Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.031
Filtrar
1.
Sci Rep ; 14(1): 21284, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261518

RESUMO

The newly recorded Phyllymenia gibesii in the Mediterranean Sea at Alexandria coast of Egypt is regarded as a significant source of bioactive substances and is applied as an antioxidant, anti-inflammatory, and antimicrobial agent. According to the HPLC chromatograms, the acetone extract of P. gibesii comprised ten photosynthetic pigments (chlorophyll-a, chlorophyll-d, α-carotene, ß-carotene, phycocyanin, allophycocyanin, antheraxanthin, ß-cryptoxanthin, lutein, and violaxanthin). Total carotenoids were the dominant class in the pigments' profile, achieving a concentration of 257 g/g dry weight. The P. gibbesii extract had a total content of phenols (146.67 mg/g) and a total content of flavonoids (104.40 mg/g). The capacity of all the investigated biological activities augmented with the concentration of the algal extract. The maximal DPPH scavenging capacity was 81.44%, with an inhibitory concentration (IC50) of 9.88 µg/mL. Additionally, the highest ABTS scavenging capacity was 89.62%, recording an IC50 of 21.77 µg/mL. The hemolytic activity of P. gibbesii attained a maximum capacity of 49.88% with an IC50 of 100.25 µg/mL. Data also showed the maximum anti-inflammatory effectiveness at 81.25%, with an IC50 of 99.75 µg/mL. Furthermore, the extract exhibited antimicrobial capacity against all reference strains, particularly at high concentrations (0.1 mg/mL), with the greatest effect on C. albicans and E. coli.


Assuntos
Polifenóis , Polifenóis/farmacologia , Polifenóis/química , Antioxidantes/farmacologia , Antioxidantes/química , Pigmentos Biológicos/química , Pigmentos Biológicos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Estramenópilas/química , Mar Mediterrâneo , Cromatografia Líquida de Alta Pressão , Testes de Sensibilidade Microbiana
2.
Physiol Plant ; 176(5): e14500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221482

RESUMO

Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.


Assuntos
Angelica sinensis , Antocianinas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Angelica sinensis/genética , Angelica sinensis/metabolismo , Antocianinas/biossíntese , Antocianinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Pigmentação/genética , Ácido Abscísico/metabolismo , Pigmentos Biológicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
Int J Biol Macromol ; 277(Pt 4): 134380, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098674

RESUMO

Red Monascus Pigment (RMP), a natural pigment, has attracted significant attention due to its suitability for food use and potential health benefits. However, preserving its stability and exploring value-added development opportunities remain crucial challenges. This study outlined the utilization of RMP, by successfully preparing hydrogel beads encapsulating RMP crude extract (RMPCE) through Ca2+-mediated chitosan (CS)/sodium alginate (SA) encapsulation (CO-RMPHB). A systematic investigation into the fabrication and stability parameters, including preparation conditions, temperature, monochromatic light and storage time, was undertaken. Through optimization (SA: 2.50 wt%; CaCl2: 6.00 wt%; CS: 0.50 wt%), maximum encapsulation efficiency of 73.54 ± 2.16 % was achieved. The maximum swelling degree of blank hydrogel beads (BHB) in simulated gastric solution (pH = 1.2, 1.50 ± 0.97 %) was significantly lower than in simulated intestinal solution (pH = 7.0, 28.05 ± 1.43 %), confirming their sensitivity to pH changes. Additionally, the CO-RMPHB (66.08 %, 1000 µL) exhibited superior DPPH radical scavenging capability compared to individual RMPCE or BHB. Furthermore, analysis of the release kinetics based on zero-order, first-order, Higuchi, and Ritger-Peppas models revealed that RMPCE release from CO-RMPHB under in vitro digestion models followed non-Fickian diffusion. This discovery effectively addresses the challenges of the stability and controlled release of RMP, expanding its applications in the food and pharmaceutical industries.


Assuntos
Alginatos , Cálcio , Quitosana , Hidrogéis , Monascus , Quitosana/química , Alginatos/química , Hidrogéis/química , Monascus/química , Monascus/metabolismo , Cinética , Cálcio/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Pigmentos Biológicos/química , Portadores de Fármacos/química , Microesferas
4.
Mar Environ Res ; 201: 106696, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163655

RESUMO

To explore the variation of phytoplankton community along the Bakkhali river estuary and its adjacent coastal water in the north of the Bay of Bengal, total Chl-a (TChl-a) concentrations and group-specific photosynthetic pigments were investigated during April 2017. Distinct spatial distribution was observed in temperature, turbidity and nutrient concentrations as well as in TChl-a concentrations, showing a seaward decreasing pattern. The different distribution of phytoplankton pigments and functional groups along the gradients was also observed. Chlorophyll-b and zeaxanthin showed their highest abundance in the turbid riverine water, while alloxanthin and prasinoxanthin dominated in the coastal water. High concentrations of fucoxanthin, peridinin and hex-fucoxanthin were associated with high-light availability and showed a seaward increasing trend. Three phytoplankton groups can be classified: the riverine group (chlorophytes and cyanobacteria), the coastal group (cryptophytes and prasinophytes) and the offshore group (diatoms, dinoflagellate and haptophytes_type 6). The predominance of cryptophytes (avg. 48%) over diatoms (avg. 28%) was basically influenced by the scarcity of nitrogen and silicate relative to phosphate. Not only availability of nutrients, the photosynthetically active radiation also plays a key role in regulating TChl-a, photosynthetic pigments and functional groups in this tropical estuarine-coastal zone.


Assuntos
Monitoramento Ambiental , Estuários , Fotossíntese , Fitoplâncton , Fitoplâncton/fisiologia , Clorofila/metabolismo , Clorofila A/metabolismo , Pigmentos Biológicos/metabolismo , Clima Tropical
5.
Anal Methods ; 16(33): 5652-5664, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39109659

RESUMO

The intricate composition of microalgal pigments plays a crucial role in various biological processes, from photosynthesis to biomarker identification. Traditional pigment analysis methods involve complex extraction techniques, posing challenges in maintaining analyte integrity. In this study, we employ Electron Transfer Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (ET-MALDI-MS) to compare the pigmentary profiles of Chlorella vulgaris intact cells, chloroplasts, and solvent extracts. We aim to obtain comprehensive extracts rich in polar and non-polar compounds using ultrasound-assisted and supercritical fluid extraction methods. Additionally, intact chloroplasts are isolated using a lysis buffer and sucrose density gradient centrifugation. Our ET-MALDI-MS analysis reveals distinct compositional differences, highlighting the impact of extraction protocols on microalgal pigment identification. We observe prominent signals corresponding to radical cations of key pigments, including chlorophylls and carotenoids, which are crucial for C. vulgaris identification. Furthermore, ET-MALDI-MS facilitates the identification of specific lipids within chloroplast membranes and other organelles. This study underscores the rapid and precise nature of ET-MALDI-MS in microalgal biomarker analysis, providing valuable insights into phytoplankton dynamics, trophic levels, and environmental processes. C. vulgaris emerges as a promising model for studying pigment composition and membrane lipid diversity, enhancing our understanding of microalgal ecosystems.


Assuntos
Chlorella vulgaris , Cloroplastos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Chlorella vulgaris/química , Chlorella vulgaris/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cloroplastos/química , Cloroplastos/metabolismo , Carotenoides/análise , Carotenoides/química , Clorofila/análise , Clorofila/química , Pigmentos Biológicos/análise , Pigmentos Biológicos/química
6.
Metabolomics ; 20(5): 98, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123092

RESUMO

INTRODUCTION: Glacier ice algae, mainly Ancylonema alaskanum and Ancylonema nordenskiöldi, bloom on Greenland Ice Sheet bare ice surfaces. They significantly decrease surface albedo due to their purple-brown pigmentation, thus increasing melt. Little is known about their metabolic adaptation and factors controlling algal growth dynamics and pigment formation. A challenge in obtaining such data is the necessity of melting samples, which delays preservation and introduces bias to metabolomic analysis. There is a need to evaluate the physiological response of algae to melting and establish consistent sample processing strategies for metabolomics of ice microbial communities. OBJECTIVES: To address the impact of sample melting procedure on metabolic characterization and establish a processing and analytical workflow for endometabolic profiling of glacier ice algae. METHODS: We employed untargeted, high-resolution mass spectrometry and tested the effect of sample melt temperature (10, 15, 20 °C) and processing delay (up to 49 h) on the metabolome and lipidome, and complemented this approach with cell counts (FlowCam), photophysiological analysis (PAM) and diversity characterization. RESULTS AND CONCLUSION: We putatively identified 804 metabolites, with glycerolipids, glycerophospholipids and fatty acyls being the most prominent superclasses (> 50% of identified metabolites). Among the polar metabolome, carbohydrates and amino acid-derivatives were the most abundant. We show that 8% of the metabolome is affected by melt duration, with a pronounced decrease in betaine membrane lipids and pigment precursors, and an increase in phospholipids. Controlled fast melting at 10 °C resulted in the highest consistency, and is our recommendation for future supraglacial metabolomics studies.


Assuntos
Camada de Gelo , Metabolômica , Metabolômica/métodos , Metaboloma , Lipidômica/métodos , Groenlândia , Pigmentos Biológicos/análise , Pigmentos Biológicos/metabolismo , Pigmentação , Espectrometria de Massas/métodos
7.
Food Res Int ; 192: 114818, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147513

RESUMO

Boiled lotus rhizome discs (BLRDs), as common processed products of lotus rhizome, have gained increasing attention from consumers and food manufacturers. However, the blue pigment formed during boiling affects its appearance and reduces the appetite of BLRDs. In this study, the effects of polyphenols and iron contents on blue pigment formation in BLRDs in different regions and months were investigated. Results revealed that blue variation was more serious in March and April of the second year in Wuhan, and polyphenols and iron contents in these two months were significantly higher than those in other months. Then, UPLC and UV-Vis analysis showed that polyphenols causing the formation of blue pigment in BLRDs were L-dopa, gallocatechin, catechin, epigallocatechin, chlorogenic acid and epicatechin, among which L-dopa (52.450 mg/100 g in fresh lotus rhizome (FLR)) and gallocatechin (36.210 mg/100 g in FLR) possessed the greatest effect. Moreover, the ESI-Q-TOF-MS analysis of L-dopa-iron chelate and gallocatechin-iron chelate suggested that the blue pigment of BLRDs was mainly in the form of bis-complexes under boiling conditions. The study on formation mechanism of blue pigment in BLRDs can provide a reference for lotus rhizome processing.


Assuntos
Ferro , Polifenóis , Rizoma , Rizoma/química , Polifenóis/química , Polifenóis/análise , Ferro/química , Quelantes de Ferro/química , Pigmentos Biológicos/química , Catequina/química , Catequina/análogos & derivados , Catequina/análise , Levodopa/química , Lotus/química , Cromatografia Líquida de Alta Pressão , Culinária , Temperatura Alta , Ácido Clorogênico/química , Espectrometria de Massas por Ionização por Electrospray
8.
Food Chem ; 460(Pt 1): 140514, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047471

RESUMO

Natural pigments are increasingly favored in the food industry for their vibrant colors, fewer side effects and potential health benefits compared to synthetic pigments. However, their application in food industry is hindered by their instability under harsh environmental conditions. This review evaluates current strategies aimed at enhancing the stability and bioactivity of natural pigments. Advanced physicochemical methods have shown promise in enhancing the stability of natural pigments, enabling their incorporation into food products to enhance sensory attributes, texture, and bioactive properties. Moreover, recent studies demonstrated that most natural pigments offer health benefits. Importantly, they have been found to positively influence gut microbiota, in particular their regulation of the beneficial and harmful flora of the gut microbiome, the reduction of ecological dysbiosis through changes in the composition of the gut microbiome, and the alleviation of systemic inflammation caused by a high-fat diet in mice, suggesting a beneficial role in dietary interventions.


Assuntos
Microbioma Gastrointestinal , Pigmentos Biológicos , Pigmentos Biológicos/química , Animais , Humanos , Indústria Alimentícia , Valor Nutritivo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética
9.
ACS Appl Mater Interfaces ; 16(31): 40531-40542, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39042762

RESUMO

Nature provides a great source of inspiration for the development of sustainable materials with excellent properties, among which melanin with optical, electronic, and radiation protection properties are considered to be promising coloring materials. However, compared to chemical pigments, the single color, complex oxidation process, and poor solubility of natural melanin strongly limit their further applications. Here, we introduce a series of melanin-like polymeric pigments with amino acid-encoded physicochemical properties by a simple three-component reaction system. Our protocol enables artificial control of the chromophore structures through the rational design of the substrates and dopants, thereby combining the safety and functionality of biopigments with the color richness of chemical dyes. Similar to the photoprotective effect of natural melanin, the polymeric pigments showed excellent antioxidant activity in reducing free radicals and have the advantages of iridescent color, strong tinting strength, stability, and affordability. Furthermore, due to their ability to dye substrates, these biomimetic are expected to become new low-cost bioactive chromophores and find various biochemical applications such as in clothing and hair dyeing, food addition, and anticounterfeiting detection.


Assuntos
Materiais Biomiméticos , Melaninas , Materiais Biomiméticos/química , Melaninas/química , Corantes/química , Cor , Antioxidantes/química , Antioxidantes/farmacologia , Pigmentos Biológicos/química
10.
Sci Rep ; 14(1): 17750, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085460

RESUMO

Serratia marcescens is an opportunistic human pathogen that produces a vibrant red pigment called prodigiosin. Prodigiosin has implications in virulence of S. marcescens and promising clinical applications. We discovered that addition of the virulent flagellotropic bacteriophage χ (Chi) to a culture of S. marcescens stimulates a greater than fivefold overproduction of prodigiosin. Active phage infection is required for the effect, as a χ-resistant strain lacking flagella does not respond to phage presence. Via a reporter fusion assay, we have determined that the addition of a χ-induced S. marcescens cell lysate to an uninfected culture causes a threefold increase in transcription of the pig operon, containing genes essential for pigment biosynthesis. Replacement of the pig promoter with a constitutive promoter abolished the pigmentation increase, indicating that regulatory elements present in the pig promoter likely mediate the phenomenon. We hypothesize that S. marcescens detects the threat of phage-mediated cell death and reacts by producing prodigiosin as a stress response. Our findings are of clinical significance for two main reasons: (i) elucidating complex phage-host interactions is crucial for development of therapeutic phage treatments, and (ii) overproduction of prodigiosin in response to phage could be exploited for its biosynthesis and use as a pharmaceutical.


Assuntos
Bacteriófagos , Prodigiosina , Regiões Promotoras Genéticas , Serratia marcescens , Serratia marcescens/metabolismo , Serratia marcescens/genética , Prodigiosina/metabolismo , Prodigiosina/biossíntese , Bacteriófagos/genética , Bacteriófagos/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/metabolismo
11.
World J Microbiol Biotechnol ; 40(9): 270, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030429

RESUMO

Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.


Assuntos
Bactérias , Pigmentos Biológicos , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Bactérias/metabolismo , Biotecnologia/métodos , Carotenoides/metabolismo , Carotenoides/química , Indóis/metabolismo , Indóis/química , Terpenos/metabolismo , Terpenos/química , Piridinas/metabolismo , Piridinas/química , Pirróis/metabolismo , Pirróis/química , Técnicas Biossensoriais , Fenazinas/metabolismo , Fenazinas/química
12.
Int J Biol Macromol ; 276(Pt 1): 133869, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009261

RESUMO

As food packaging evolves, consumer interests are shifting from traditional to intelligent food packaging systems. Intelligent packaging includes active components that display changes in a visual or interactive form perceivable by consumers. This offers real-time monitoring of the quality and shelf life of the packaged food and enhances transparency. For example, pH-sensitive natural pigment-based films change color in response to variations in pH levels, enabling the film/labels to reflect alterations in the acidity or basicity of the food inside the package. Natural pigments like anthocyanins, curcumin, betalains, chlorophyll, and carotenoids have been comprehensively reported for developing biodegradable pH-sensitive films of starch, protein, chitosan, and cellulose. Natural pigments offer great compatibility with these biopolymers and improve the other performance parameters of the films. However, these films still lack the strength and versatility of petroleum-based synthetic plastic films. But these films can be used as an indicator and combined with primary packaging to monitor freshness, time-temperature, and leak for muscle foods, dairy products, fruits and vegetables, and bakery products. Therefore, this review provides a detailed overview of pH-sensitive pigments, their compatibility with natural polymers, their role in film performance in monitoring, and their food packaging applications.


Assuntos
Embalagem de Alimentos , Pigmentos Biológicos , Embalagem de Alimentos/métodos , Concentração de Íons de Hidrogênio , Biopolímeros/química , Pigmentos Biológicos/química , Materiais Inteligentes/química , Antocianinas/química
13.
Braz J Microbiol ; 55(3): 2227-2237, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38954221

RESUMO

Microorganisms are known to be a promising source of biopigments because they are easy to obtain, can be produced on a commercial scale, and are environmentally friendly. Therefore, the aim of this work was to characterize a brown pigment (BP) produced by HM053 in NFbHPN-lactate medium. The BP was extracted from the pellet (BPP) or supernatant (BPS), in the presence (BPPTrp, BPSTrp) or absence (BPPw, BPSw) of tryptophan (Trp). The UV-vis results were similar among all BP samples and compared with commercial melanin used as a standard, and the maximum absorption was observed around 200-220 nm. FTIR spectra showed that BP and commercial melanin had slight differences, with a small band between 3000-2840 cm- 1, related to C-H in the CH2 and CH3 aliphatic groups, which is not observed in the commercial melanin. Between BPP and BPS showed a different structure with bands in the region 1230-1070 cm- 1 related to groups C-O. The thermogravimetric curves for BPSw and BPSTrp showed similar behavior, with 4 stages of mass loss. The similarity between BPPw and BPPTrp with 2 stages of mass loss was also observed. Scanning electron microscopy results showed morphological differences between BPP and BPS, where BPP had a physical structure more homogeneous and a regular flat surface, while the BPS physical structure did not seem homogeneous and the surface was uneven with some spherical structures as commercial melanin.


Assuntos
Azospirillum brasilense , Melaninas , Triptofano , Triptofano/metabolismo , Triptofano/química , Melaninas/química , Melaninas/metabolismo , Azospirillum brasilense/metabolismo , Azospirillum brasilense/química , Azospirillum brasilense/genética , Pigmentos Biológicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Meios de Cultura/química
14.
Fungal Genet Biol ; 174: 103912, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004163

RESUMO

The Fusarium solani species complex (FSSC) is comprised of important pathogens of plants and humans. A distinctive feature of FSSC species is perithecial pigmentation. While the dark perithecial pigments of other Fusarium species are derived from fusarubins synthesized by polyketide synthase 3 (PKS3), the perithecial pigments of FSSC are derived from an unknown metabolite synthesized by PKS35. Here, we confirm in FSSC species Fusarium vanettenii that PKS35 (fsnI) is required for perithecial pigment synthesis by deletion analysis and that fsnI is closely related to phnA from Penicillium herquei, as well as duxI from Talaromyces stipentatus, which produce prephenalenone as an early intermediate in herqueinone and duclauxin synthesis respectively. The production of prephenalenone by expression of fsnI in Saccharomyces cerevisiae indicates that it is also an early intermediate in perithecial pigment synthesis. We next identified a conserved cluster of 10 genes flanking fsnI in F. vanettenii that when expressed in F. graminearum led to the production of a novel corymbiferan lactone F as a likely end product of the phenalenone biosynthetic pathway in FSSC.


Assuntos
Vias Biossintéticas , Fusarium , Fenalenos , Pigmentação , Policetídeo Sintases , Fusarium/genética , Fusarium/metabolismo , Fenalenos/metabolismo , Vias Biossintéticas/genética , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Pigmentação/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Talaromyces/genética , Talaromyces/metabolismo , Penicillium/genética , Penicillium/metabolismo
15.
World J Microbiol Biotechnol ; 40(9): 272, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030303

RESUMO

Microalgae are a source of a wide variety of commodities, including particularly valuable pigments. The typical pigments present in microalgae are the chlorophylls, carotenoids, and phycobiliproteins. However, other types of pigments, of the family of water-soluble polyphenols, usually encountered in terrestrial plants, have been recently reported in microalgae. Among such microalgal polyphenols, many flavonoids have a yellowish hue, and are used as natural textile dyes. Besides being used as natural colorants, for example in the food or cosmetic industry, microalgal pigments also possess many bioactive properties, making them functional as nutraceutical or pharmaceutical agents. Each type of pigment, with its own chemical structure, fulfills particular biological functions. Considering both eukaryotes and prokaryotes, some species within the four most promising microalgae groups (Cyanobacteria, Rhodophyta, Chlorophyta and Heterokontophyta) are distinguished by their high contents of specific added-value pigments. To further enhance microalgae pigment contents during autotrophic cultivation, a review is made of the main related strategies adopted during the last decade, including light adjustments (quantity and quality, and the duration of the photoperiod cycle), and regard to mineral medium characteristics (salinity, nutrients concentrations, presence of inductive chemicals). In contrast to what is usually observed for growth-related pigments, accumulation of non-photosynthetic pigments (polyphenols and secondary carotenoids) requires particularly stressful conditions. Finally, pigment enrichment is also made possible with two new cutting-edge technologies, via the application of metallic nanoparticles or magnetic fields.


Assuntos
Microalgas , Pigmentos Biológicos , Microalgas/metabolismo , Microalgas/química , Pigmentos Biológicos/química , Carotenoides/química , Carotenoides/metabolismo , Carotenoides/análise , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Cianobactérias/metabolismo , Cianobactérias/química , Rodófitas/química , Rodófitas/metabolismo , Clorófitas/química , Clorófitas/metabolismo , Clorofila/análise , Polifenóis/análise , Polifenóis/química , Polifenóis/metabolismo , Meios de Cultura/química
16.
Microb Cell Fact ; 23(1): 189, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956629

RESUMO

Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO3 and asparagine as a nitrogen source were noted as the best for the production of brown pigment. In another case, starch as a polysaccharide was the best carbon for the production of deep green pigment. Peptone and NaNO3 are the best nitrogen sources for the production of deep green pigment. Microbial-AgNPs were produced by Fusarium oxysporum with a size of 7-21 nm, and the shape was spherical. These nanoparticles were used to produce pigments-nanocomposite to improve their promising properties. The antimicrobial of nanoparticles and textiles dyeing by nanocomposites was recorded against multidrug-resistant pathogens. The new nanocomposite improved pigments' dyeing action and textile properties. The produced textiles had anticancer activity against skin cancer cells with non-cytotoxicity detectable action against normal skin cells. The obtained results indicate to application of these textiles in hospital patients' clothes.


Assuntos
Antineoplásicos , Corantes , Prata , Têxteis , Têxteis/microbiologia , Corantes/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Prata/farmacologia , Prata/química , Fusarium/efeitos dos fármacos , Streptomyces/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanopartículas Metálicas/química , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/biossíntese , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral
17.
Artigo em Inglês | MEDLINE | ID: mdl-38963416

RESUMO

A Gram-stain-negative, red pigment-producing, aerobic, and rod-shaped bacterial strain (A2-2T) was isolated from a bleached scleractinian coral (Porites lutea). Strain A2-2T grew with 1.0-7.0 % (w/v) NaCl (optimum, 3.0 %), at pH 6.0-11.0 (optimum, pH 8.0), and at 18-41 °C (optimum, 35 °C). Results of phylogenetic analysis based on 16S rRNA gene sequences suggested that strain A2-2T fell within the genus Spartinivicinus and was closely related to Spartinivicinus ruber S2-4-1HT (98.1 % sequence similarity) and Spartinivicinus marinus SM1973T (98.0 % sequence similarity). The predominant cellular fatty acids of strain A2-2T were C16 : 0 (31.0 %), summed feature 3 (29.0 %), summed feature 8 (11.7 %), C12 : 0 3-OH (6.4 %), and C10 : 0 3-OH (5.5 %), while the major respiratory quinone was Q-9. The polar lipids mainly comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified phospholipid. The genome size of strain A2-2T was 6.8 Mb, with a G+C content of 40.2 mol%. The DNA-DNA hybridization value was 24.2 % between A2-2T and S. ruber S2-4-1HT and 36.9 % between A2-2T and S. marinus SM1973T, while the average nucleotide identity values were 80.1 and 88.8 %, respectively. Based on these findings, strain A2-2T could be recognized to represent a novel species of the genus Spartinivicinus, for which the name Spartinivicinus poritis sp. nov. is proposed. The type strain is A2-2T (=MCCC 1K08228T=KCTC 8323T).


Assuntos
Antozoários , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , Pigmentos Biológicos , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Animais , Antozoários/microbiologia , DNA Bacteriano/genética , Pigmentos Biológicos/metabolismo , Hibridização de Ácido Nucleico , Fosfolipídeos
18.
World J Microbiol Biotechnol ; 40(9): 282, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060812

RESUMO

Nucleic acid demethylases of α-ketoglutarate-dependent dioxygenase (AlkB) family can reversibly erase methyl adducts from nucleobases, thus dynamically regulating the methylation status of DNA/RNA and playing critical roles in multiple cellular processes. But little is known about AlkB demethylases in filamentous fungi so far. The present study reports that Monascus purpureus genomes contain a total of five MpAlkB genes. The MpAlkB1 gene was disrupted and complemented through homologous recombination strategy to analyze its biological functions in M. purpureus. MpAlkB1 knockout significantly accelerated the growth of strain, increased biomass, promoted sporulation and cleistothecia development, reduced the content of Monascus pigments (Mps), and strongly inhibited citrinin biosynthesis. The downregulated expression of the global regulator gene LaeA, and genes of Mps biosynthesis gene cluster (BGC) or citrinin BGC in MpAlkB1 disruption strain supported the pleiotropic trait changes caused by MpAlkB1 deletion. These results indicate that MpAlkB1-mediated demethylation of nucleic acid plays important roles in regulating the growth and development, and secondary metabolism in Monascus spp.


Assuntos
Citrinina , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Monascus , Metabolismo Secundário , Monascus/genética , Monascus/metabolismo , Monascus/crescimento & desenvolvimento , Monascus/enzimologia , Metabolismo Secundário/genética , Citrinina/biossíntese , Citrinina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Técnicas de Inativação de Genes , Família Multigênica , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Metilação de DNA
19.
Adv Appl Microbiol ; 128: 1-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39059841

RESUMO

In Chile, as in the rest of the world, only a small fraction of the fungal diversity inhabiting the wide variety of its ecosystems is known. This diversity must hide an inestimable richness of species with interesting biotechnological potential, including fungal pigment producers. Recently, interest in filamentous fungi has increased significantly due to their importance as alternative sources of pigments and colorants that are environmentally and human health friendly. As a result, fungal pigments are gaining importance in various industrial applications, such as food, textiles, pharmaceuticals, cosmetics, etc. The increasing consumer demand for "green label" natural colorants requires the exploration of different ecosystems in search of new fungal species that are efficient producers of different pigment with a wide range of colors and ideally without the co-production of mycotoxins. However, advances are also needed in pigment production processes through fermentation, scale-up from laboratory to industrial scale, and final product formulation and marketing. In this respect, the journey is still full of challenges for scientists and entrepreneurs. This chapter describes studies on pigment-producing fungi collected in the forests of central-southern Chile. Aspects such as the exploration of potential candidates as sources of extracellular pigments, the optimization of pigment production by submerged fermentation, methods of pigment extraction and purification for subsequent chemical characterization, and formulation (by microencapsulation) for potential cosmetic applications are highlighted. This potential use is due to the outstanding bioactivity of most fungal pigments, making them interesting functional ingredients for many applications. Finally, the use of fungal pigments for textile and spalting applications is discussed.


Assuntos
Florestas , Fungos , Pigmentos Biológicos , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/química , Chile , Fungos/metabolismo , Fungos/genética , Fungos/classificação , Fermentação
20.
J Agric Food Chem ; 72(28): 15801-15810, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38962874

RESUMO

Fungal azaphilones have attracted widespread attention due to their significant potential as sources of food pigments and pharmaceuticals. Genome mining and gene cluster activation represent powerful tools and strategies for discovering novel natural products and bioactive molecules. Here, a putative azaphilone biosynthetic gene cluster lut from the endophytic fungus Talaromyces sp. was identified through genome mining. By overexpressing the pathway-specific transcription factor LutB, five new sclerotiorin-type azaphilones (1, 6, 8, and 10-11) together with seven known analogues (2-5, 7, 9, 12) were successfully produced. Compounds 8 and 9 exhibited antibacterial activity against Bacillus subtilis with MIC values of 64 and 16 µg/mL, respectively. Compound 11 showed cytotoxic activity against HCT116 and GES-1 with IC50 values of 10.9 and 4.9 µM, respectively, while 1, 4, 5, and 7-10 showed no obvious cytotoxic activity. Gene inactivation experiments confirmed the role of the lut cluster in the production of compounds 1-12. Subsequent feeding experiments unveiled the novel functional diversity of the dual megasynthase system. Furthermore, a LutC-LutD binary oxidoreductase system was discovered, and in combination with DFT calculations, the basic biosynthetic pathway of the sclerotiorin-type azaphilones was characterized. This study provided a good example for the discovery of new azaphilones and further uncovered the biosynthesis of these compounds.


Assuntos
Benzopiranos , Proteínas Fúngicas , Família Multigênica , Pigmentos Biológicos , Talaromyces , Talaromyces/genética , Talaromyces/metabolismo , Talaromyces/química , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Humanos , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA