Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.720
Filtrar
1.
Commun Biol ; 7(1): 403, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565966

RESUMO

Erectile dysfunction (ED) is an extremely prevalent condition which significantly impacts quality of life. The rapid increase of ED in recent decades suggests the existence of unidentified environmental risk factors contributing to this condition. Endocrine Disrupting Chemicals (EDCs) are one likely candidate, given that development and function of the erectile tissues are hormonally dependent. We use the estrogenic-EDC diethylstilbestrol (DES) to model how widespread estrogenic-EDC exposure may impact erectile function in humans. Here we show that male mice chronically exposed to DES exhibit abnormal contractility of the erectile tissue, indicative of ED. The treatment did not affect systemic testosterone production yet significantly increased estrogen receptor α (Esr1) expression in the primary erectile tissue, suggesting EDCs directly impact erectile function. In response, we isolated the erectile tissue from mice and briefly incubated them with the estrogenic-EDCs DES or genistein (a phytoestrogen). These acute-direct exposures similarly caused a significant reduction in erectile tissue contractility, again indicative of ED. Overall, these findings demonstrate a direct link between estrogenic EDCs and erectile dysfunction and show that both chronic and acute estrogenic exposures are likely risk factors for this condition.


Assuntos
Disruptores Endócrinos , Disfunção Erétil , Humanos , Masculino , Camundongos , Animais , Disruptores Endócrinos/toxicidade , Disfunção Erétil/induzido quimicamente , Qualidade de Vida , Fatores de Risco
2.
Eur J Dermatol ; 34(1): 40-50, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557457

RESUMO

There is growing concern about the presence of endocrine disrupting chemicals (EDCs) in cosmetics. We aimed to identify the main cosmetic ingredients with suspected endocrine-disrupting properties, and analyse their presence in current marketed products. Particular attention was given to products intended for susceptible (due to physiological status) and vulnerable (due to specific pathologies) groups with a view to informing cosmetologists and related health professionals of the scientific basis and current status of any concerns. Suspected EDCs used as cosmetic ingredients, included in lists published by regulatory agencies, were documented and investigated by weight of evidence analysis based on endocrine-related toxicity studies. In total, 49 suspected EDCs were identified from a sample of over a thousand cosmetic products marketed in the European Union. Suspected EDCs were found in approximately one third of products, with a similar frequency in products intended for susceptible and vulnerable groups. Avobenzone (CAS number:70356-09-1), octisalate (CAS number: 118-60-5), and butylated hydroxytoluene (CAS number: 128-37-0) were mostly commonly identified. The presence of EDCs was particularly high for sun care cosmetic products. Our results highlight potentially significant exposure through cosmetics to substances currently studied by regulatory institutions as suspected endocrine disrupters. EDCs are not yet universally regulated, and informing health professionals and educating the population as a precaution are options to reduce individual exposure levels, especially in vulnerable and susceptible groups. Special recommendations are needed for products intended for oncological patients.


Assuntos
Cosméticos , Disruptores Endócrinos , Humanos , Disruptores Endócrinos/química , Disruptores Endócrinos/toxicidade , Cosméticos/efeitos adversos , Cosméticos/química , Hidroxitolueno Butilado
3.
J Mol Model ; 30(5): 127, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594491

RESUMO

CONTEXT: Human estrogen-related receptor γ (hERRγ) is a key protein involved in various endocrines and metabolic signaling. Numerous environmental endocrine-disrupting chemicals (EDCs) can impact related physiological activities through receptor signaling pathways. Focused on hERRγ with 4-isopropylphenol, bisphenol-F (BPF), and BP(2,2)(Un) complexes, we executed molecular docking and multiple molecular dynamics (MD) simulations along with molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) and solvation interaction energy (SIE) calculation to study the detailed dynamical structural characteristics and interactions between them. Molecular docking showed that hydrogen bonds and hydrophobic interactions were the prime interactions to keep the stability of BPF-hERRγ and hERRγ-BP(2,2)(Un) complexes. Through MD simulations, we observed that all complexes reach equilibrium during the initial 50 ns of simulation, but these three EDCs lead to local structure changes in hERRγ. Energy results further identified key residues L268, V313, L345, and F435 around the binding pockets through CH-π, π-π, and hydrogen bonds interactions play an important stabilizing role in the recognition with EDCs. And most noticeable of all, hydrophobic methoxide groups in BP(2,2)(Un) is useful for decreasing the binding ability between EDCs and hERRγ. These results may contribute to evaluate latent diseases associated with EDCs exposure at the micro level and find potential substitutes. METHOD: Autodock4.2 was used to conduct the molecular docking, sietraj program was performed to calculate the energy, and VMD software was used to visualize the structure. Amber18 was conducted to perform the MD simulation and other analyses.


Assuntos
Disruptores Endócrinos , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Proteínas , Software , Ligação Proteica
4.
Front Public Health ; 12: 1341789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584917

RESUMO

Introduction: There is evidence suggesting that Bisphenol A (BPA) is associated with increased all-cause mortality in adults. However, the specific nature of the relationship between BPA exposure and cancer mortality remains relatively unexplored. Methods: The National Health and Nutrition Examination Survey (NHANES) dataset was used to recruit participants. Urinary BPA was assessed using liquid chromatography-mass spectrum (LC-MS). Through the use of multivariable Cox proportional hazard regressions and constrained cubic splines, the relationships between urine BPA and death from all causes and cancer were investigated. Results: This study has a total of 8,035 participants, and 137 died from cancers after a 7.5-year follow-up. The median level of BPA was 2.0 g/mL. Urinary BPA levels were not independently associated with all-cause mortality. For cancer mortality, the second quartile's multivariable-adjusted hazard ratio was 0.51 (95% confidence interval: 0.30 to 0.86; p = 0.011) compared to the lowest quartile. The restricted cubic splines showed that the association was nonlinear (p for nonlinearity = 0.028) and the inflection point was 1.99 ng/mL. Conclusion: Urinary BPA exposure was U-shaped associated with the risk of cancer mortality, and a lower level of BPA less than 1.99 ng/mL was associated with a higher risk of cancer mortality.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Neoplasias , Fenóis , Adulto , Humanos , Inquéritos Nutricionais , Disruptores Endócrinos/urina , Estudos Prospectivos
5.
Front Endocrinol (Lausanne) ; 15: 1343887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633762

RESUMO

Congenital cryptorchidism, also known as undescended testis, is the condition where one or both testes are not in place in the scrotum at birth and is one of the most common birth defects in boys. Temporal trends and geographic variation in the prevalence of cryptorchidism from 1% to 9% have been reported in prospective cohort studies. The testes develop in the abdominal cavity and descend to the scrotum in two phases, which should be completed by gestational week 35. Thus, the risk of cryptorchidism is higher in preterm boys. In many cases a spontaneous descent occurs during the first months of life during the surge of gonadotropins and testosterone. If not, the testis is usually brought down to the scrotum, typically by surgery, to increase future fertility chances and facilitate cancer surveillance. The increasing frequency of impaired semen quality and testicular cancer, with which cryptorchidism is associated, represents a concern for male reproductive health in general and a need to understand its risk factors. The risk of cryptorchidism is closely related to gestational factors (preterm birth, low birth weight and intrauterine growth restriction), and especially maternal smoking seems to be a risk factor. Evidence is accumulating that the increasing prevalence of cryptorchidism is also related to prenatal exposure to environmental chemicals, including endocrine disrupting compounds. This association has been corroborated in rodents and supported by ecological studies. Conducting human studies to assess the effect of endocrine disrupting chemicals and their interactions is, however, challenged by the widespread concomitant exposure of all humans to a wide range of chemicals, the combined effect of which and their interactions are highly complex.


Assuntos
Criptorquidismo , Disruptores Endócrinos , Nascimento Prematuro , Neoplasias Testiculares , Gravidez , Feminino , Humanos , Masculino , Recém-Nascido , Criptorquidismo/epidemiologia , Neoplasias Testiculares/complicações , Estudos Prospectivos , Análise do Sêmen , Fatores de Risco
6.
Talanta ; 272: 125746, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447467

RESUMO

High-performance thin-layer chromatography hyphenated with planar multiplex bioassays and high-resolution tandem mass spectrometry contributes to the non-target detection or even identification of active compounds in complex mixtures such as food, feed, cosmetics, commodities, and environmental samples. It can be used to discover previously unknown harmful or active substances in complex samples and to tentatively assign molecular formulas. This method is already faster than the commonly used in vitro assays along with liquid chromatographic separations, but overnight cell cultivation still prevents a planar bioassay from being performed within one day. There is also still potential for optimization in terms of sustainability. To achieve this, the planar bioassay protocols for the detection of androgen-like and estrogen-like compounds were harmonized. The successful minimization of the cell culture volume enabled accelerated cell cultivation, which allowed the bioassay to be performed within one day. This was considered a milestone achieved, as up to 23 samples per plate can now be analyzed from the start of cultivation to the biological endpoint on the same day. Doubling the substrate amount and increasing the pH of the silica gel layer led to a more sensitive and selective bioassay due to the enhanced fluorescence of the formed end-product. The faster and more sustainable bioassay protocol was applied to complex samples such as sunscreen and red wine to detect estrogen-like compounds. The developed method was validated by comparison with a standard method.


Assuntos
Disruptores Endócrinos , Saccharomyces cerevisiae , Disruptores Endócrinos/análise , Estrogênios/análise , Bioensaio/métodos , Misturas Complexas
7.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542932

RESUMO

Emerging pollutants (EPs) encompass natural or synthetic substances found in the environment that pose potential risks, but which have only recently been recognized or monitored. EPs consist of various categories, including pesticides, pharmaceuticals, hormones, mycotoxins, and endocrine-disrupting chemicals (EDCs). Through several pathways, EPs can access food, potentially leading to health impacts when safe concentrations are exceeded. Milk, being a highly nutritious food product that is heavily consumed by many consumers of different ages, is a crucial food matrix where EPs should be regularly monitored. In the literature, a large number of studies have been dedicated to the determination of different EPs in dairy milk, employing different analytical techniques to do so. Chromatography-based techniques are the most prevalent means used for the analysis of EPs in milk, demonstrating significant efficiency, sensitivity, and accuracy for this specific purpose. The extraction of EPs from a complex matrix like milk is essential prior to performing chromatographic analysis. This review comprehensively covers relevant research papers on the extraction and subsequent detection and determination of EPs in milk using chromatographic methods from 2018 to 2023.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Animais , Leite/química , Poluentes Ambientais/análise , Disruptores Endócrinos/análise
8.
Chemosphere ; 355: 141760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537710

RESUMO

A significant and pressing issue revolves around the potential human exposure to endocrine disrupting chemicals (EDCs), which pose a substantial risk primarily through contaminated beverages. However, a comprehensive review for comparison of the migration rates of EDCs into these matrixes is currently lacking. This study reviews the beverages contamination with EDCs, including phthalates (PAEs), bisphenol A (BPA), hormone-like compounds, elements, and other organic EDCs. Also, the EDCs migration into milk and other dairy products, coffee, tea, and cold beverages related to their release from contact materials, preparation components, and storage conditions are briefly summarized. The data illustrates that besides the contamination of raw materials, the presence of EDCs associated with the type of food contact materials (FCMs)and their migration rate is increased with acidity, temperature, and storage time. The highest concentration of PAEs was detected from plastic and synthetic polymer films, while BPA strongly leaches from epoxy resins and canned metal. Furthermore, the presence of elements with endocrine disrupting characteristics was confirmed in cold beverages, soft drinks, hot drink and milk. Moreover, hormone-like compounds have been found to be released from coffee preparation components. Despite the few data about the migration rate of other EDCs including UV-stabilizers, surfactants, and antibacterial compounds into beverages, their presence was reported into milk, coffee, and different beverages, especially in packed samples. Studies on the EDCs leaching have primarily focused on PAEs and BPA, while other compounds require further investigation. Regardless, the possible risk that EDCs pose to humans through beverage consumption cannot be overlooked.


Assuntos
Café , Disruptores Endócrinos , Humanos , Animais , Disruptores Endócrinos/análise , Bebidas/análise , Leite/química , Hormônios , Compostos Benzidrílicos/análise
9.
Environ Toxicol Pharmacol ; 107: 104407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428705

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVDs are promoted by the accumulation of lipids and immune cells in the endothelial space resulting in endothelial dysfunction. Endothelial cells are important components of the vascular endothelium, that regulate the vascular flow. The imbalance in the production of vasoactive substances results in the loss of vascular homeostasis, leading the endothelial dysfunction. Thus, endothelial dysfunction plays an essential role in the development of atherosclerosis and can be triggered by different cardiovascular risk factors. On the other hand, the 17ß-estradiol (E2) hormone has been related to the regulation of vascular tone through different mechanisms. Several compounds can elicit estrogenic actions similar to those of E2. For these reasons, they have been called endocrine-disrupting compounds (EDCs). This review aims to provide up-to-date information about how different EDCs affect endothelial function and their mechanistic roles in the context of CVDs.


Assuntos
Doenças Cardiovasculares , Disruptores Endócrinos , Ácidos Ftálicos , Humanos , Parabenos/toxicidade , Células Endoteliais , Estradiol , Doenças Cardiovasculares/induzido quimicamente , Endotélio Vascular/fisiologia , Disruptores Endócrinos/toxicidade
10.
Environ Toxicol Pharmacol ; 107: 104420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499263

RESUMO

Endocrine disruptors chemicals (EDCs) pose significant health risks, including cancer, behavioral disorders, and infertility. In this study, we employed the photoelectrocatalysis (PEC) technique with optimized tungsten oxide (WO3) nanostructures as a photoanode to degrade three diverse EDCs: methiocarb, dimethyl phthalate, and 4-tert-butylphenol. PEC degradation tests were carried out for individual contaminants and a mixture of them, assessing efficiency across different EDC families. Ultra High-Performance Liquid Chromatography and Mass Spectrometry was used to control the course of the experiments. For individual solutions, 4-tert-butylphenol and methiocarb were 100% degraded at 1 hour of PEC degradation. Among the tested EDCs, dimethyl phthalate showed the highest resistance to degradation when treated individually. However, when assessed in a mixture with the other EDCs, the degradation efficiency of dimethyl phthalate increased compared to its individual treatment. Furthermore, four degradation intermediates were identified for each contaminant. Finally, toxicity tests revealed that the initial solution was more toxic than the samples treated for all the contaminants tested, except for the phthalate.


Assuntos
Disruptores Endócrinos , Metiocarb , Fenóis , Ácidos Ftálicos , Humanos , Disruptores Endócrinos/toxicidade , Espectrometria de Massas em Tandem/métodos
11.
Reprod Toxicol ; 125: 108580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522559

RESUMO

Preterm birth in humans (PTB), defined as birth prior to 37 weeks of gestation, is one of the most important causes of neonatal morbidity and mortality and is associated with adverse health outcomes later in life. Attributed to many different etiological factors, estimated 15.1 million or 11.1% of births each year are preterm, which is more than 1 per 10 livebirths globally. Environmental pollution is a well-established risk factor that could influence the pathogenesis of PTB. Increasing evidence has shown an association between maternal exposure to endocrine disrupting chemicals (EDCs) and PTB. This scoping review aims to summarize current research on the association between EDC exposure and PTB in humans. Database PubMed was used to identify articles discussing the effect of selected EDCs, namely bisphenol A, bisphenol S, bisphenol F, parabens, and triclosan, found in plastics, cosmetics and other personal care products, on PTB occurrence. Regardless of some inconsistences in the findings across studies, the reviewed studies suggest a potential association between involuntary exposure to reviewed EDCs and the risk of PTB. However, further studies are needed to delineate exact correlations and mechanisms through which EDC exposure causes PTB so that efficient preventative measures could be implemented. Until then, health care providers should inform women about possible EDC exposure thus empowering them to make healthy choices and at the same time decrease the EDC negative effects.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Fenóis , Nascimento Prematuro , Triclosan , Humanos , Recém-Nascido , Feminino , Disruptores Endócrinos/toxicidade , Parabenos/efeitos adversos , Triclosan/toxicidade , Nascimento Prematuro/epidemiologia
12.
J Chromatogr A ; 1720: 464813, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38490142

RESUMO

Estrogens and bisphenols are typical endocrine disruptors (EDs) that pose a potential hazard to the human body due to their widespread presence in aqueous environments. In this study, a ß-cyclodextrin porous crosslinked polymer (ß-CD-PCP) was prepared in-situ on a glass fiber surface by a nucleophilic substitution reaction. An effective and sensitive solid phase microextraction method using functionalized glass fiber with ß-CD-PCP coating as the adsorbent was established for the detection of 11 EDs in a water environment. The ß-CD-PCP was in-situ prepared on a glass fiber surface by a nucleophilic substitution reaction. The ß-CD-PCP successfully separated five estrogens (ESTs) and six bisphenols (BPs) through hydrophobic and π-π interactions. The conditions affecting extraction were optimized. Under the optimized conditions, the ESTs obtained a high enrichment effect (1795-2328), low limits of detection (0.047 µg L-1) and a good linearity range (0.2-15.0 µg L-1). Furthermore, the spiked recoveries of analyte ESTs in aqueous environments were between 82.9-115.7 %. The results indicated that the prepared functionalized glass fibers exhibited good adsorption properties, and the established analytical method was reliable for monitoring trace ESTs and BPs in aqueous environments.


Assuntos
Disruptores Endócrinos , Vidro , Humanos , Disruptores Endócrinos/análise , Água/química , Microextração em Fase Sólida/métodos , Estrogênios/análise
13.
Ecotoxicol Environ Saf ; 275: 116253, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537475

RESUMO

Pregnancy is a sensitive window period for bisphenol A (BPA) exposure. BPA can pass through the placenta and cause reproductive damage in offspring female mice. Even BPA that is not metabolized during lactation can be passed through milk. Cuscuta chinensis flavonoids (CCFs) can alleviate reproductive damage caused by BPA, but the mechanism of action is unclear. To investigate the potential mitigating impact of CCFs on ovarian damage resulting from BPA exposure during pregnancy, we administered BPA and CCFs to pregnant mice during the gestational period spanning from 0.5 to 17.5 days. Aseptic collection of serum and ovaries from female mice was conducted on postnatal day 21 (PND21). Serum hormone levels and tissue receptor levels were quantified utilizing ELISA and PCR, while ovaries underwent sequencing and analysis through transcriptomics and metabolomics techniques. Additionally, the assessment of ovarian oxidative stress levels was carried out as part of the comprehensive analysis. The results showed that CCFs administration mitigated the adverse effects induced by BPA exposure on ovarian index, hormone levels, receptor expression, and mRNA expression levels in female offspring mice. The joint analysis of transcriptome and metabolome revealed 48 enriched pathways in positive ion mode and 44 enriched pathways in negative ion mode. Among them, the central carbon metabolism pathway is significantly regulated by BPA and CCFs. The screened sequencing results were verified through qPCR and biochemical kits. In this study, CCFs may participate in the central carbon metabolism pathway by reducing the expression of Kit proto-oncogene (Kit), hexokinase 1 gene (Hk1) and pyruvate kinase M (Pkm) mRNA and increasing the expression of h-ras proto-oncogene (Hras), sirtuin 3 (Sirt3), sirtuin 6 (Sirt6) and TP53 induced glycolysis regulatory phosphatase gene (Tigar) mRNA, thereby resisting the effects of BPA on the body. At the same time, the metabolic levels of D-Fructose 1,6-bisphosphate and L-Asparagine tend to be stable. Moreover, CCFs demonstrated a capacity to diminish the BPA-induced escalation in reactive oxygen species (ROS) and malondialdehyde (MDA). Simultaneously, it exhibited the ability to elevate levels of glutathione (GSH) and catalase (CAT), thereby effectively preventing peroxidation. In summary, CCFs alleviate BPA-induced ovarian damage in offspring female mice by regulating the central carbon metabolism pathway. This study will improve the information on BPA reproductive damage antagonist drugs and provide a theoretical basis for protecting animal reproductive health.


Assuntos
Cuscuta , Disruptores Endócrinos , Fenóis , Sirtuínas , Gravidez , Camundongos , Animais , Feminino , Ovário , Cuscuta/genética , Flavonoides/farmacologia , Compostos Benzidrílicos/toxicidade , Hormônios , RNA Mensageiro , Disruptores Endócrinos/farmacologia
14.
Sci Total Environ ; 922: 171342, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428594

RESUMO

Single-pollutant methods to evaluate associations between endocrine disrupting chemicals (EDCs) and thyroid cancer risk may not reflect realistic human exposures. Therefore, we evaluated associations between exposure to a mixture of 18 EDCs, including polychlorinated biphenyls (PCBs), brominated flame retardants, and organochlorine pesticides, and risk of papillary thyroid cancer (PTC), the most common thyroid cancer histological subtype. We conducted a nested case-control study among U.S. military servicemembers of 652 histologically-confirmed PTC cases diagnosed between 2000 and 2013 and 652 controls, matched on birth year, sex, race/ethnicity, military component (active duty/reserve), and serum sample timing. We estimated mixture odds ratios (OR), 95% confidence intervals (95% CI), and standard errors (SE) for associations between pre-diagnostic serum EDC mixture concentrations, overall PTC risk, and risk of histological subtypes of PTC (classical, follicular), adjusted for body mass index and military branch, using quantile g-computation. Additionally, we identified relative contributions of individual mixture components to PTC risk, represented by positive and negative weights (w). A one-quartile increase in the serum mixture concentration was associated with a non-statistically significant increase in overall PTC risk (OR = 1.19; 95% CI = 0.91, 1.56; SE = 0.14). Stratified by histological subtype and race (White, Black), a one-quartile increase in the mixture was associated with increased classical PTC risk among those of White race (OR = 1.59; 95% CI = 1.06, 2.40; SE = 0.21), but not of Black race (OR = 0.95; 95% CI = 0.34, 2.68; SE = 0.53). PCBs 180, 199, and 118 had the greatest positive weights driving this association among those of White race (w = 0.312, 0.255, and 0.119, respectively). Findings suggest that exposure to an EDC mixture may be associated with increased classical PTC risk. These findings warrant further investigation in other study populations to better understand PTC risk by histological subtype and race.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Militares , Bifenilos Policlorados , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/induzido quimicamente , Câncer Papilífero da Tireoide/epidemiologia , Disruptores Endócrinos/toxicidade , Estudos de Casos e Controles , Poluentes Ambientais/análise , Neoplasias da Glândula Tireoide/induzido quimicamente , Neoplasias da Glândula Tireoide/epidemiologia
15.
Environ Sci Technol ; 58(11): 4859-4871, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441001

RESUMO

Plastics are complex chemical mixtures of polymers and various intentionally and nonintentionally added substances. Despite the well-established links between certain plastic chemicals (bisphenols and phthalates) and adverse health effects, the composition and toxicity of real-world mixtures of plastic chemicals are not well understood. To assess both, we analyzed the chemicals from 36 plastic food contact articles from five countries using nontarget high-resolution mass spectrometry and reporter-gene assays for four nuclear receptors that represent key components of the endocrine and metabolic system. We found that chemicals activating the pregnane X receptor (PXR), peroxisome proliferator receptor γ (PPARγ), estrogen receptor α (ERα), and inhibiting the androgen receptor (AR) are prevalent in plastic packaging. We detected up to 9936 chemical features in a single product and found that each product had a rather unique chemical fingerprint. To tackle this chemical complexity, we used stepwise partial least-squares regressions and prioritized and tentatively identified the chemical features associated with receptor activity. Our findings demonstrate that most plastic food packaging contains endocrine- and metabolism-disrupting chemicals. Since samples with fewer chemical features induce less toxicity, chemical simplification is key to producing safer plastic packaging.


Assuntos
Disruptores Endócrinos , Embalagem de Alimentos , Polímeros , Disruptores Endócrinos/química , Disruptores Endócrinos/farmacologia , Plásticos
16.
Environ Geochem Health ; 46(3): 111, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466501

RESUMO

With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Metais Pesados , Nitritos , Elementos de Transição , Poluentes Químicos da Água , Humanos , Água/análise , Águas Residuárias , Disruptores Endócrinos/análise , Metais Pesados/análise , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
17.
Environ Int ; 185: 108571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471262

RESUMO

Isolated effects of single endocrine-disrupting chemicals (EDCs) on male reproductive health have been studied extensively, but their mixture effect remains unelucidated. Previous research has suggested that consuming diet enriched in omega-3 polyunsaturated fatty acids (PUFA) might be beneficial for reproductive health, whether omega-3 PUFA could moderate the effect of EDCs mixture on semen quality remains to be explored. In this study of 155 male recruited from a reproductive health center in China, we used targeted-exposomics to simultaneously measure 55 EDCs in the urine for exposure burden. Regression analyses were restricted to highly detected EDCs (≥55%, n = 34), and those with consistently elevated risk were further screened and brought into mixture effect models (Bisphenol A, ethyl paraben, methyl paraben [MeP], benzophenone-1 [BP1], benzophenone-3, mono(3-carboxypropyl) phthalate [MCPP]). Bayesian Kernel Machine Regression (BKMR) and quantile-based g-computation (QGC) models demonstrated that co-exposure to top-ranked EDCs was related to reduced sperm total (ß = -0.18, 95%CI: -0.29 - -0.07, P = 0.002) and progressive motility (ß = -0.27, 95%CI: -0.43 - -0.10, P = 0.002), but not to lower semen volume. BP1, MeP and MCPP were identified as the main effect driver for deteriorated sperm motion parameters using mixture model analyses. Seminal plasma fatty acid profiling showed that high omega-3 PUFA status, notably elevated docosapentaenoic acid (DPA, C22:5n-3) status, moderated the association between MCPP and sperm motion parameters (total motility: ß = 0.26, 95%CI: 0.01 - -0.51, Pinteraction = 0.047; progressive motility: ß = 0.64, 95%CI: 0.23 - 1.05, Pinteraction = 0.003). Co-exposure to a range of EDCs is mainly associated with deteriorated sperm quality, but to a lesser extent on sperm quantity, high seminal plasma DPA status might be protective against the effect. Our work emphasizes the importance of exposomic approach to assess chemical exposures and highlighted a new possible intervention target for mitigating the potential adverse effect of EDCs on semen quality.


Assuntos
Benzofenonas , Disruptores Endócrinos , Ácidos Graxos Ômega-3 , Ácidos Graxos Insaturados , Masculino , Humanos , Sêmen , Análise do Sêmen , Disruptores Endócrinos/toxicidade , Teorema de Bayes , Espermatozoides
18.
Ecotoxicol Environ Saf ; 274: 116168, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460409

RESUMO

Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM.


Assuntos
Cardiomiopatia Dilatada , Disruptores Endócrinos , Cardiopatias , Humanos , Coração , Biologia Computacional , Disruptores Endócrinos/toxicidade , Aprendizado de Máquina
20.
Sci Rep ; 14(1): 5567, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448539

RESUMO

Progesterone receptor (PR)-interacting compounds in the environment are associated with serious health hazards. However, methods for their detection in environmental samples are cumbersome. We report a sensitive activity-based biosensor for rapid and reliable screening of progesterone receptor (PR)-interacting endocrine disrupting chemicals (EDCs). The biosensor is a cell line which expresses nuclear mCherry-NF1 and a green fluorescent protein (GFP)-tagged chimera of glucocorticoid receptor (GR) N terminus fused to the ligand binding domain (LBD) of PR (GFP-GR-PR). As this LBD is shared by the PRA and PRB, the biosensor reports on the activation of both PR isoforms. This GFP-GR-PR chimera is cytoplasmic in the absence of hormone and translocates rapidly to the nucleus in response to PR agonists or antagonists in concentration- and time-dependent manner. In live cells, presence of nuclear NF1 label eliminates cell fixation and nuclear staining resulting in efficient screening. The assay can be used in screens for novel PR ligands and PR-interacting contaminants in environmental samples. A limited screen of river water samples indicated a widespread, low-level contamination with PR-interacting contaminants in all tested samples.


Assuntos
Disruptores Endócrinos , Receptores de Progesterona/genética , Bioensaio , Linhagem Celular , Citoplasma , Proteínas de Fluorescência Verde/genética , Receptores de Glucocorticoides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...