Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.687
Filtrar
1.
Environ Monit Assess ; 196(5): 450, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613635

RESUMO

Unscientific dumping of municipal solid waste (MSW) is a common practice in Kashmir. To have an environmentally friendly and sustainable waste management system, MSW was collected from nine study locations of this region. They were air-dried, then oven-dried at 105 °C for 24 h, segregated, and characterized for various components. The overall average organic waste was > 55%, plastic waste about 17%, inert material about 10%, paper 9%, and cloth waste 7%. The calorific value of paper and plastic wastes exhibited was 4910 kcal/kg, while organic waste had a calorific value of 1980 kcal/kg. The proximate analysis showed that the moisture content ranged from 16 to 29%, volatile matter ranged from 49 to 72%, ash content ranged from 0.03 to 5%, and fixed carbon ranged from 5 to 20%. In S7, the volatile matter content recorded the lowest value at 49.15%, while in S5, the volatile matter content was notably higher at 71.84%, indicating easier ignition. Further, elemental analysis revealed that the major elements in MSW were carbon and oxygen, 53% and 37%, respectively, with small traces of heavy metals with an average of 0.02% cadmium (Cd) and 0.006% lead (Pb). Moreover, field emission scanning electron microscopy (FESEM) micrographs provided confirmation that the majority of components in the MSW exhibited either partial or complete degradation, resulting in a rough surface texture. In addition, the presence of silica and other silicate groups was also detected. Fourier transform infrared spectroscopy (FT-IR) analysis revealed that the main functional groups were alcohol. In the X-ray diffraction (XRD) analysis, all the major mineral phases were detected between 20 and 30° 2θ, except for the peaks at 50-60° 2θ in S3 and S9 where catalysts such as zeolite Y and zeolite X were detected. Overall, the MSW had low moisture content but higher calorific value, making it a viable feedstock.


Assuntos
Resíduos Sólidos , Zeolitas , Espectroscopia de Infravermelho com Transformada de Fourier , Monitoramento Ambiental , Índia , Carbono , Microscopia Eletrônica de Varredura
2.
Chemosphere ; 355: 141871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570052

RESUMO

Recycling solid waste for preparing sulfoaluminate cementitious materials (SACM) represents a promising approach for low-carbon development. There are drastic physical-chemical reactions during SACM calcination. However, there is a lack of research on the flue gas pollutants emissions from this process. Condensable particulate matter (CPM) has been found to constitute the majority of the primary PM emitted from various fuel combustion. In this study, the emission characteristics of CPM during the calcination of SACM were determined using tests in both a real-operated kiln and laboratory experiments. The mass concentration of CPM reached 96.6 mg/Nm3 and occupied 87% of total PM emission from the SACM kiln. Additionally, the mass proportion of SO42- in the CPM reached 93.8%, thus indicating that large quantities of sulfuric acid mist or SO3 were emitted. CaSO4 was one key component for the formation of main mineral ye'elimite (3CaO·3Al2O3·CaSO4), and its decomposition probably led to the high SO42- emission. Furthermore, the use of CaSO4 as a calcium source led to SO42- emission factor much higher than conventional calcium sources. Higher calcination temperature and more residence time also increased SO42- emission. The most abundant heavy metal in kiln flue gas and CPM was Zn. However, the total condensation ratio of heavy metals detected was only 40.5%. CPM particles with diameters below 2.5 µm and 4-20 µm were both clearly observed, and components such as Na2SO4 and NaCl were conformed. This work contributes to the understanding of CPM emissions and the establishment of pollutant reduction strategies for waste collaborative disposal in cement industry.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Metais Pesados , Material Particulado/análise , Poluentes Atmosféricos/análise , Resíduos Sólidos , Cálcio
3.
J Environ Manage ; 357: 120825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579472

RESUMO

Alkali-activation is an effective municipal solid waste incineration fly ash (MSWIFA) solidification/stabilization (S/S) technology. However, the characteristics of calcium-rich silica-poor aluminum phase in MSWIFA easily cause the structural instability and contamination of alkali activated MSWIFA S/S bodies. Therefore, the aluminosilicate solid wastes are used in this work to optimize the immobilization and structural properties. Results showed that incorporation of aluminosilicate solid wastes significantly improved the compressive strength and heavy metals pollution toxicity of MSWIFA S/S bodies. Compared to alkali activated MSWIFA, the compressive strength of S/S bodies with addition of coal fly ash, silica fume and granulated blast furnace slag improved by 31.0%, 47.6% and 50.8% when the curing time was 28 days, respectively. Leachability of Pb, Zn and Cd in these alkali activated MSWIFA S/S bodies was far below the threshold value specified in Standard GB16889. Aluminosilicate solid wastes provided abundant Si/Al structural units, and some new phases such as ettringite(AFt, 3CaO⋅Al2O3⋅3CaSO4⋅32H2O), calcium sulfoaluminate hydrate (3CaO⋅Al2O3⋅CaSO4⋅12H2O) and Friedel's salt (CaO⋅Al2O3⋅CaCl2⋅10H2O) can be detected in S/S matrix with aluminosilicate solid wastes, along comes increased the amount of the amorphous phases. Lower Ca/Si molar ratio tended to form the network structure gel similar to tobermorite with higher polymerization degree. Meanwhile, the silica tetrahedron of the gels changed from the oligomerization state like island to the hyperomerization state like chain, layer network or three-dimensional structure, and average molecular chain length increased. These findings provide theoretical basis for structural properties optimization and resource utilization of MSWIFA S/S matrices.


Assuntos
Silicatos de Alumínio , Metais Pesados , Eliminação de Resíduos , Cinza de Carvão/química , Resíduos Sólidos/análise , Incineração/métodos , Dióxido de Silício , Álcalis/química , Metais Pesados/análise , Carbono/química , Material Particulado , Eliminação de Resíduos/métodos
4.
J Environ Manage ; 357: 120783, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579475

RESUMO

The rapid development of the economy and society is causing an increase in the amount of municipal solid waste (MSW) produced by people's daily lives. With the strong support of the Chinese government, incineration power generation has steadily become the primary method of treating MSW, accounting for 79.86%. However, burning produces a significant amount of municipal solid waste incineration fly ash (MSWI-FA), which contains heavy metals, soluble chlorine salts, and dioxins. China's MSWI-FA yield increased by 8.23% annually to 7.80 million tons in 2022. Besides, the eastern region, especially the southeastern coastal region, has the highest yield of MSWI-FA. There are certain similarities in the chemical characteristics of MSWI-FA samples from Northeast, North, East, and South China. Zn and CaO have the largest amounts of metals and oxides, respectively. The Cl content is about 20 wt%. This study provides an overview of the techniques used in the thermal treatment method, solidification and stabilization, and separation and extraction of MSWI-FA and compares their benefits and drawbacks. In addition, the industrial applications and standard requirements of landfill treatment and resource utilization of MSWI-FA in China are analyzed. It is discovered that China's resource utilization of MSWI-FA is insufficient through the study on the fly ash disposal procedures at a few MSW incineration facilities located in the economically developed Guangdong Province and the traditional industrial city of Tianjin. Finally, the prospects for the disposal of MSWI-FA were discussed.


Assuntos
Metais Pesados , Eliminação de Resíduos , Humanos , Cinza de Carvão/química , Resíduos Sólidos/análise , Material Particulado/análise , Carbono/análise , Incineração , Metais Pesados/análise , China
5.
PLoS One ; 19(4): e0302176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635601

RESUMO

As one of the key materials used in the civil engineering industry, concrete has a global annual consumption of approximately 10 billion tons. Cement and fine aggregate are the main raw materials of concrete, and their production causes certain harm to the environment. As one of the countries with the largest production of industrial solid waste, China needs to handle solid waste properly. Researchers have proposed to use them as raw materials for concrete. In this paper, the effects of different lithium slag (LS) contents (0%, 10%, 20%, 40%) and different substitution rates of recycled fine aggregates (RFA) (0%, 10%, 20%, 30%) on the axial compressive strength and stress-strain curve of concrete are discussed. The results show that the axial compressive strength, elastic modulus, and peak strain of concrete can increase first and then decrease when LS is added, and the optimal is reached when the LS content is 20%. With the increase of the substitution rate of RFA, the axial compressive strength and elastic modulus of concrete decrease, but the peak strain increases. The appropriate amount of LS can make up for the mechanical defects caused by the addition of RFA to concrete. Based on the test data, the stress-strain curve relationship of lithium slag recycled fine aggregate concrete is proposed, which has a high degree of agreement compared with the test results, which can provide a reference for practical engineering applications. In this study, LS and RFA are innovatively applied to concrete, which provides a new way for the harmless utilization of solid waste and is of great significance for the control of environmental pollution and resource reuse.


Assuntos
Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Lítio , Resíduos Sólidos , Materiais de Construção , Reciclagem/métodos , Resíduos Industriais/análise
6.
J Environ Sci (China) ; 142: 11-20, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527877

RESUMO

Chromium released during municipal solid waste incineration (MSWI) is toxic and carcinogenic. The removal of chromium from simulated MSWI flue gas by four sorbents (CaO, bamboo charcoal (BC), powdered activated carbon (PAC), and Al2O3) and the effects of four oxides (SiO2, Al2O3, Fe2O3, and CaO) on chromium speciation transformation were investigated. The results showed that the removal rates of total Cr by the four sorbents were Al2O3 < CaO < PAC < BC, while the removal rates of Cr(VI) by the four sorbents were Al2O3 < PAC < BC < CaO. CaO had a strong oxidizing effect on Cr(III), while BC and PAC had a better-reducing effect on Cr(VI). SiO2 was better for the reduction of Na2CrO4 and K2CrO4 above 1000°C due to its strong acidity, and the addition of CaO significantly inhibited the reduction of Cr(VI). MgCrO4 decomposed above 700°C to form MgCr2O4, and the reaction between MgCrO4 and oxides also existed in the form of a more stable trivalent spinel. Furthermore, when investigating the effect of oxides on the oxidation of Cr(III) in CrCl3, it was discovered that CaO promoted the conversion of Cr(III) to Cr(VI), while the presence of chlorine caused chromium to exist in the form of Cr(V), and increasing the content of CaO and extending the heating time facilitated the oxidation of Cr(III). In addition, silicate, aluminate, and ferrite were generated after the addition of SiO2, Al2O3, and Fe2O3, which reduced the alkalinity of CaO and had an important role in inhibiting the oxidation of Cr(III). The acidic oxides can not only promote the reduction of Cr(VI) but also have an inhibitory effect on the oxidation of Cr(III) ascribed to alkali metals/alkaline earth metals, and the proportion of acidic oxides can be increased moderately to reduce the generation of harmful substances in the hazardous solid waste heat treatment.


Assuntos
Óxidos , Resíduos Sólidos , Dióxido de Silício , Cromo/análise , Oxirredução , Incineração
7.
Waste Manag ; 178: 339-350, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430748

RESUMO

Leaching of potentially hazardous substances, especially the heavy metals from Incineration Bottom Ash (IBA) is a major problem in its recyclable usage. To address this concern, treatment of IBA is indispensable before it can be reused. IBA subjected to laboratory-scale treatment typically yields clearer conclusions in terms of leaching behaviors, benefiting from the controlled laboratory environment. However, the leaching behaviors of commercially treated IBA appear to be more ambiguous due to the complex and comprehensive nature of industrial-scale treatments, where multiple treatment techniques are involved concurrently. Furthermore, treatment efficiencies vary among different plants. In this study, three types of commercially treated IBA were sampled from leading waste treatment companies in Singapore. Characterization and leaching tests were performed on the treated IBAs in both standardized and modified manners to simulate various scenarios. Besides deionized water, artificial seawater was used as a leachant in leaching tests for simulating seawater intrusion. The results reveal the promoting effect of seawater on the leaching levels of several elements from three types of treated IBA, which may require special attention for IBA application and landfill near the coast. Furthermore, the elements examined in these three types of commercially treated IBA generally comply with the non-hazardous waste acceptance criteria outlined in Council Decision, 2003/33/EC (2003), except Sb. By combining two leaching tests, the elements were categorized into different types of leaching behavior, making it possible to prepare and respond to the concerning leaching scenarios in future engineering applications.


Assuntos
Cinza de Carvão , Metais Pesados , Singapura , Incineração , Metais Pesados/análise , Conservação dos Recursos Naturais , Resíduos Sólidos/análise
8.
Aquat Toxicol ; 269: 106867, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432024

RESUMO

Sea turtle mortality is often related to materials that reach the coast from different anthropic activities worldwide. This study aimed to investigate whether sea turtle mortality was related to older marine problems, such as solid waste, or one of the largest oil spill accidents on the Brazilian coast, that occurred in 2019. We posed three questions: 1) Are there solid residues in the digestive tract samples, and which typology is the most abundant? 2) Can meso­ and macro-waste marine pollutants cause mortality? 3) Is the dark material found really oil? A total of 25 gastrointestinal content (GC) samples were obtained, of which 22 ingested waste of anthropogenic origin and 18 were necropsied. These 22 samples were obtained during or after the 2019 oil spill, of which 17 specimens were affected, making it possible to suggest oil ingestion with the cause of death in the animals that could be necropsied. Macroscopic data showed that the most abundant solid waste was plastic (76.05 %), followed by fabrics (12.18 %) and oil-like materials. However, chemical data confirmed only three specimens with oil levels ranging from remnants to high. It was possible to infer possible causes of death in 16 of the total 18 necropsied cases: Most deaths were due to respiratory arrest (62.5 %), followed by pulmonary edema (12.5 %), cachexia syndrome (12.5 %), circulatory shock (6.25 %), and head trauma (6.25 %), which may have been caused by contact with solid waste, oil, or both. The study showed that not all dark material found in the GCs of turtles killed in oiled areas is truly oil, and in this sense, a chemical analysis step to prove the evidence of oil must be added to international protocols.


Assuntos
Poluição por Petróleo , Tartarugas , Poluentes Químicos da Água , Animais , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Conteúdo Gastrointestinal/química , Brasil , Poluentes Químicos da Água/toxicidade , Resíduos Sólidos/análise , Plásticos , Ingestão de Alimentos
9.
Waste Manag ; 180: 36-46, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503032

RESUMO

As a by-product of the steelmaking industry, the large-volume production and accumulation of steel converter slag cause environmental issues such as land occupation and dust pollution. Since metal salts of unsaturated carboxylic acid can be used to reinforce rubber, this study explores the innovative application of in-situ modified steel slag, mainly comprising metal oxides, with methacrylic acid (MAA) as a rubber filler partially replacing carbon black. By etching the surface of steel slag particles with MAA, their surface roughness was increased, and the chemical bonding of metal methacrylate salt was introduced to enhance their interaction with the molecular chain of natural rubber (NR). The results showed that using the steel slag filler effectively shortened the vulcanization molding cycle of NR composites. The MAA in-situ modification effectively improved the interaction between steel slag and NR molecular chains. Meanwhile, the physical and mechanical properties, fatigue properties, and dynamic mechanical properties of the experimental group with MAA in-situ modified steel slag (MAA-in-situ-m-SS) were significantly enhanced compared with those of NR composites partially filled with unmodified slag. With the dosage of 7.5 phr or 10 phr, the above properties matched or even exceeded those of NR composites purely filled with carbon black. More importantly, partially replacing carbon black with modified steel slag reduced fossil fuel consumption and greenhouse gas emission from carbon black production. This study pioneered an effective path for the resourceful utilization of steel slag and the green development of the steelmaking and rubber industries.


Assuntos
Borracha , Resíduos Sólidos , Aço/química , Fuligem , Resíduos Industriais/análise , Metais , Metacrilatos
10.
Waste Manag ; 180: 9-22, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503033

RESUMO

Austria must recycle more packaging materials. Especially for plastic packaging waste, significant increases are necessary to reach the EU recycling targets for 2025 and 2030. In addition to improving separate collection and introducing a deposit system for specific fractions, the share of plastic packaging in mixed municipal solid waste (MSW) could be utilized. In Austria, about 1.8milliontonnes of mixed MSW are generated. This includes about 110,000 t/a of plastic packaging waste. Most of the mixed MSW (94 %) is sent directly or via residues from pre-treatment, such as mechanical-biological treatment or waste sorting, to waste incineration. While materials such as glass and metals can also be recovered from the bottom ash, combustible materials such as plastics must be recovered before incineration. This work aims to evaluate the recovery potential of plastic packaging waste in mixed MSW with automated waste sorting. For this purpose, two of the largest Austrian waste sorting plants, with a total annual throughput of about 280,000 t/a, were investigated. The investigation included regular sampling of selected output streams and sorting analysis. The results show that the theoretical recovery potential of plastic packaging from these two plants is 6,500 t/a on average. An extrapolation to Austria results in a potential of about 83,000 t/a. If losses due to further treatment, such as sorting and recycling, are considered, about 30,000 t/a of recyclate could be returned to plastic production. This would correspond to an increase in plastic packaging recycling rate from 25 % to 35 %.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos , Eliminação de Resíduos/métodos , Áustria , Plásticos , Reciclagem/métodos , Embalagem de Produtos
11.
J Environ Manage ; 357: 120749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552517

RESUMO

The traditional solidification/stabilization (S/S) technology, Ordinary Portland Cement (OPC), has been widely criticized due to its poor resistance to chloride and significant carbon emissions. Herein, a S/S strategy based on magnesium potassium phosphate cement (MKPC) was developed for the medical waste incineration fly ash (MFA) disposal, which harmonized the chlorine stabilization rate and potential carbon emissions. The in-situ XRD results indicated that the Cl- was efficiently immobilized in the MKPC system with coexisting Ca2+ by the formation of stable Ca5(PO4)3Cl through direct precipitation or intermediate transformation (the Cl- immobilization rate was up to 77.29%). Additionally, the MFA-based MKPC also demonstrated a compressive strength of up to 39.6 MPa, along with an immobilization rate exceeding 90% for heavy metals. Notably, despite the deterioration of the aforementioned S/S performances with increasing MFA incorporation, the potential carbon emissions associated with the entire S/S process were significantly reduced. According to the Life Cycle Assessment, the potential carbon emissions decreased to 8.35 × 102 kg CO2-eq when the MFA reached the blending equilibrium point (17.68 wt.%), while the Cl- immobilization rate still remained above 65%, achieving an acceptable equilibrium. This work proposes a low-carbon preparation strategy for MKPC that realizes chlorine stabilization, which is instructive for the design of S/S materials.


Assuntos
Compostos de Magnésio , Resíduos de Serviços de Saúde , Metais Pesados , Fosfatos , Compostos de Potássio , Eliminação de Resíduos , Cinza de Carvão , Magnésio , Cálcio , Potássio , Cloro , Carbono , Cloretos , Incineração/métodos , Metais Pesados/análise , Resíduos Sólidos , Material Particulado , Eliminação de Resíduos/métodos
12.
J Environ Manage ; 355: 120226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430876

RESUMO

This study aims to evaluate the feasibility and safety of using municipal solid waste incineration fly ash (MSW-IFA) in the development of geopolymer-based solidification/stabilization (S/S) treatments. Geopolymers have garnered attention as a sustainable alternative to traditional cement, owing to their high strength, stability, and minimal CO2 emissions. In this study, a combination of experimental and simulation calculations was used to investigate the setting time, mechanical properties, environmental risks, hydration mechanisms and processes of municipal solid waste incineration fly ash-based polymeric functional cementitious materials (GFCM). The results demonstrate that the mechanical properties of GFCM are related to the changes in the mineral phases and the degree of compactness. Quantum chemical calculations indicate that the hydration products may be [Si(OH)4], [Al(OH)3(OH2)] and [Al(OH)4]-. It is possible that the heavy metals are embedded in the hydrated silica-aluminate by electrostatic interaction or chemisorption. Heavy metals may be embedded in hydrated silica-aluminate by electrostatic action or chemisorption. This study provides a feasible method for resource utilization and heavy metal stabilization mechanism of MSW-IFA.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Resíduos Sólidos/análise , Material Particulado , Carbono/química , Incineração , Metais Pesados/análise , Dióxido de Silício , Eliminação de Resíduos/métodos
13.
J Environ Manage ; 355: 120514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460330

RESUMO

With improvements in urban waste management to promote sustainable development, an increasing number of waste types need to be sorted and treated separately. Due to the relatively low amount of waste generated in small- and medium-sized cities, separate treatment facilities for each waste type lack scale, waste is treated at a high cost and low efficiency. Therefore, industrial symbiosis principles are suggested to be used to guide collaborative waste treatment system of multi-source solid wastes, and co-incineration is the most commonly used technology. Most existing studies have focused on co-incineration of one certain waste type (such as sludge or medical waste) with municipal solid waste (MSW), but the systematic design and the comprehensive benefits on a whole city and park level have not been widely studied. Taking the actual operation of a multi-source waste co-incineration park in south-central China as an example, this study conducted a detailed analysis of the waste-energy-water metabolism process of MSW, sludge, food waste, and medical waste co-incineration. The environmental and economic benefits were evaluated and compared with the single decentralized waste treatment mode. The results showed that the multi-source waste co-incineration and clustering park operating model was comprehensively superior to the single treatment mode, greenhouse gases and human toxicity indicators were decreased by 11.87% and 295.74%, respectively, and the internal rate of return of the project was increased by 29.35%. This mainly benefits from the synergy of technical system and the economies of scale. Finally, this research proposed policy suggestions from systematic planning and design, technical route selection, and an innovative management mode in view of the potential challenges.


Assuntos
Resíduos de Serviços de Saúde , Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Esgotos/análise , Cidades , Alimentos , Incineração , Resíduos Sólidos/análise , Resíduos de Serviços de Saúde/análise , China
14.
PLoS One ; 19(3): e0292758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512823

RESUMO

This study is a comprehensive assessment of the waste management system in Besisahar municipality. Information and some data have been collected from the municipality of Besisahar, followed by interviews with municipal officials responsible for waste management, stakeholders, waste workers, and residents. A total of 230 households, 20 schools, 10 government and private offices, 10 financial institutions, 60 commercial hotels, restaurants, and shops, and 20 medical shops and healthcare institutions, were selected in this study by random sampling. An extensive field study was conducted within all municipal wards and at dump sites. The results indicated that 42.14% of solid waste was collected through door-to-door collection services, 5.87% was mismanaged in open public places, 11.21% was used as compost manure, and the rest was discarded on riverbanks, dug up, and burned. A large component of the characterization of household waste consisted of organic waste (68.03%), followed by paper/paper products (8.13%), agricultural waste (5.5%), plastic (5.21%), construction (3.81%), textile (2.72%), metals (0.54%), glass (1.01%), rubber (0.10%), electronic (0.05%), pharmaceutical (0.1%) and others (4.78%) in the Besishahar municipality. Solid waste generation was found to be at 197.604 g/capita/day, as revealed by cluster sampling in 230 households. Around 4.285 tons-solid waste/day were generated in urban areas, while 16.13 tons-solid waste/day was estimated for the whole municipality. An important correlation between the parameters of solid waste was found by statistical analysis. Currently, solid waste is dumped on riverbanks, open fields, and springs, creating environmental and health hazards. The findings of this study will be useful to Besisahar municipality and its stakeholders in forming policies that facilitate waste management practices in this region and promote sustainable waste management systems.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Resíduos Sólidos , Nepal , Gerenciamento de Resíduos/métodos , Cidades , Meio Ambiente , Caquexia , Eliminação de Resíduos/métodos
15.
PLoS One ; 19(3): e0300707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512927

RESUMO

The circular economy is a way of eliminating the shortage of raw materials that Europe is currently facing. However, it is necessary to explicitly identify the problems that prevent greater involvement in the CE. This article is focused on consumers and how they treat discarded or non-functional items. The aim was to fill the research gap, i.e. to compile a suitable CE model and define a methodology that would ensure the efficient disposal of non-functional or unsuitable items by consumers. An original methodology was drawn up to conduct the representative research, designed to lead to the practical application of the proposed CE model. The research explored how consumers treat non-functional or unsuitable items, the costs they incur in discarding, renovating, reusing, and recycling such items, and the alternative costs of unsorted municipal waste. After the data had been implemented into the model the circular economy was proven to have an economic benefit for the national economy in all groups. However, the economic disadvantage for consumers was also calculated, where the cost of involvement in the CE is higher than the cost of unsorted municipal waste. This means that people are motivated to play a part in the CE more by their own responsible approach to life, or social pressure from those around them. Based on this research it may be said that economic aspects are one reason that consumers tend to be reluctant to get more involved in the CE. Unless there is a significant rise in the cost of municipal waste that would motivate consumers to move towards the CE for financial reasons, in order to support the CE consumers need to be better stimulated, educated and informed as much as possible through the media.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Resíduos Sólidos/análise , Comportamento do Consumidor , Reciclagem , Caquexia
16.
Waste Manag ; 179: 77-86, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461626

RESUMO

In response to the escalating global challenge of mounting plastic waste and the imperative to adopt more sustainable practices for resource utilization, our study focuses on the utilization of plastic solid waste (PSW) through a two-stage thermal pyrolysis process. This aims to demonstrate its potential as a high-performance alternative to existing two-stage catalytic pyrolysis methods. The experimentation involved processing real scrap PSW material in a lab-scale batch set-up, emphasizing optimizing residence time in the cracking reactor to maximize gas yield and its lower heating value (LHV). The study underscores the advantages of the employed two-stage thermal pyrolysis apparatus through a comparative analysis with established set-up dedicated to maximizing gas yield. Once the operative conditions were explored, resulting pyrolysis products underwent detailed characterization to assess their suitability as a sustainable fuel source. The study also presents a practical application of the produced gaseous fuel, envisioning its combustion in an internal combustion engine (ICE), known for its flexibility regarding fuel properties. This application is demonstrated through a simulation conducted in Unisim Design©. The successful processing of real PSW material in the two-stage lab-scale experimental set-up showcased optimal gas yield achievements (>65 % w/w) with an LHV (∼41 MJ/kg), comparable to that of natural gas. This emphasizes the potential of these sustainable alternatives to replace fossil fuels, especially in the context of ICE applications. The integration of the pyrolysis plant with an ICE demonstrated promising prospects for generating electricity in the transportation sector and facilitating thermal power for heat integration in pyrolysis reactors.


Assuntos
Pirólise , Resíduos Sólidos , Temperatura Alta , Catálise , Gás Natural , Plásticos
17.
PLoS One ; 19(3): e0290206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457366

RESUMO

To date, only a few studies focused on the carbon monoxide (CO) production during waste composting; all targeted on CO inside piles. Here, the CO net emissions from compost piles and the assessment of worker's occupational risk of exposure to CO at large-scale composting plants are shown for the first time. CO net emissions were measured at two plants processing green waste, sewage sludge, or undersize fraction of municipal solid waste. Effects of the location of piles (hermetised hall vs. open yard) and turning (before vs. after) were studied. Higher CO net emission rates were observed from piles located in a closed hall. The average CO flux before turning was 23.25 and 0.60 mg‧m-2‧h-1 for hermetised and open piles, respectively, while after- 69.38 and 5.11 mg‧m-2‧h-1. The maximum CO net emissions occurred after the compost was turned (1.7x to 13.7x higher than before turning). The top sections of hermetised piles had greater CO emissions compared to sides. Additionally, 5% of measurement points of hermetised piles switched to 'CO sinks'. The 1-h concentration in hermetised composting hall can reach max. ~50 mg CO∙m-3 before turning, and >115 mg CO∙m-3 after, exceeding the WHO thresholds for a 1-h and 15-min exposures, respectively.


Assuntos
Compostagem , Exposição Ocupacional , Monóxido de Carbono , Solo , Resíduos Sólidos
18.
Environ Sci Pollut Res Int ; 31(17): 26153-26169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492142

RESUMO

This study explores the potential of municipal solid waste incineration bottom ash (MSWI BA) and coal gangue as precursors for alkali-activated cementitious materials (CG-MBA). An examination of the impact of MSWI BA content, NaOH/Na2SiO3 ratio, liquid-solid ratio, and NaOH concentration on strength and reaction through the application of diverse analytical methodologies. Results demonstrate that CG-MBA offers significant environmental benefits compared to conventional cement. When used as a construction filling material, CG-MBA exhibits a remarkable 74.5 ~ 79.2 wt% reduction in carbon dioxide emissions and 70.6 ~ 77.0 wt% reduction in energy consumption. Additionally, CG-MBA effectively immobilizes heavy metal ions in MSWI BA, with a fixation efficiency exceeding 56.0%. These findings suggest that CG-MBA is a promising sustainable solution for waste management, offering significant environmental benefits while demonstrating effective heavy metal immobilization. This approach contributes to pollution control and promotes environmental sustainability in the construction industry.


Assuntos
Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Cinza de Carvão , Álcalis , Hidróxido de Sódio , Incineração , Carvão Vegetal , Metais Pesados/análise , Carvão Mineral , Material Particulado
19.
Environ Sci Pollut Res Int ; 31(17): 24951-24960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460038

RESUMO

Solid process fine waste or tailings of a uranium mill is a potential source of release of radiologically significant gaseous radon (222Rn). A number of variables such as radium (226Ra) content, porosity, moisture content, and tailings density can affect the extent of emanation from the tailings. Further, if a cover material is used for remediation purposes, additional challenges due to changes in the matrix characteristics in predicting the radon flux can be anticipated. The uranium mill tailings impoundment systems at Jaduguda have been in use for the long-term storage of fine process waste (tailings). A pilot-scale remediation exercise of one of the tailings ponds has been undertaken with 30 cm soil as a cover material. For the prediction of the radon flux, a numerical model has been developed to account for the radon exhalation process at the remediated site. The model can effectively be used to accommodate both the continuous and discrete variable inputs. Depth profiling and physicochemical characterization for the remediated site have been done for the required input variables of the proposed numerical model. The predicted flux worked out is well below the reference level of 0.74 Bq m-2 s-1 IAEA (2004).


Assuntos
Rádio (Elemento) , Radônio , Poluentes Radioativos do Solo , Urânio , Radônio/análise , Poluentes Radioativos do Solo/análise , Índia , Resíduos Sólidos
20.
Ecotoxicol Environ Saf ; 274: 116203, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479313

RESUMO

PCDD/Fs are dioxins produced by waste incineration and pose risks to human health. We aimed to detail the health risks of airborne and soil PCDD/Fs near a municipal solid-waste incinerator (MSWI) for the surrounding population and develop a new model that improves upon existing methods. Thus, we conducted field sampling and then investigated a MSWI in the Pearl River Delta (2016-2018). Our results showed that the carcinogenic and non-carcinogenic risk values of PCDD/Fs exposed to residents in nearby areas were acceptable, with hazard index (HI) values lower than 1.0 and a total carcinogenic risk lower than 1.0E-6. Notably, the results raised concerns regarding higher non-carcinogenic risks in children than in adults. Comparative analysis of the frequency accumulation diagram, accumulated probability risk, and the absolute value of error (δ) between the 95% confidence interval (CI) and the 90% CI of the Monte Carlo stochastic simulation-triangular fuzzy number (MCSS-TFN) and the MCSS model, respectively, demonstrated that the MCSS-TFN exhibited less uncertainty than the MCSS model, regardless of the health risk value of PCDD/Fs in ambient air or in soil. This observation underscores the superiority of the MCSS-TFN model over other models in assessing the health risks associated with PCDD/Fs in situations with limited data. Our new method overcomes the limited dataset size and high uncertainty in assessing the health risks of dioxin substances, providing a more comprehensive understanding of their associated health risks than MCSS models.


Assuntos
Poluentes Atmosféricos , Dioxinas , Dibenzodioxinas Policloradas , Adulto , Criança , Humanos , Resíduos Sólidos , Monitoramento Ambiental/métodos , Dibenzodioxinas Policloradas/toxicidade , Dibenzodioxinas Policloradas/análise , Dibenzofuranos , Poluentes Atmosféricos/análise , Incineração , Dioxinas/toxicidade , Medição de Risco , Dibenzofuranos Policlorados/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...