Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395.622
Filtrar
1.
Biomaterials ; 313: 122794, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39241552

RESUMO

Complex tissue damage accompanying with bacterial infection challenges healthcare systems globally. Conventional tissue engineering scaffolds normally generate secondary implantation trauma, mismatched regeneration and infection risks. Herein, we developed an easily implanted scaffold with multistep shape memory and photothermal-chemodynamic properties to exactly match repair requirements of each part from the tissue defect by adjusting its morphology as needed meanwhile inhibiting bacterial infection on demand. Specifically, a thermal-induced shape memory scaffold was prepared using hydroxyethyl methacrylate and polyethylene glycol diacrylate, which was further combined with the photothermal agent iron tannate (FeTA) to produce NIR light-induced shape memory property. By varying ingredients ratios in each segment, this scaffold could perform a stepwise recovery under different NIR periods. This process facilitated implantation after shape fixing to avoid trauma caused by conventional methods and gradually filled irregular defects under NIR to perform suitable tissue regeneration. Moreover, FeTA also catalyzed Fenton reaction at bacterial infections with abundant H2O2, which produced excess ROS for chemodynamic antibacterial therapy. As expected, bacteriostatic rate was further enhanced by additional photothermal therapy under NIR. The in vitro and vivo results showed that our scaffold was able to perform high efficacy in both antibiosis, inflammation reduction and wound healing acceleration, indicating a promising candidate for the regeneration of complex tissue damage with bacterial infection.


Assuntos
Antibacterianos , Alicerces Teciduais , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Animais , Alicerces Teciduais/química , Camundongos , Cicatrização/efeitos dos fármacos , Raios Infravermelhos , Terapia Fototérmica , Engenharia Tecidual/métodos , Taninos/química , Taninos/farmacologia , Materiais Inteligentes/química , Staphylococcus aureus/efeitos dos fármacos , Masculino , Polietilenoglicóis/química
2.
Biomaterials ; 313: 122761, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39241550

RESUMO

Biofilm-associated infections (BAIs) continue to pose a major challenge in the medical field. Nanomedicine, in particular, promises significant advances in combating BAIs through the introduction of a variety of nanomaterials and nano-antimicrobial strategies. However, studies to date have primarily focused on the removal of the bacterial biofilm and neglect the subsequent post-biofilm therapeutic measures for BAIs, rendering pure anti-biofilm strategies insufficient for the holistic recovery of affected patients. Herein, we construct an emerging dual-functional composite nanosheet (SiHx@Ga) that responds to pHs fluctuation in the biofilm microenvironment to enable a sequential therapy of BAIs. In the acidic environment of biofilm, SiHx@Ga employs the self-sensitized photothermal Trojan horse strategy to effectively impair the reactive oxygen species (ROS) defense system while triggering oxidative stress and lipid peroxidation of bacteria, engendering potent antibacterial and anti-biofilm effects. Surprisingly, in the post-treatment phase, SiHx@Ga adsorbs free pathogenic nucleic acids released after biofilm destruction, generates hydrogen with ROS-scavenging and promotes macrophage polarization to the M2 type, effectively mitigating damaging inflammatory burst and promoting tissue healing. This well-orchestrated strategy provides a sequential therapy of BAIs by utilizing microenvironmental variations, offering a conceptual paradigm shift in the field of nanomedicine anti-infectives.


Assuntos
Antibacterianos , Biofilmes , Gálio , Espécies Reativas de Oxigênio , Biofilmes/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Gálio/química , Gálio/farmacologia , Camundongos , Portadores de Fármacos/química , Células RAW 264.7 , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
3.
Biomaterials ; 313: 122762, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39178559

RESUMO

Osteomyelitis is an osseous infectious disease that primarily affects children and the elderly with high morbidity and recurrence. The conventional treatments of osteomyelitis contain long-term and high-dose systemic antibiotics with debridements, which are not effective and lead to antibiotic resistance with serious side/adverse effects in many cases. Hence, developing novel antibiotic-free interventions against osteomyelitis (especially antibiotic-resistant bacterial infection) is urgent and anticipated. Here, a bone mesenchymal stem cell membrane-constructed nanocell (CFE@CM) was fabricated against osteomyelitis with the characteristics of acid-responsiveness, hydrogen peroxide self-supplying, enhanced chemodynamic therapeutic efficacy, bone marrow targeting and cuproptosis induction. Notably, mRNA sequencing was applied to unveil the underlying biological mechanisms and found that the biological processes related to copper ion binding, oxidative phosphorylation, peptide biosynthesis and metabolism, etc., were disturbed by CFE@CM in bacteria. This work provided an innovative antibiotic-free strategy against osteomyelitis through copper-enhanced Fenton reaction and distinct cuproptosis, promising to complement the current insufficient therapeutic regimen in clinic.


Assuntos
Cobre , Osteomielite , Osteomielite/tratamento farmacológico , Animais , Cobre/química , Cobre/farmacologia , Concentração de Íons de Hidrogênio , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Camundongos , Peróxido de Hidrogênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Humanos , Staphylococcus aureus/efeitos dos fármacos
4.
Biomaterials ; 313: 122772, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39190942

RESUMO

Implant-associated infection (IAI) has become an intractable challenge in clinic. The healing of IAI is a complex physiological process involving a series of spatiotemporal connected events. However, existing titanium-based implants in clinic suffer from poor antibacterial effect and single function. Herein, a versatile surface platform based on the presentation of sequential function is developed. Fabrication of titania nanotubes and poly-γ-glutamic acid (γ-PGA) achieves the efficient incorporation of silver ions (Ag+) and the pH-sensitive release in response to acidic bone infection microenvironment. The optimized PGA/Ag platform exhibits satisfactory biocompatibility and converts macrophages from pro-inflammatory M1 to pro-healing M2 phenotype during the subsequent healing stage, which creates a beneficial osteoimmune microenvironment and promotes angio/osteogenesis. Furthermore, the PGA/Ag platform mediates osteoblast/osteoclast coupling through inhibiting CCL3/CCR1 signaling. These biological effects synergistically improve osseointegration under bacterial infection in vivo, matching the healing process of IAI. Overall, the novel integrated PGA/Ag surface platform proposed in this study fulfills function cascades under pathological state and shows great potential in IAI therapy.


Assuntos
Antibacterianos , Ácido Poliglutâmico , Prata , Titânio , Animais , Titânio/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Prata/química , Prata/farmacologia , Propriedades de Superfície , Nanotubos/química , Células RAW 264.7 , Infecções Relacionadas à Prótese/tratamento farmacológico , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Cicatrização/efeitos dos fármacos , Próteses e Implantes
5.
Biomaterials ; 313: 122774, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39208699

RESUMO

Osteomyelitis (OM) is a progressive, inflammatory infection of bone caused predominately by Staphylococcus aureus. Herein, we engineered an antibiotic-eluting collagen-hydroxyapatite scaffold capable of eliminating infection and facilitating bone healing. An iterative freeze-drying and chemical crosslinking approach was leveraged to modify antibiotic release kinetics, resulting in a layered dual-release system whereby an initial rapid release of antibiotic to clear infection was followed by a sustained controlled release to prevent reoccurrence of infection. We observed that the presence of microbial collagenase accelerated antibiotic release from the crosslinked layer of the scaffold, indicating that the material is responsive to microbial activity. As exemplar drugs, vancomycin and gentamicin-eluting scaffolds were demonstrated to be bactericidal, and supported osteogenesis in vitro. In a pilot murine model of OM, vancomycin-eluting scaffolds were observed to reduce S. aureus infection within the tibia. Finally, in a rabbit model of chronic OM, gentamicin-eluting scaffolds both facilitated radial bone defect healing and eliminated S. aureus infection. These results show that antibiotic-eluting collagen-hydroxyapatite scaffolds are a one-stage therapy for OM, which when implanted into infected bone defects simultaneously eradicate infection and facilitate bone tissue healing.


Assuntos
Antibacterianos , Gentamicinas , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Osteomielite/tratamento farmacológico , Coelhos , Staphylococcus aureus/efeitos dos fármacos , Gentamicinas/farmacologia , Gentamicinas/administração & dosagem , Gentamicinas/química , Gentamicinas/uso terapêutico , Camundongos , Vancomicina/farmacologia , Vancomicina/química , Vancomicina/administração & dosagem , Durapatita/química , Cinética , Cicatrização/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Colágeno/química , Feminino
6.
J Ethnopharmacol ; 336: 118701, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39153519

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mouthwashes based on medicinal plants have demonstrated benefits in controlling plaque and inflammation, acting positively on the oral hygiene of patients with gingivitis. In traditional medicine, Punica granatum L. has been used to treat oral diseases in countries in Europe, Asia, North America, and Africa. AIM OF THE STUDY: The present study aimed to conduct a comprehensive review on the dental applications of Punica granatum L. for the treatment of gingivitis, including ethnomedicinal uses, analysis of randomized clinical trials, antibacterial activity against Porphyromonas gingivalis, mechanisms of action of phytochemicals isolated from this plant, and preclinical toxicity. MATERIALS AND METHODS: The literature was retrieved from Google Scholar, PubMed®, SciELO, and ScienceDirect®, since the first report published on the topic in 2001 until March 2024. RESULTS: Several clinical trials have demonstrated that mouthwashes containing P. granatum have equal or better efficacy than chlorhexidine in treating patients with gingivitis, confirming the indications for use of this plant by traditional communities. However, reports on the in vitro antibacterial activity of extracts from the fruits of this plant have not shown clinical relevance against the pathogen P. gingivalis. The ellagitannin punicalagin isolated from P. granatum has shown potential against several strains of Gram-positive and Gram-negative bacteria, but, to date, this compound has not yet been tested against P. gingivalis. It is likely that the mechanisms of action of flavonoids, such as quercetin, are involved in the inhibition of the activities of the RgpA, RgpB, and Kgp proteases of P. gingivalis. CONCLUSIONS: In summary, natural products obtained from P. granatum do not present toxic side effects and can be considered as possible substitutes of commercial products recommended for the treatment of gingivitis and other oral diseases.


Assuntos
Antibacterianos , Gengivite , Extratos Vegetais , Porphyromonas gingivalis , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Gengivite/tratamento farmacológico , Porphyromonas gingivalis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Punica granatum/química , Medicina Tradicional , Animais , Fitoterapia
7.
Food Chem ; 462: 140991, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208721

RESUMO

Shewanella baltica is a specific spoilage organism of golden pomfret. This study aims to explore the antibacterial mechanism of slightly acidic electrolysed water (SAEW) against S. baltica (strains ABa4, ABe2 and BBe1) in golden pomfret broths by metabolomics, proteomics and bioinformatics analyses. S. baltica was decreased by at least 3.94 log CFU/mL after SAEW treatment, and strain ABa4 had the highest resistance. Under SAEW stress, amino acids and organic acids in S. baltica decreased, and nucleotide related compounds degraded. Furthermore, 100 differentially expressed proteins (DEPs) were identified. Most DEPs of strains ABe2 and BBe1 were down-regulated, while some DEPs of strain ABa4 were up-regulated, especially those oxidative stress related proteins. These results suggest that the modes of SAEW against S. baltica can be traced to the inhibition of amino acid, carbon, nucleotide and sulphur metabolisms, and the loss of functional proteins for temperature regulation, translation, motility and protein folding.


Assuntos
Proteínas de Bactérias , Shewanella , Shewanella/metabolismo , Shewanella/química , Shewanella/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Água/metabolismo , Água/química , Eletrólise , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Antibacterianos/química , Concentração de Íons de Hidrogênio , Vigna/química , Vigna/microbiologia , Vigna/metabolismo
8.
Food Chem ; 462: 141006, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39213974

RESUMO

Aquatic products are highly susceptible to spoilage, and preparing composite edible film with essential oil is an effective solution. In this study, composite edible films were prepared using perilla essential oil (PEO)-glycerol monolaurate emulsions incorporated with chitosan and nisin, and the film formulation was optimized by response surface methodology. These films were applied to ready-to-eat fish balls and evaluated over a period of 12 days. The films with the highest inhibition rate against Staphylococcus aureus were acquired using a polymer composition of 6 µL/mL PEO, 18.4 µg/mL glycerol monolaurate, 14.2 mg/mL chitosan, and 11.0 µg/mL nisin. The fish balls coated with the optimal edible film showed minimal changes in appearance during storage and significantly reduced total bacterial counts and total volatile basic nitrogen compared to the control groups. This work indicated that the composite edible films containing essential oils possess ideal properties as antimicrobial packaging materials for aquatic foods.


Assuntos
Antibacterianos , Quitosana , Filmes Comestíveis , Emulsões , Embalagem de Alimentos , Lauratos , Monoglicerídeos , Nisina , Óleos Voláteis , Staphylococcus aureus , Nisina/farmacologia , Nisina/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Lauratos/química , Lauratos/farmacologia , Embalagem de Alimentos/instrumentação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Emulsões/química , Quitosana/química , Quitosana/farmacologia , Monoglicerídeos/química , Monoglicerídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Perilla/química
9.
Food Chem ; 462: 141011, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226643

RESUMO

Chlorogenic acid (CGA) is a well-known plant secondary metabolite exhibiting multiple physiological functions. The present study focused on screening for synergistic antibacterial combinations containing CGA. The combination of CGA and p-coumaric acid (pCA) exhibited remarkably enhanced antibacterial activity compared to that when administering the treatment only. Scanning electron microscopy revealed that a low-dose combination treatment could disrupt the Shigella dysenteriae cell membrane. A comprehensive analysis using nucleic acid and protein leakage assay, conductivity measurements, and biofilm formation inhibition experiments revealed that co-treatment increased the cell permeability and inhibited the biofilm formation substantially. Further, the polyacrylamide protein- and agarose gel-electrophoresis indicated that the proteins and DNA genome of Shigella dysenteriae severely degraded. Finally, the synergistic bactericidal effect was established for fresh-cut tomato preservation. This study demonstrates the remarkable potential of strategically selecting antibacterial agents with maximum synergistic effect and minimum dosage exhibiting excellent antibacterial activity in food preservation.


Assuntos
Antibacterianos , Ácido Clorogênico , Ácidos Cumáricos , Sinergismo Farmacológico , Shigella dysenteriae , Antibacterianos/farmacologia , Antibacterianos/química , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/química , Ácido Clorogênico/farmacologia , Ácido Clorogênico/química , Shigella dysenteriae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Propionatos/farmacologia , Solanum lycopersicum/química , Solanum lycopersicum/microbiologia , Conservação de Alimentos/métodos
10.
J Environ Sci (China) ; 148: 198-209, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095157

RESUMO

Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria. However, the residual norfloxacin in the environment can be biomagnified via food chain and may damage the human liver and delay the bone development of minors. Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobalt-doped Fe3O4 magnetic nanoparticles (Co-Fe3O4 MNPs) for the visual detection of norfloxacin. Compared with Fe3O4, Co-Fe3O4 MNPs earned more remarkably peroxidase-like activity and TMB (colorless) was rapidly oxidized to oxTMB (blue) with the presence of H2O2. Interestingly, the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB, and blue deepening of the solution can be observed with the naked eye. However, after adding high concentration of norfloxacin, the activity of nanozyme was inhibited, resulting in the gradual fading of the solution. Based on this principle, a colorimetric sensor integrated with smartphone RGB mode was established. The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51 µmol/L and 17.5-100 µmol/L. The limit of visual detection was 0.08 µmol/L. In the actual water sample analysis, the spiked recoveries of norfloxacin were over the range of 95.7%-104.7 %. These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water, which may have broad application prospect.


Assuntos
Cobalto , Colorimetria , Norfloxacino , Smartphone , Poluentes Químicos da Água , Norfloxacino/análise , Colorimetria/métodos , Cobalto/análise , Cobalto/química , Poluentes Químicos da Água/análise , Antibacterianos/análise , Peroxidase , Limite de Detecção
11.
J Environ Sci (China) ; 148: 567-578, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095189

RESUMO

Erythromycin fermentation residue (EFR) represents a typical hazardous waste produced by the microbial pharmaceutical industry. Although electrolysis is promising for EFR disposal, its microbial threats remain unclear. Herein, metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR. Results showed that 95.75% of erythromycin could be removed in 2 hr. Electrolysis temporarily influenced EFR microbiota, where the relative abundances of Proteobacteria and Actinobacteria increased, while those of Fusobacteria, Firmicutes, and Bacteroidetes decreased. A total of 505 antibiotic resistance gene (ARG) subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements (MGEs), mainly including plasmid (72) and transposase (52) were assembled in EFR. Significant linear regression models were identified among microbial richness, ARG subtypes, and MGE numbers (r2=0.50-0.81, p< 0.001). Physicochemical factors of EFR (Total nitrogen, total organic carbon, protein, and humus) regulated ARG and MGE assembly (%IncMSE value = 5.14-14.85). The core ARG, MGE, and microbe sets (93.08%-99.85%) successfully explained 89.71%-92.92% of total ARG and MGE abundances. Specifically, gene aph(3')-I, transposase tnpA, and Mycolicibacterium were the primary drivers of the resistance dissemination system. This study also proposes efficient resistance mitigation measures, and provides recommendations for future management of antibiotic fermentation residue.


Assuntos
Eritromicina , Fermentação , Metagenômica , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética
12.
J Environ Sci (China) ; 147: 665-676, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003081

RESUMO

Microplastics (MPs) are of particular concern due to their ubiquitous occurrence and propensity to interact and concentrate various waterborne contaminants from aqueous surroundings. Studies on the interaction and joint toxicity of MPs on engineered nanoparticles (ENPs) are exhaustive, but limited research on the effect of MPs on the properties of ENPs in multi-solute systems. Here, the effect of MPs on adsorption ability of ENPs to antibiotics was investigated for the first time. The results demonstrated that MPs enhanced the adsorption affinity of ENPs to antibiotics and MPs before and after aging showed different effects on ENPs. Aged polyamide prevented aggregation of ZnONPs by introducing negative charges, whereas virgin polyamide affected ZnONPs with the help of electrostatic attraction. FT-IR and XPS analyses were used to probe the physicochemical interactions between ENPs and MPs. The results showed no chemical interaction and electrostatic interaction was the dominant force between them. Furthermore, the adsorption rate of antibiotics positively correlated with pH and humic acid but exhibited a negative correlation with ionic strength. Our study highlights that ENPs are highly capable of accumulating and transporting antibiotics in the presence of MPs, which could result in a widespread distribution of antibiotics and an expansion of their environmental risks and toxic effects on biota. It also improves our understanding of the mutual interaction of various co-existing contaminants in aqueous environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Óxido de Zinco , Adsorção , Microplásticos/química , Poluentes Químicos da Água/química , Óxido de Zinco/química , Nanopartículas/química , Modelos Químicos , Antibacterianos/química , Substâncias Húmicas
13.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003073

RESUMO

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Assuntos
Água Potável , Resistência Microbiana a Medicamentos , Metagenômica , Resistência Microbiana a Medicamentos/genética , Água Potável/microbiologia , China , Monitoramento Ambiental , Antibacterianos/farmacologia , Microbiologia da Água
14.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003065

RESUMO

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Assuntos
Antibacterianos , Gado , Esterco , Microbiologia do Solo , Animais , Solo/química , Sequestro de Carbono , Carbono/metabolismo , Fósforo , Reciclagem , Poluentes do Solo/metabolismo , Bovinos , Suínos , Nitrogênio/análise , Oxitetraciclina
15.
J Environ Sci (China) ; 149: 149-163, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181630

RESUMO

Developing heterojunction photocatalyst with well-matched interfaces and multiple charge transfer paths is vital to boost carrier separation efficiency for photocatalytic antibiotics removal, but still remains a great challenge. In present work, a new strategy of chloride anion intercalation in Bi2O3 via one-pot hydrothermal process is proposed. The as-prepared Ta-BiOCl/Bi24O31Cl10 (TBB) heterojunctions are featured with Ta-Bi24O31Cl10 and Ta-BiOCl lined shoulder-by-shouleder via semi-coherent interfaces. In this TBB heterojunctions, the well-matched semi-coherent interfaces and shoulder-by-shoulder structures provide fast electron transfer and multiple transfer paths, respectively, leading to enhanced visible light response and improved photogenerated charge separation. Meanwhile, a type-II heterojunction for photocharge separation has been obtained, in which photogenerated electrons are drove from the CB (conduction band) of Ta-Bi24O31Cl10 to the both of bilateral empty CB of Ta-BiOCl and gathered on the CB of Ta-BiOCl, while the photogenerated holes are left on the VB (valence band) of Ta-Bi24O31Cl10, effectively hindering the recombination of photogenerated electron-hole pairs. Furthermore, the separated electrons can effectively activate dissolved oxygen for the generation of reactive oxygen species (·O2-). Such TBB heterojunctions exhibit remarkably superior photocatalytic degradation activity for tetracycline hydrochloride (TCH) solution to Bi2O3, Ta-BiOCl and Ta-Bi24O31Cl10. This work not only proposes a Ta-BiOCl/Bi24O31Cl10 shoulder-by-shoulder micro-ribbon architectures with semi-coherent interfaces and successive type-II heterojunction for highly efficient photocatalytic activity, but offers a new insight into the design of highly efficient heterojunction through phase-structure synergistic transformation strategy.


Assuntos
Antibacterianos , Bismuto , Poluentes Químicos da Água , Bismuto/química , Antibacterianos/química , Poluentes Químicos da Água/química , Catálise , Processos Fotoquímicos
16.
Methods Mol Biol ; 2852: 85-103, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235738

RESUMO

Although MALDI-TOF mass spectrometry (MS) is considered as the gold standard for rapid and cost-effective identification of microorganisms in routine laboratory practices, its capability for antimicrobial resistance (AMR) detection has received limited focus. Nevertheless, recent studies explored the predictive performance of MALDI-TOF MS for detecting AMR in clinical pathogens when machine learning techniques are applied. This chapter describes a routine MALDI-TOF MS workflow for the rapid screening of AMR in foodborne pathogens, with Campylobacter spp. as a study model.


Assuntos
Campylobacter , Farmacorresistência Bacteriana , Aprendizado de Máquina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Campylobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Humanos , Microbiologia de Alimentos/métodos , Testes de Sensibilidade Microbiana/métodos , Doenças Transmitidas por Alimentos/microbiologia , Bactérias/efeitos dos fármacos
17.
Methods Mol Biol ; 2852: 211-222, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235747

RESUMO

Unveiling the strategies of bacterial adaptation to stress constitute a challenging area of research. The understanding of mechanisms governing emergence of resistance to antimicrobials is of particular importance regarding the increasing threat of antibiotic resistance on public health worldwide. In the last decades, the fast democratization of sequencing technologies along with the development of dedicated bioinformatical tools to process data offered new opportunities to characterize genomic variations underlying bacterial adaptation. Thereby, research teams have now the possibility to dive deeper in the deciphering of bacterial adaptive mechanisms through the identification of specific genetic targets mediating survival to stress. In this chapter, we proposed a step-by-step bioinformatical pipeline enabling the identification of mutational events underlying biocidal stress adaptation associated with antimicrobial resistance development using Escherichia marmotae as an illustrative model.


Assuntos
Biologia Computacional , Genoma Bacteriano , Genômica , Mutação , Genômica/métodos , Biologia Computacional/métodos , Bactérias/genética , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
19.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 226-234, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39262238

RESUMO

This study investigates the colonization of endophytic fungi in nettle leaf tissues and evaluates their antibacterial and antioxidant activities. Using an inverted optical microscope, extensive fungal colonization was observed in all leaf parts, with hyphae prevalent in epidermal cells, parenchyma cells, and vascular tissues. 144 endophytic fungal isolates were isolated from 800 leaf fragments, indicating an 18% retention rate. ANOVA analysis revealed significant differences (p < 0. 001) in colonization frequencies among 20 subjects, with subject 3 showing the highest frequency (40%) and subject 11 the lowest (2. 5%). Ethyl acetate extracts of the three most abundant endophytic fungi demonstrated notable antibacterial activity against both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Inhibition zones ranged from 9. 5 to 15. 16 mm, with minimum inhibitory concentrations (MICs) between 0. 19 to 25 mg/mL. Alternaria sp. exhibited the highest antimicrobial activity against MRSA. Antioxidant activity was assessed using the DPPH radical scavenging test and FRAP method. All extracts showed substantial free radical scavenging properties, with IC50 values close to those of standards like BHT. Alternaria sp. had the highest antioxidant activity, followed by Epicocum sp. and Ulocladium sp. The FRAP method confirmed high reducing potential, with Alternaria sp. again exhibiting the highest activity. These findings highlight the potential of endophytic fungi in nettle leaves as sources of antimicrobial and antioxidant agents, with significant implications for pharmaceutical and biotechnological applications.


Assuntos
Anti-Infecciosos , Antioxidantes , Endófitos , Fungos , Testes de Sensibilidade Microbiana , Folhas de Planta , Antioxidantes/farmacologia , Antioxidantes/química , Fungos/efeitos dos fármacos , Endófitos/química , Folhas de Planta/microbiologia , Folhas de Planta/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química
20.
Microb Pathog ; 195: 106916, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236969

RESUMO

In this work, the antibiotic resistance, biofilm formation capability, and clonal relatedness of 50 A. baumannii isolates collected from three hospitals in Ardabil city, Iran, were evaluated. Antibiotic sensitivity and biofilm formation of isolates were determined by disk diffusion and microtiter-plate methods, respectively. Molecular typing of isolates was also performed using repetitive sequence-based PCR (REP-PCR). The majority of isolates were resistant to cephems, aminoglycosides, and carbapenems, with 80 % classified as multi-drug resistant (MDR). While, only isolates collected from blood and tracheal were resistant to colistin. Additionally, 42 isolates (84 %) had biofilm formation capability. According to rep-PCR results, 34 isolates showed similar banding patterns, while 16 isolates had unique banding patterns. Finally, based on the molecular analysis, there was a direct relationship between biofilm formation and the antibiotic resistance of isolates. In other words, MDR isolates had a higher ability to form biofilm.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Infecções por Acinetobacter/microbiologia , Irã (Geográfico) , Farmacorresistência Bacteriana Múltipla/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/fisiologia , Tipagem Molecular , Reação em Cadeia da Polimerase , Colistina/farmacologia , Adulto , Hospitais , Masculino , Feminino , Genótipo , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA