Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.342
Filtrar
1.
Food Chem ; 462: 140925, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39190981

RESUMO

Grape pomace (GP) and pecan shell (PS) are two by-products rich in phenolic compounds (PC), and dietary fiber (DF) that may be considered for the development of functional baked foods. In this study, four formulations with different GP:PS ratios (F1(8%:5%), F2(5%:5%), F3(5%:2%), F4(0%:5%), and control bread (CB)) were elaborated and characterized (physiochemical and phytochemical content). Also, their inner structure (SEM), changes in their FTIR functional group's vibrations, and the bioaccessibility of PC and sugars, including an in vitro glycemic index, were analyzed. Results showed that all GP:PS formulations had higher mineral, protein, DF (total, soluble, and insoluble), and PC content than CB. Additionally, PC and non-starch polysaccharides affected gluten and starch absorbance and pores distribution. In vitro digestion model showed a reduction in the glycemic index for all formulations, compared to CB. These findings highlight the possible health benefits of by-products and their interactions in baked goods.


Assuntos
Pão , Fibras na Dieta , Índice Glicêmico , Fenóis , Vitis , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Pão/análise , Vitis/química , Fenóis/química , Fenóis/metabolismo , Humanos , Digestão , Alimentos Fortificados/análise , Resíduos/análise
2.
Food Chem ; 462: 141017, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216379

RESUMO

The Atlantic salmon is an extremely popular fish for its nutritional value and unique taste among several fish species. Researchers are focusing on the utilization of Atlantic salmon waste for generating protein hydrolysates rich in peptides and amino acids and investigating their health benefits. Several technological approaches, including enzymatic, chemical, and the recently developed subcritical water hydrolysis, are currently used for the production of Atlantic salmon waste protein hydrolysates. Hydrolyzing various wastes, e.g., heads, bones, skin, viscera, and trimmings, possessing antioxidant, blood pressure regulatory, antidiabetic, and anti-inflammatory properties, resulting in applications in human foods and nutraceuticals, animal farming, pharmaceuticals, cell culture, and cosmetics industries. Furthermore, future applications, constraints several challenges associated with industrial hydrolysate production, including sensory, safety, and economic constraints, which could be overcome by suggested techno processing measures. Further studies are recommended for developing large-scale, commercially viable production methods, focusing on eradicating sensory constraints and facilitating large-scale application.


Assuntos
Proteínas de Peixes , Hidrolisados de Proteína , Salmo salar , Animais , Salmo salar/metabolismo , Hidrolisados de Proteína/química , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Humanos , Hidrólise , Resíduos/análise
3.
Food Chem ; 462: 141000, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241686

RESUMO

Food waste, accounting for about one-third of the total global food resources wasted each year, is a substantial challenge to global sustainability, contributing to adverse environmental impacts. The utilization of food waste as a valuable source for bioactive extraction can be facilitated through the application of DES (Deep Eutectic Solvents). Acknowledging the significant need to tackle this issue, the United Nations integrated food waste management into its Sustainable Development Goals, hence, the present review explores the role of DES in bioactive compounds extraction from food waste. Various extraction processes using the DES system are thoroughly studied and the application of bioactive components as antioxidants, antimicrobials, flavourings, nutraceuticals, functional ingredients, additives, and preservatives is investigated. Most importantly, regulatory considerations and safety aspects of DES in food applications are discussed in-depth along with consumer perception and acceptance of DES in the food sector. The key hypothesis of the review is to evaluate emerging DES systems for their efficiency in bioactive extraction technologies and various food applications. Overall, this review provides a comprehensive understanding of utilizing DES for synthesizing valuable food waste-derived bioactive components, offering a sustainable approach to waste management and the development of high-value products.


Assuntos
Solventes Eutéticos Profundos , Desenvolvimento Sustentável , Solventes Eutéticos Profundos/química , Resíduos/análise , Gerenciamento de Resíduos/métodos , Humanos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Perda e Desperdício de Alimentos
4.
Nature ; 633(8028): 101-108, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232151

RESUMO

Negotiations for a global treaty on plastic pollution1 will shape future policies on plastics production, use and waste management. Its parties will benefit from a high-resolution baseline of waste flows and plastic emission sources to enable identification of pollution hotspots and their causes2. Nationally aggregated waste management data can be distributed to smaller scales to identify generalized points of plastic accumulation and source phenomena3-11. However, it is challenging to use this type of spatial allocation to assess the conditions under which emissions take place12,13. Here we develop a global macroplastic pollution emissions inventory by combining conceptual modelling of emission mechanisms with measurable activity data. We define emissions as materials that have moved from the managed or mismanaged system (controlled or contained state) to the unmanaged system (uncontrolled or uncontained state-the environment). Using machine learning and probabilistic material flow analysis, we identify emission hotspots across 50,702 municipalities worldwide from five land-based plastic waste emission sources. We estimate global plastic waste emissions at 52.1 [48.3-56.3] million metric tonnes (Mt) per year, with approximately 57% wt. and 43% wt. open burned and unburned debris, respectively. Littering is the largest emission source in the Global North, whereas uncollected waste is the dominant emissions source across the Global South. We suggest that our findings can help inform treaty negotiations and develop national and sub-national waste management action plans and source inventories.


Assuntos
Cidades , Monitoramento Ambiental , Poluição Ambiental , Internacionalidade , Microplásticos , Gerenciamento de Resíduos , Resíduos , Cidades/estatística & dados numéricos , Poluição Ambiental/análise , Mapeamento Geográfico , Cooperação Internacional , Aprendizado de Máquina , Microplásticos/análise , Gerenciamento de Resíduos/legislação & jurisprudência , Gerenciamento de Resíduos/estatística & dados numéricos , Resíduos/análise
5.
Compr Rev Food Sci Food Saf ; 23(5): e13422, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39245910

RESUMO

Food wastes can be a valuable reservoir of bioactive substances that can serve as natural preservatives in foods or as functional ingredients with potential health benefits. The antimicrobial properties of protein hydrolysates, especially antimicrobial peptides (AMPs) derived from food byproducts (FBs), have been extensively explored. These protein fragments are defined by their short length, low molecular weight, substantial content of hydrophobic and basic amino acids, and positive net charge. The intricate mechanisms by which these peptides exert their antimicrobial effects on microorganisms and pathogens have been elaborately described. This review also focuses on techniques for producing and purifying AMPs from diverse FBs, including seafood, livestock, poultry, plants, and dairy wastes. According to investigations, incorporating AMPs as additives and alternatives to chemical preservatives in food formulations and packaging materials has been pursued to enhance both consumer health and the shelf life of foods and their products. However, challenges associated with the utilization of AMPs derived from food waste depend on their interaction with the food matrix, acceptability, and commercial viability. Overall, AMPs can serve as alternative safe additives, thereby ensuring the safety and prolonging the storage duration of food products based on specific regulatory approvals as recommended by the respective safety authorities.


Assuntos
Peptídeos Antimicrobianos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Animais , Resíduos/análise
6.
Compr Rev Food Sci Food Saf ; 23(5): e70008, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223761

RESUMO

Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.


Assuntos
Exoesqueleto , Quitina , Quitosana , Quitina/química , Quitosana/química , Animais , Exoesqueleto/química , Resíduos/análise , Penaeidae/química , Crustáceos/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-39227166

RESUMO

Spent coffee grounds (SCG) are commercial waste that are still rich in numerous valuable ingredients and can be further processed into useful products such as coffee oil, antioxidant extract, lactic acid, and lignin. The challenge and innovation is to develop the SCG processing technology, maximizing the use of raw material and minimizing the use of other resources within the sequential process. The presented research is focused on the aspect of biotechnological production of lactic acid from SCG by using the Lacticaseibacillus rhamnosus strain isolated from the environment. Thanks to the optimization of the processes of acid hydrolysis, neutralization, enzymatic hydrolysis of SCG, and fermentation, the obtained concentration of lactic acid was increased after 72 hr of culture from the initial 4.60 g/l to 48.6 g/l. In addition, the whole process has been improved, taking into account the dependence on other processes within the complete SCG biorefinery, economy, energy, and waste aspects. Costly enzymatic hydrolysis was completely eliminated, and it was proven that supplementation of SCG hydrolysate with expensive yeast extract can be replaced by cheap waste from the agri-food industry. ONE-SENTENCE SUMMARY: A process for efficient lactic acid production from spent coffee grounds using the Lacticaseibacillus rhamnosus strain was developed and optimized, including nutrient solution preparation, supplementation and fermentation.


Assuntos
Café , Fermentação , Ácido Láctico , Lacticaseibacillus rhamnosus , Lacticaseibacillus rhamnosus/metabolismo , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Café/química , Hidrólise , Resíduos
8.
Bioresour Technol ; 412: 131370, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39209229

RESUMO

The production of alternative proteins is of great significance in the mitigation of food problems. This study proposes an integrated approach including protein extraction, enzymatic hydrolysis, and fermentation to produce both plant proteins and single-cell proteins as alternative proteins from tobacco leaves, a highly-abundant and protein-rich agricultural waste. Alkaline extraction of proteins before polysaccharide hydrolysis was found to be preferable for increasing the yields of plant proteins and mono-sugars. The combined use of pectinase-rich enzymes from Aspergillus brunneoviolaceus and hemicellulase-rich enzymes from Penicillium oxalicum achieved the release of 80.7 % of the sugars after 72 h. Cutaneotrichosporon cutaneum could simultaneously utilize multiple sugars, including galacturonic acid, in the enzymatic hydrolysate to produce single-cell proteins. Via this approach, 43.54 g crude proteins of high protein contents and rich in essential amino acids can be produced from 100.00 g waste tobacco leaves, providing a promising strategy for its valorization.


Assuntos
Nicotiana , Pectinas , Folhas de Planta , Proteínas de Plantas , Nicotiana/metabolismo , Pectinas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Hidrólise , Poligalacturonase/metabolismo , Fermentação , Glicosídeo Hidrolases/metabolismo , Aspergillus/metabolismo , Álcalis , Penicillium/metabolismo , Proteínas Fúngicas/metabolismo , Resíduos , Proteínas Alimentares
9.
Bioresour Technol ; 412: 131397, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216704

RESUMO

In the current study, a novel heterogeneous catalyst has been prepared from waste coconut trunk biomass using an ultrasound-assisted batch reactor. It is observed from the characterization studies that the raw coconut trunk biomass consists of the maximum amount of silicon dioxide (SiO2) present in it which is further converted to mullite (composition of 3Al2O3.2SiO2) with a composition of 94.18 % (analyzed through Energy Dispersive Spectroscopy (EDAX) studies) is formed through the reaction in an ultrasound reactor processed at a very mild reaction temperature and reaction time 80℃ and 90mins. Synthesis of catalyst at mild process conditions will help to enhance the formation of energy-intensive products at a low cost. It is also observed from the XRD studies of raw feedstock and synthesized catalyst a change in the crystalline structure from hexagonal silicon dioxide to orthorhombic mullite shape. In comparison with the surface area of the raw biomass and mullite, a large amount of surface area âˆ¼ 32 m2/g is observed which is due to the process of reaction in a highly intense ultrasound reactor. A change in the morphological structure of raw feedstock and synthesized catalyst is also observed through scanning electron microscope (SEM) analysis. The activity of the synthesized catalyst has been analyzed through its application in the production of biodiesel from waste cooking oil is also studied., and a yield of 75 % with a conversion of 74 % is observed at process conditions of 1:3 (oil: ethanol) (volumetric ratio), 3 (wt%) of catalyst concentration and 3hrs of reaction time. A prospective aspect of the implication of the entire work to analyze the life cycle analysis (LCA) is also reported in terms of environmental friendliness and sustainability.


Assuntos
Biocombustíveis , Biomassa , Cocos , Cocos/química , Catálise , Dióxido de Silício/química , Difração de Raios X , Resíduos
10.
Bioresour Technol ; 411: 131357, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39197661

RESUMO

Pretreatments to improve the efficiency of anaerobic digestion (AD) have gained more attention. The efficiency and mechanism of neutral protease (NP) integrated with other methods remain unclear. This study investigated the efficacy of thermal, alkaline and ultrasonic technologies integrated with NP as the pre-treatments for AD of food waste and dewatered sludge. Results showed the thermal method integrated with NP (TH-NP) was the most effective, achieving a 104.2% improvement in methane production. In this case, TH-NP increased soluble chemical oxygen demand and protein concentrations by 8.6% and 39.8%, respectively. Microbial community analysis indicated that TH-NP promoted the symbiosis between Woesearchaeales and hydrogenotrophic methanogenesis. Furthermore, the PICRUSt2 analysis revealed that TH-NP increased the activities of most enzymes in the acetate and propionate metabolic pathways. In summary, TH-NP is more effective in increasing the AD efficiency compared to other combined pretreatments. This study provides theoretical support for protease-induced pretreatment technology.


Assuntos
Metano , Peptídeo Hidrolases , Esgotos , Metano/metabolismo , Anaerobiose , Peptídeo Hidrolases/metabolismo , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Alimentos , Álcalis/farmacologia , Ultrassom/métodos , Resíduos , Perda e Desperdício de Alimentos
11.
Environ Monit Assess ; 196(9): 777, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095686

RESUMO

Efforts are ongoing to utilise agricultural waste to achieve a full resource use approach. Bambara groundnut is an important crop widely grown in the sub-Saharan Africa with potential future importance because of its resilience to thrive under heightened weather uncertainty and widespread droughts that have challenged food security. After harvesting, the edible nuts are separated from the shells which are discarded as waste. Therefore, this research is aimed at characterising the chemical composition and the structural properties of Bambara groundnut shells (BGS) in view of their potential application as a biomass for different bio-products. The chemical composition of BGS was found to be 42.4% cellulose, 27.8% hemicellulose, 13% lignin and 16.8% extractives. Proximate analysis showed a high amount of volatile matter (69.1%) and low moisture (4.4%). XRD analysis confirmed crystallinity of cellulose I polymer and FTIR analysis observed functional groups of lignocellulosic compounds. Thermal stability, maximum degradation temperature and activation energy were found to be 178.5 °C, 305.7 °C and 49.4 kJ/mol, respectively. Compared to other nutshells, BGS were found to have a relatively high amount of cellulose and crystallinity that may result in biocomposites with improved mechanical properties.


Assuntos
Biomassa , Vigna , Vigna/química , Lignina/química , Lignina/análise , Celulose/química , Celulose/análise , Resíduos/análise , Nozes/química , Biocombustíveis , Polissacarídeos
12.
Environ Pollut ; 360: 124659, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097262

RESUMO

The ingestion of debris by marine fauna is a growing threat to biodiversity. This study aimed to evaluate and characterize litter ingestion by odontocetes from the Western South Atlantic. Between 2018 and 2022, 154 stomachs from six species were collected from stranded individuals and incidental captures. Stomach contents were analyzed with the naked eye and items of anthropic origin found were counted and physically/chemically characterized. Generalized Linear Models were used to evaluate the influence of biological factors on the presence/absence of litter in stomachs, and for Pontoporia blainvillei only, the influence of these factors on the number of ingested items was also tested; additionally, a temporal analysis of ingestion was done for this species (1994-2022). A total of 156 items, mainly macro-sized plastics made of polypropylene, were found in 52 stomachs of four species: Tursiops spp. (FO% = 3.3%), Steno bredanensis (10.0%), Delphinus delphis (28.6%) and P. blainvillei (47.5%). The presence/absence of litter was explained only by species (χ2 = 28.29 and p < 0.001). For P. blainvillei, a threatened species in the region, the number of items was positively influenced by individual size (χ2 = 6.01 and p = 0.01) and sex (χ2 = 7.93 and p = 0.005). There was an increase in plastic ingestion by this species over the years (χ2 = 121.6 and p < 0.001) and it was estimated that 75% of P. blainvillei stomachs will contain plastic by 2040. The ingestion of litter by odontocetes from the Western South Atlantic was confirmed and the potential risks posed by this type of pollution were evidenced, especially since these species also face other anthropic pressures. These results further demonstrate the increasing threat of litter in the ocean and highlight the importance of circularity of plastics and proper waste management.


Assuntos
Espécies em Perigo de Extinção , Plásticos , Plásticos/análise , Animais , Monitoramento Ambiental/métodos , Oceano Atlântico , Feminino , Conteúdo Gastrointestinal/química , Masculino , Ingestão de Alimentos , Resíduos/análise
13.
Luminescence ; 39(8): e4830, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39129381

RESUMO

Fabricating metal oxide nanoparticles has garnered much attention lately because creating safe chemicals, sustainable materials, economic processes, and renewable resources is becoming increasingly important. This research shows how TiO2 nanoparticles (NPs) could be generated in an ecologically responsible way using waste coconut husk with the help of tender coconut. This extract functions as both a reducing agent and a sealing agent. The investigation of TiO2 NPs exploited ultraviolet (UV), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray (EDX) methods. The germicidal properties of TiO2 NPs against food-borne pathogenic strains were studied using the agar well method. Employing Congo red pigment, the photodecomposition behavior was investigated. The TiO2 NPs produced had a crystallite size measuring 16.2 nm. The average grain size of the sample, as measured by FE-SEM inspection, falls within the range of 15 to 25 nm. Impressive anti-germ effects against food-borne germs like Gram-positive (Staphylococcus aureus and Listeria monocytogenes), Gram-negative (Salmonella typhimurium and Escherichia coli) bacteria, and fungi (Candida albicans and Aspergillus niger) have been proved by the sustainable fabrication of TiO2 NPs. The catalytic effectiveness of Congo red decreased by 88% after 90 min. The findings suggest that sustainable synthesis of TiO2 NPs is an effective tool for food-borne germicides and photodecomposition behaviors.


Assuntos
Cocos , Titânio , Titânio/química , Titânio/farmacologia , Cocos/química , Resíduos/análise , Nanopartículas Metálicas/química , Luminescência , Microbiologia de Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana , Processos Fotoquímicos , Tamanho da Partícula
14.
Mar Pollut Bull ; 206: 116758, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098135

RESUMO

The nearshore zone turns out to be the area with the higher concentration of plastic debris and, for this reason, it is important to know the processes that affect the transport and the fate of this type of litter. This study focuses on investigating the dynamics of various plastic types under several hydrodynamic conditions primarily induced by waves. 2D tests were carried out at the Hydraulic Laboratory of the University of Messina reproducing the main phenomena that occurred during the wave propagation on a planar beach. More than 200 different conditions were tested changing the wave characteristics, the water depth, the plastic debris characteristics (density and shape), and the roughness of the fixed bottom. In general, it can be observed that the reduction in particle displacement occurs due to: i) a decrease in wave steepness; ii) an increase in depth; iii) an increase in particle size; iv) an increase in plastic density. However, the experimental investigation shows that some plastic characteristics and bed roughness, even when hydraulically smooth, can alter these results. The experimental data analysis identified a criterion for predicting the short-term fate of plastic debris under wave action. This criterion to determine equilibrium conditions, based on an empirical relationship, takes into account the wave characteristics, the bed roughness and slope, and the weight of the debris.


Assuntos
Monitoramento Ambiental , Plásticos , Movimentos da Água , Monitoramento Ambiental/métodos , Tamanho da Partícula , Resíduos/análise , Hidrodinâmica , Poluentes Químicos da Água/análise
15.
Molecules ; 29(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39202917

RESUMO

Lignocellulose is a major biopolymer in plant biomass with a complex structure and composition. It consists of a significant amount of high molecular aromatic compounds, particularly vanillin, syringeal, ferulic acid, and muconic acid, that could be converted into intracellular metabolites such as polyhydroxyalkanoates (PHA) and hydroxybutyrate (PHB), a key component of bioplastic production. Several pre-treatment methods were utilized to release monosaccharides, which are the precursors of the relevant pathway. The consolidated bioprocessing of lignocellulose-capable microbes for biomass depolymerization was discussed in this study. Carbon can be stored in a variety of forms, including PHAs, PHBs, wax esters, and triacylglycerides. From a biotechnology standpoint, these compounds are quite adaptable due to their precursors' utilization of hydrogen energy. This study lays the groundwork for the idea of lignocellulose valorization into value-added products through several significant dominant pathways.


Assuntos
Lignina , Lignina/química , Lignina/metabolismo , Biomassa , Alimentos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/metabolismo , Resíduos , Biopolímeros/química , Biopolímeros/metabolismo , Perda e Desperdício de Alimentos
16.
Molecules ; 29(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203045

RESUMO

Porous carbon materials from food waste have gained growing interest worldwide for multiple applications due to their natural abundance and the sustainability of the raw materials and the cost-effective synthetic processing. Herein, orange waste-derived porous carbon (OWPC) was developed through a freeze-drying method to prevent the demolition of the original biomass structure and then was pyrolyzed to create a large number of micro, meso and macro pores. The novelty of this work lies in the fact of using the macro-channels of the orange waste in order to create a macroporous network via the freeze-drying method which remains after the pyrolysis steps and creates space for the development of different types of porous in the micro and meso scale in a controlled way. The results showed the successful preparation of a porous carbon material with a high specific surface area of 644 m2 g-1 without any physical or chemical activation. The material's cytocompatibility was also investigated against a fibroblast cell line (NIH/3T3 cells). OWPC triggered a mild intracellular reactive oxygen species production without initiating apoptosis or severely affecting cell proliferation and survival. The combination of their physicochemical characteristics and high cytocompatibility renders them promising materials for further use in biomedical and pharmaceutical applications.


Assuntos
Carbono , Citrus sinensis , Liofilização , Carbono/química , Porosidade , Camundongos , Animais , Células NIH 3T3 , Citrus sinensis/química , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Resíduos
17.
Nutrients ; 16(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39203893

RESUMO

Fruit pomace, a by-product of the fruit industry, includes the skins, seeds, and pulp most commonly left behind after juice extraction. It is produced in large quantities: apple residues alone generate approximately 4 million tons of waste annually, which is a serious problem for the processing industry but also creates opportunities for various applications. Due to, among other properties, their high content of dietary fiber and polyphenolic compounds, fruit residues are used to design food with functional features, improving the nutritional value and health-promoting, technological, and sensory properties of food products. This article presents the health-promoting (antioxidant, antidiabetic, anti-inflammatory, and antibacterial) properties of fruit pomace. Moreover, the possibilities of their use in the food industry are characterized, with particular emphasis on bread, sweet snack products, and extruded snacks. Attention is paid to the impact of waste products from the fruit industry on the nutritional value and technological and sensory characteristics of these products. Fruit pomace is a valuable by-product whose use in the food industry can provide a sustainable solution for waste management and contribute to the development of functional food products with targeted health-promoting properties.


Assuntos
Indústria Alimentícia , Frutas , Valor Nutritivo , Frutas/química , Humanos , Alimento Funcional , Antioxidantes/análise , Resíduos/análise , Promoção da Saúde/métodos , Fibras na Dieta/análise , Anti-Inflamatórios , Hipoglicemiantes , Polifenóis/análise , Malus/química , Antibacterianos , Lanches
18.
J Agric Food Chem ; 72(34): 19051-19060, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39155698

RESUMO

Walnut shells, often discarded as waste, hold hidden potential as a source of ellagitannins (ETs), compounds known for their promising antioxidant properties and health benefits. This study employed reversed-phase liquid chromatography (RPLC) coupled with Orbitrap-based high-resolution mass spectrometry (HRMS) via electrospray ionization (ESI) in negative polarity to investigate the ET profile in extracts of dried powdered walnut shells. Several compounds belonging to various ET families were successfully identified as deprotonated molecules ([M - H]-) and characterized, including mono-, di-, tri-, tetra-, and pentagalloyl glucopyranoses, as well as ETs containing the hexahydroxydiphenoyl (HHDP) group. Characteristic product ions were identified in HR tandem MS spectra and employed to recognize the ET landscape. Analysis revealed a complex picture with more than 10 isomers identified in some cases. However, the structural similarity and limitations in MS/MS data hindered the definitive identification of all isomers. Characterization of ETs featuring HHDP groups also remained challenging. Despite these restraints, the estimated total content of ETs suggests potential application in the food, pharmaceutical, and cosmetic industries of those extracts. These findings indicate that walnut shells can be considered a sustainable source of health-promoting compounds, contributing to a greener economy.


Assuntos
Taninos Hidrolisáveis , Juglans , Nozes , Extratos Vegetais , Espectrometria de Massas em Tandem , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/análise , Juglans/química , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/química , Nozes/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Resíduos/análise , Estrutura Molecular
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124919, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39111033

RESUMO

Lignocellulosic bioplastics were produced using four different green wastes: hemp, parsley stem, pineapple leaves and walnut shell. Two different solutions were used to dissolve the green wastes: trifluoroacetic acid (TFA) and pure water. The changes in their natural structures and the solvent effect during the regeneration in biofilm formation were investigated by using Synchrotron FTIR Microspectroscopy (SR-µFTIR). The presence of cellulose, hemicellulose and lignin components in the water-based biofilms was confirmed. After dissolving in TFA, the spectra demonstrated some additional bands especially in the hemicellulose region. This is due to the hydrolysis of ester bonds and conversion to carboxylic acids. Principal component analysis showed grouping due to different solvents and polymer addition. Hemp-PVA (Polyvinyl Alcohol) composite biofilms were obtained by adding polyvinyl alcohol to the hemp solution to give extra strength to the hemp biofilms. It has been shown that water-based hemp-PVA biofilms do not cause any significant spectral changes, comparing with pure hemp and PVA spectra. However, after dissolving in TFA, unlike water-based biofilms, it appears that TFA molecules are retained by PVA through hydrogen bonds of TFA's carboxylic acid and hydroxyl groups and distinct spectral regions belong to TFA bands are clearly identified.


Assuntos
Plásticos , Síncrotrons , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Plásticos/química , Cannabis/química , Resíduos/análise , Lignina/química , Biofilmes/efeitos dos fármacos , Análise de Componente Principal , Álcool de Polivinil/química , Celulose/química , Polissacarídeos
20.
Bioresour Technol ; 409: 131254, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128640

RESUMO

This study proposes a novel anaerobic digestion (AD) strategy combining recyclable photoactivated nanomaterials with illumination to enhance electronic transfer for anaerobic microorganisms. Results showed that 7000 Lux illumination increased methane production yield and rate. Incorporating Fe3O4 into graphite carbon nitride (g-C3N4) created a recyclable Fe3O4/g-C3N4 (FG) nanocomposite with improved light absorption, conductivity, redox properties, and methane promotion. The highest methane yield from corn straw was achieved with 7000 Lux and 1.5 g/L FG nanocomposite, 22.6% higher than the dark control. The AD system exhibited increased adenosine triphosphate content, improved redox performance, reduced electron transfer resistance, and higher photocurrent intensity. These improvements bolstered the microorganisms and key genes involved in hydrolysis and acidification, which in turn optimized the acetoclastic pathway. Furthermore, this strategy promoted microorganisms associated with direct interspecies electron transfer, fostering a favorable environment for methanogenic activities, paving the way for future anaerobic reactor developments.


Assuntos
Grafite , Metano , Nanocompostos , Zea mays , Metano/metabolismo , Zea mays/química , Nanocompostos/química , Anaerobiose , Grafite/química , Luz , Compostos de Nitrogênio , Oxirredução , Resíduos , Reatores Biológicos , Nitrilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA