dirigida por DNA/metabolismo
12.
Appl Environ Microbiol ; 90(2): e0166523, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38185820

RESUMO

Gene inactivation by creating in-frame deletion mutations in Fusobacterium nucleatum is time consuming, and most fusobacterial strains are genetically intractable. Addressing these problems, we introduced a riboswitch-based inducible CRISPR interference (CRISPRi) system. This system employs the nuclease-inactive Streptococcus pyogenes Cas9 protein (dCas9), specifically guided to the gene of interest by a constantly expressed single-guide RNA (sgRNA). Mechanistically, this dCas9-sgRNA complex serves as an insurmountable roadblock for RNA polymerase, thus repressing the target gene transcription. Leveraging this system, we first examined two non-essential genes, ftsX and radD, which are pivotal for fusobacterial cytokinesis and coaggregation. Upon adding the inducer, theophylline, ftsX suppression caused filamentous cell formation akin to chromosomal ftsX deletion, while targeting radD significantly reduced RadD protein levels, abolishing RadD-mediated coaggregation. The system was then extended to probe essential genes bamA and ftsZ, which are vital for outer membrane biogenesis and cell division. Impressively, bamA suppression disrupted membrane integrity and bacterial separation, stalling growth, while ftsZ targeting yielded elongated cells in broth with compromised agar growth. Further studies on F. nucleatum clinical strain CTI-2 and Fusobacterium periodonticum revealed reduced indole synthesis when targeting tnaA. Moreover, silencing clpB in F. periodonticum decreased ClpB, increasing thermal sensitivity. In summary, our CRISPRi system streamlines gene inactivation across various fusobacterial strains.IMPORTANCEHow can we effectively investigate the gene functions in Fusobacterium nucleatum, given the dual challenges of gene inactivation and the inherent genetic resistance of many strains? Traditional methods have been cumbersome and often inadequate. Addressing this, our work introduces a novel inducible CRISPR interference (CRISPRi) system in which dCas9 expression is controlled at the translation level by a theophylline-responsive riboswitch unit, and single-guide RNA expression is driven by the robust, constitutive rpsJ promoter. This approach simplifies gene inactivation in the model organism (ATCC 23726) and extends its application to previously considered genetically intractable strains like CTI-2 and Fusobacterium periodonticum. With CRISPRi's potential, it is a pivotal tool for in-depth genetic studies into fusobacterial pathogenesis, potentially unlocking targeted therapeutic strategies.


Assuntos
Fusobacterium nucleatum , Fusobacterium , Riboswitch , RNA Guia de Sistemas CRISPR-Cas , Teofilina/metabolismo , Inativação Gênica
13.
Nucleic Acids Res ; 52(2): 872-884, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000388

RESUMO

The glmS ribozyme riboswitch, located in the 5' untranslated region of the Bacillus subtilis glmS messenger RNA (mRNA), regulates cell wall biosynthesis through ligand-induced self-cleavage and decay of the glmS mRNA. Although self-cleavage of the refolded glmS ribozyme has been studied extensively, it is not known how early the ribozyme folds and self-cleaves during transcription. Here, we combine single-molecule fluorescence with kinetic modeling to show that self-cleavage can occur during transcription before the ribozyme is fully synthesized. Moreover, co-transcriptional folding of the RNA at a physiological elongation rate allows the ribozyme catalytic core to react without the downstream peripheral stability domain. Dimethyl sulfate footprinting further revealed how slow sequential folding favors formation of the native core structure through fraying of misfolded helices and nucleation of a native pseudoknot. Ribozyme self-cleavage at an early stage of transcription may benefit glmS regulation in B. subtilis, as it exposes the mRNA to exoribonuclease before translation of the open reading frame can begin. Our results emphasize the importance of co-transcriptional folding of RNA tertiary structure for cis-regulation of mRNA stability.


Assuntos
Bacillus subtilis , RNA Bacteriano , RNA Catalítico , Riboswitch , Bacillus subtilis/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Domínio Catalítico , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Catalítico/química
14.
Nucleic Acids Res ; 52(D1): D265-D272, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37855663

RESUMO

Riboswitches are regulatory elements found in the untranslated regions (UTRs) of certain mRNA molecules. They typically comprise two distinct domains: an aptamer domain that can bind to specific small molecules, and an expression platform that controls gene expression. Riboswitches work by undergoing a conformational change upon binding to their specific ligand, thus activating or repressing the genes downstream. This mechanism allows gene expression regulation in response to metabolites or small molecules. To systematically summarise riboswitch structures and their related ligand binding functions, we present Ribocentre-switch, a comprehensive database of riboswitches, including the information as follows: sequences, structures, functions, ligand binding pockets and biological applications. It encompasses 56 riboswitches and 26 orphan riboswitches from over 430 references, with a total of 89 591 sequences. It serves as a good resource for comparing different riboswitches and facilitating the identification of potential riboswitch candidates. Therefore, it may facilitate the understanding of RNA structural conformational changes in response to ligand signaling. The database is publicly available at https://riboswitch.ribocentre.org.


Assuntos
Bases de Dados de Ácidos Nucleicos , Riboswitch , Ligantes , Conformação de Ácido Nucleico , Sequências Reguladoras de Ácido Nucleico , Transdução de Sinais
15.
Small ; 20(2): e2304852, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658499

RESUMO

Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.


Assuntos
Técnicas Biossensoriais , Riboswitch , Técnicas Biossensoriais/métodos , Terapia Biológica , Antibacterianos
16.
Photochem Photobiol ; 100(2): 419-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38098287

RESUMO

Riboswitches are mRNA segments that regulate gene expression in response to ligand binding. The Class I preQ1 riboswitch consists of a stem-loop and an adenine-rich single-stranded tail ("L3"), which adopt a pseudoknot structure upon binding of the ligand preQ1 . We inserted 2-aminopurine (2-AP), a fluorescent analogue of adenine (A), into the riboswitch at six different positions within L3. Here, 2-AP functions both as a spectroscopic probe and as a "mutation" that reveals how alteration of specific A residues impacts the riboswitch. Using fluorescence and circular dichroism spectroscopy, we found that 2-AP decreases the affinity of the riboswitch for preQ1 at all labeling positions tested, although modified and unmodified variants undergo the same global conformational changes at sufficiently high preQ1 concentration. 2-AP substitution is most detrimental to ligand binding at sites proximal to the ligand-binding pocket, while distal labeling sites exhibit the largest impacts on the stability of the L3 domain in the absence of ligand. Insertion of multiple 2-AP residues does not induce significant additional disruptions. Our results show that interactions involving the A residues in L3 play a critical role in ligand recognition by the preQ1 riboswitch and that 2-AP substitution exerts complex and varied impacts on this riboswitch.


Assuntos
Riboswitch , Ligantes , Adenina , Conformação de Ácido Nucleico
17.
J Chem Theory Comput ; 20(1): 421-435, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134376

RESUMO

Riboswitches are mRNA segments that regulate gene expression through conformational changes driven by their cognate ligand binding. The ykkC motif forms a riboswitch class that selectively senses a guanidinium ion (Gdm+) and regulates the downstream expression of proteins which aid in the efflux of excess Gdm+ from the cells. The aptamer domain (AD) of the guanidine-III riboswitch forms an H-type pseudoknot with a triple helical domain that binds a Gdm+. We studied the binding of Gdm+ to the AD of the guanidine (ykkC)-III riboswitch using computer simulations to probe the specificity of the riboswitch to Gdm+ binding. We show that Gdm+ binding is a fast process occurring on the nanosecond time scale, with minimal conformational changes to the AD. Using machine learning and Markov-state models, we identified the excited conformational states of the AD, which have a high Gdm+ binding propensity, making the Gdm+ binding landscape complex exhibiting both conformational selection and induced-fit mechanisms. The proposed apo-AD excited states and their role in the ligand-sensing mechanism are amenable to experimental verification. Further, targeting these excited-state conformations in discovering new antibiotics can be explored.


Assuntos
Riboswitch , Guanidina/química , Conformação de Ácido Nucleico , Ligantes , Guanidinas/metabolismo
18.
ACS Synth Biol ; 12(12): 3716-3729, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38052004

RESUMO

Riboswitches are noncoding RNA switches that are largely utilized in bacteria and play a significant role in synthetic biology. Nonetheless, their natural counterparts possess lengthy sequences and intricate structures, posing challenges for their modular integration into complex gene circuits. Consequently, it is imperative to develop simplified synthetic riboswitches that can be effortlessly incorporated into gene circuits. The conventional approach to generate synthetic riboswitches entails tedious library construction and extensive screening, which frequently yields suboptimal performance. To overcome this obstacle, alternative methods are urgently needed. In this study, we created a novel approach to designing a diverse set of transcription-activating riboswitches that exhibit high performance and broad compatibility. The strategy involved starting with a synthetic theophylline RNA aptamer and designing an expression platform that forms a transcriptional terminator in its inactive state but switches to an antiterminator when it is activated. Several sequences were designed, constructed, and subjected to virtual screening, resulting in the identification of two transcription-activating riboswitches. These riboswitches were then engineered to reduce the basal leakage and increase the activation level through extending the hairpin region using a screened random sequence. These architecturally minimal synthetic riboswitches were highly adapted to different constitutive promoters in a modular manner, generating a differentially responsive output to theophylline. As a proof-of-principle, the synthetic riboswitches were applied to rewire a synthetic quorum-sensing circuit (QSC). The reprogrammed QSC successfully modulated the temporal responsive profile against the activation. This strategy is expected to expand the variety of high-performance riboswitches that are responsive to different ligands, thereby further facilitating the design of complex genetic circuits.


Assuntos
Aptâmeros de Nucleotídeos , Riboswitch , Riboswitch/genética , Teofilina/farmacologia , Teofilina/metabolismo , Regiões Promotoras Genéticas/genética , Redes Reguladoras de Genes , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/química
19.
Cell Rep ; 42(12): 113571, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096053

RESUMO

Natural polyamines such as spermidine and spermine cations have characteristics that make them highly likely to be sensed by riboswitches, such as their general affinity to polyanionic RNA and their broad contributions to cell physiology. Despite previous claims that polyamine riboswitches exist, evidence of their biological functions has remained unconvincing. Here, we report that rare variants of bacterial S-adenosylmethionine-I (SAM-I) riboswitches reject SAM and have adapted to selectively sense spermidine. These spermidine-sensing riboswitch variants are associated with genes whose protein products are directly involved in the production of spermidine and other polyamines. Biochemical and genetic assays demonstrate that representatives of this riboswitch class robustly function as genetic "off" switches, wherein spermidine binding causes premature transcription termination to suppress the expression of polyamine biosynthetic genes. These findings confirm the existence of natural spermidine-sensing riboswitches in bacteria and expand the list of variant riboswitch classes that have adapted to bind different ligands.


Assuntos
Riboswitch , Riboswitch/genética , S-Adenosilmetionina/metabolismo , Espermidina , Coenzimas/metabolismo , Oligonucleotídeos , Bactérias/genética , Bactérias/metabolismo , Conformação de Ácido Nucleico
20.
Nat Commun ; 14(1): 7394, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968328

RESUMO

T-box riboswitches are unique riboregulators where gene regulation is mediated through interactions between two highly structured RNAs. Despite extensive structural insights, how RNA-RNA interactions drive the folding and structural transitions of T-box to achieve functional conformations remains unclear. Here, by combining SAXS, single-molecule FRET and computational modeling, we elaborate the folding energy landscape of a translational T-box aptamer consisting of stems I, II and IIA/B, which Mg2+-induced global folding and tRNA binding are cooperatively coupled. smFRET measurements reveal that high Mg2+ stabilizes IIA/B and its stacking on II, which drives the pre-docking of I and II into a competent conformation, subsequent tRNA binding promotes docking of I and II to form a high-affinity tRNA binding groove, of which the essentiality of IIA/B and S-turn in II is substantiated with mutational analysis. We highlight a delicate balance among Mg2+, the intra- and intermolecular RNA-RNA interactions in modulating RNA folding and function.


Assuntos
Riboswitch , Riboswitch/genética , Conformação de Ácido Nucleico , Espalhamento a Baixo Ângulo , Difração de Raios X , RNA de Transferência/metabolismo , Dobramento de RNA , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...