Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.942
Filtrar
1.
Food Res Int ; 194: 114877, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232515

RESUMO

Human norovirus (HuNoV), the leading cause of foodborne acute gastroenteritis, poses a serious threat to public health. Traditional disinfection methods lead to destructions of food properties and functions, and/or environmental contaminations. Green and efficient approaches are urgently needed to disinfect HuNoV. Plasma-activated water (PAW) containing amounts of reactive species is an emerging nonthermal and eco-friendly disinfectant towards the pathogenic microorganisms. However, the disinfection efficacy and mechanism of PAW on HuNoV has not yet been studied. Murine norovirus 1 (MNV-1) is one of the most commonly used HuNoV surrogates to evaluate the efficacy of disinfectants. In the current study, the inactivation efficacy of MNV-1 by PAW was investigated. The results demonstrated that PAW significantly inactivated MNV-1, reducing the viral titer from approximately 6 log10 TCID50/mL to non-detectable level. The decreased pH, increased oxidation-reduction potential (ORP) and conductivity of PAW were observed compared with that of deionized water. Compositional analysis revealed that hydrogen peroxide (H2O2), nitrate (NO3-) and hydroxyl radical (OH) were the functional reactive species in MNV-1 inactivation. L-histidine could scavenge most of the inactivation effect in a concentration-dependent manner. Moreover, PAW could induce damage to viral proteins. Part of MNV-1 particles was destroyed, while others were structurally intact without infectiousness. After 45 days of storage at 4 °C, PAW generated with 80 % O2 and 100 % O2 could still reduce over 4 log10 TCID50/mL of the viral titer. In addition, PAW prepared using hard water induced approximately 6 log10 TCID50/mL reduction of MNV-1. PAW treatment of MNV-1-inoculated blueberries reduced the viral titer from 3.79 log10 TCID50/mL to non-detectable level. Together, findings of the current study uncovered the crucial reactive species in PAW inactivate MNV-1 and provided a potential disinfection strategy to combat HuNoV in foods, water, and environment.


Assuntos
Desinfetantes , Desinfecção , Peróxido de Hidrogênio , Norovirus , Inativação de Vírus , Água , Norovirus/efeitos dos fármacos , Norovirus/fisiologia , Inativação de Vírus/efeitos dos fármacos , Animais , Camundongos , Água/química , Desinfetantes/farmacologia , Desinfecção/métodos , Gases em Plasma/farmacologia , Radical Hidroxila/metabolismo , Nitratos/farmacologia , Concentração de Íons de Hidrogênio
2.
Int J Food Microbiol ; 424: 110851, 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39116463

RESUMO

The frozen fruit sector has experienced significant growth due to improved product quality as well as the advantage of long-term preservation. However, freezing alone does not eliminate foodborne viruses, a major public health concern and considerable economic burden. One promising disinfecting treatment is pulsed light, shown previously to inactivate hepatitis A virus (HAV) and murine norovirus-1 (MNV-1) on the surface of fresh berries. Viral loads were reduced by 1-2 log, with minor visual quality deterioration observed. In this study, an FDA-compliant pulsed light treatment (11.52 J/cm2) was applied to frozen fruits and berries. Infectious MNV-1 and HAV titers were reduced by 1-2 log on most frozen fruits. A noteworthy finding was that reductions of both viruses on cranberries exceeded 3.5 log cycles. Although pulsed light caused a measurable rise in temperature on the product surface, no visible physical changes (e.g., color) were observed, and the fruit pieces were still frozen after treatment. Although the reduction of infectious titer by pulsed light alone was not large (1-2 log), considering the low amount of virus typically found on fruit, it may be beneficial in the frozen fruit sector. It would be easy to combine with other treatments, and synergic interactions might increase virus inactivation.


Assuntos
Frutas , Vírus da Hepatite A , Norovirus , Inativação de Vírus , Norovirus/efeitos da radiação , Vírus da Hepatite A/efeitos da radiação , Vírus da Hepatite A/fisiologia , Vírus da Hepatite A/crescimento & desenvolvimento , Inativação de Vírus/efeitos da radiação , Animais , Luz , Camundongos , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Congelamento
3.
Sci Rep ; 14(1): 15181, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956295

RESUMO

Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.


Assuntos
Bacillaceae , Polilisina , Serina Proteases , Streptomyces , Streptomyces/enzimologia , Polilisina/farmacologia , Polilisina/química , Polilisina/metabolismo , Serina Proteases/metabolismo , Bacillaceae/enzimologia , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Genoma Viral , Animais , Norovirus/efeitos dos fármacos , Norovirus/genética , Inativação de Vírus/efeitos dos fármacos , Caliciviridae/genética , Antivirais/farmacologia
4.
Methods Mol Biol ; 2824: 81-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039407

RESUMO

The Rift Valley fever virus (RVFV) is an arthropod-borne, zoonotic, hemorrhagic fever virus that can cause severe diseases both in livestock and humans. The spread of RVFV in areas previously considered as non-endemic together with the absence of licensed vaccines for use in humans and animals poses a major health and economic threat worldwide. It is therefore crucial to make major progresses in our understanding and management of this virus and its zoonosis. RVFV is considered a bioterrorism pathogen, and, thus, only a few institutes, facilities, and personnel are legally authorized to detain it and handle it. Moreover, this virus must be manipulated in a biosafety level 3 (BSL3) laboratory following strict biosafety protocols to ensure that biosecurity's highest standards are met. Only certain attenuated strains such as the MP12 strain can be handled in BSL2 laboratories, depending on the country considered. To assist researchers in working with RVFV in the safest possible conditions, this chapter presents validated methods for effective RVFV decontamination and inactivation.


Assuntos
Descontaminação , Vírus da Febre do Vale do Rift , Inativação de Vírus , Animais , Descontaminação/métodos , Humanos , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Contenção de Riscos Biológicos/métodos , Células Vero , Chlorocebus aethiops
5.
Viruses ; 16(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066189

RESUMO

Viruses impose a significant public health burden globally, and one of the key elements in controlling their transmission is the ability to inactivate them using disinfectants. However, numerous challenges to inactivating foodborne viruses exist due to inherent viral characteristics (such as recalcitrance to commonly used inactivation agents) and external factors (such as improper cleaning before application of inactivation agent, improper contact time, etc.). Given the potential for improper application of disinfectants (such as shorter than recommended contact time, improper disinfectant concentration, etc.), understanding the performance of a disinfectant in the presence of an organic load is important. To accomplish this, the introduction of simulated organic loads is often used when studying the efficacy of a disinfectant against different viruses. However, the different types of simulated organic loads used in foodborne virus inactivation studies or their relative effects on inactivation have not been reviewed. The purpose of this review is to survey different simulated organic load formulations used in studying foodborne virus inactivation, as well as present and compare the influence of these different formulations on viral inactivation. The findings included in this review suggest that many simulated organic load formulations can reduce disinfectants' efficacy against viruses. Based on the findings in this review, blood, particularly serum or feces, are among the most commonly used and efficacious forms of simulated organic load in many tests.


Assuntos
Desinfetantes , Inativação de Vírus , Vírus , Inativação de Vírus/efeitos dos fármacos , Desinfetantes/farmacologia , Vírus/efeitos dos fármacos , Humanos , Microbiologia de Alimentos , Desinfecção/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/virologia , Compostos Orgânicos/farmacologia , Compostos Orgânicos/química
6.
Viruses ; 16(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39066225

RESUMO

Infectious diseases are a leading cause of losses in the aquaculture industry and conservation programs globally. Simultaneously, infectious diseases pose a substantial risk to fish being hatchery-reared and released into natural habitats for conservation purposes, including the Great Lakes lake sturgeon (Acipenser fulvescens, i.e., GL-LST). Recently, an alloherpesvirus (lake sturgeon herpesvirus 2, i.e., LSHV-2) capable of inducing disease and/or mortality in adult and juvenile GL-LSTs was detected in two adult GL-LST populations. To begin developing disease prevention and/or control methods, in vitro experiments were designed to determine the susceptibility of LSHV-2 to disinfectants commonly used in hatchery and aquaculture facilities (Virkon®-Aquatic: potassium peroxymonosulfate; Ovadine®: polyvinylpyrrolidone iodine complex; and Perox-Aid®: hydrogen peroxide). Cultured LSHV-2 was exposed to each disinfectant at two concentrations (Virkon®-Aquatic: 0.5% and 1%; Ovadine®: 50 and 100 ppm; and Perox-Aid®: 500 and 1000 ppm) in duplicate for durations of 1, 10, and 30 min. Following exposure, the disinfectant was neutralized, and after a 14-day incubation period on a white sturgeon × lake sturgeon hybrid cell line (WSxLS), percent reduction was calculated by comparing the 50% tissue culture infectious doses (TCID50/mL) of the virus with and without disinfectant exposure. When exposed to Perox-Aid®, LSHV-2 percent reduction ranged from 58.7% to 99.5%. When exposed to Ovadine®, the percent reduction ranged from 99.4% to 100%. Lastly, the percent reduction when exposed to Virkon®-Aquatic was 100% for both concentrations and all timepoints. The results herein provide evidence that both Virkon®-Aquatic and Ovadine® are virucidal to LSHV-2 and may represent a means to reduce virus transmission risk under field settings.


Assuntos
Desinfetantes , Doenças dos Peixes , Peixes , Herpesviridae , Animais , Desinfetantes/farmacologia , Peixes/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/prevenção & controle , Herpesviridae/efeitos dos fármacos , Aquicultura , Inativação de Vírus/efeitos dos fármacos , Lagos/virologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/transmissão , Povidona-Iodo/farmacologia , Peróxido de Hidrogênio/farmacologia , Linhagem Celular , Peróxidos , Ácidos Sulfúricos
7.
Sci Rep ; 14(1): 15963, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987323

RESUMO

The recent COVID-19 pandemic has raised interest in efficient air disinfection solutions. The application of germicidal ultraviolet (GUV) irradiation is an excellent contender to prevent airborne transmission of COVID-19, as well as other existing and future infectious airborne diseases. While GUV has already been proven effective in inactivating SARS-CoV-2, quantitative data on UV susceptibility and dose requirements, needed to predict and optimize the performance of GUV solutions, is still limited. In this study, the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm ultraviolet (UV) irradiation is investigated. This is done by employing 3D computational fluid dynamics based simulations of SARS-CoV-2 inactivation in a test chamber equipped with an upper-room UV-C luminaire and comparing the results to previously published measurements performed in the same test chamber. The UV susceptibility found in this study is (0.6 ± 0.2) m2/J, which is equivalent to a D90 dose between 3 and 6 J/m2. These values are in the same range as previous estimations based on other corona viruses and inactivation data reported in literature.


Assuntos
COVID-19 , Desinfecção , SARS-CoV-2 , Raios Ultravioleta , SARS-CoV-2/efeitos da radiação , Desinfecção/métodos , COVID-19/prevenção & controle , COVID-19/virologia , COVID-19/transmissão , Humanos , Aerossóis , Hidrodinâmica , Simulação por Computador , Inativação de Vírus/efeitos da radiação
8.
Euro Surveill ; 29(30)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39056199

RESUMO

We investigated the thermostability of four European avian influenza A(H5N1) viruses in whole and semi-skimmed milk and their replication in bovine kidney and lung cells amid the current influenza A(H5N1) dairy cattle outbreak in the United States. Results showed strain-dependent differences in thermal inactivation, particularly in whole milk, and variable replication efficacy in lung cells. These findings support assessing the inactivation of European H5N1 viruses in milk and their replication in bovine cells, aiding biosafety protocols and public health measures.


Assuntos
Virus da Influenza A Subtipo H5N1 , Leite , Replicação Viral , Animais , Bovinos , Leite/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Inativação de Vírus , Temperatura Alta , Europa (Continente)/epidemiologia , Infecções por Orthomyxoviridae/virologia , Surtos de Doenças/prevenção & controle , Pulmão/virologia
9.
ACS Appl Mater Interfaces ; 16(28): 37275-37287, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959130

RESUMO

Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.


Assuntos
SARS-CoV-2 , Titânio , Raios Ultravioleta , Titânio/química , Titânio/efeitos da radiação , SARS-CoV-2/efeitos da radiação , SARS-CoV-2/química , Inativação de Vírus/efeitos da radiação , Inativação de Vírus/efeitos dos fármacos , Humanos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/prevenção & controle , Adsorção , Propriedades de Superfície
10.
Virology ; 598: 110165, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39013305

RESUMO

Epidemics caused by pathogenic viruses are a severe threat to public health worldwide. Electromagnetic waves are a type of noncontact and nonionizing radiation technology that has emerged as an effective tool for inactivating bacterial pathogens. In this study, we used a 9.375 GHz electromagnetic wave to study the inactivation effect and mechanism of electromagnetic waves on MHV-A59, a substitute virus for pathogenic human coronavirus, and to evaluate the inactivation efficiency on different surface materials. We showed that 9.375 GHz electromagnetic waves inactivate MHV-A59 by destroying viral particles, envelopes, or genomes. We also found that 9.375 GHz electromagnetic waves can decrease the infectivity of viruses on the surface of inanimate materials such as plastic, glass, cloth, and wood. In conclusion, our results suggested that the 9.375 GHz electromagnetic wave is a promising disinfection technique for preventing the spread and infection of pathogenic viruses.


Assuntos
Radiação Eletromagnética , Inativação de Vírus , Inativação de Vírus/efeitos da radiação , Desinfecção/métodos , Animais , Vírus da Hepatite Murina/efeitos da radiação , Vírus da Hepatite Murina/fisiologia , Humanos , Linhagem Celular , Vírion/efeitos da radiação
11.
Emerg Microbes Infect ; 13(1): 2364732, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38832658

RESUMO

Recently, an outbreak of highly pathogenic avian influenza A (H5N1), which carries the clade 2.3.4.4b hemagglutinin (HA) gene and has been prevalent among North American bird populations since the winter of 2021, was reported in dairy cows in the United States. As of 24 May 2024, the virus has affected 63 dairy herds across nine states and has resulted in two human infections. The virus causes unusual symptoms in dairy cows, including an unexpected drop in milk production, and thick colostrum-like milk. Notably, The US Food and Drug Administration reported that around 20% of tested retail milk samples contained H5N1 viruses, with a higher percentage of positive results from regions with infected cattle herds. Data are scant regarding how effectively pasteurization inactivates the H5N1 virus in milk. Therefore, in this study, we evaluated the thermal stability of the H5 clade 2.3.4.4b viruses, along with one human H3N2 virus and other influenza subtype viruses, including H1, H3, H7, H9, and H10 subtype viruses. We also assessed the effectiveness of pasteurization in inactivating these viruses. We found that the avian H3 virus exhibits the highest thermal stability, whereas the H5N1 viruses that belong to clade 2.3.4.4b display moderate thermal stability. Importantly, our data provide direct evidence that the standard pasteurization methods used by dairy companies are effective in inactivating all tested subtypes of influenza viruses in raw milk. Our findings indicate that thermally pasteurized milk products do not pose a safety risk to consumers.


Assuntos
Leite , Pasteurização , Animais , Pasteurização/métodos , Leite/virologia , Bovinos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Humanos , Influenza Aviária/virologia , Influenza Aviária/transmissão , Influenza Aviária/prevenção & controle , Influenza Aviária/epidemiologia , Inativação de Vírus , Estados Unidos , Influenza Humana/virologia , Influenza Humana/transmissão , Influenza Humana/prevenção & controle , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Feminino
12.
J Photochem Photobiol B ; 257: 112949, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865816

RESUMO

Large scale outbreaks of infectious respiratory disease have repeatedly plagued the globe over the last 100 years. The scope and strength of the outbreaks are getting worse as pathogenic RNA viruses are rapidly evolving and highly evasive to vaccines and anti-viral drugs. Germicidal UV-C is considered as a robust agent to disinfect RNA viruses regardless of their evolution. While genomic damage by UV-C has been known to be associated with viral inactivation, the precise relationship between the damage and inactivation remains unsettled as genomic damage has been analyzed in small areas, typically under 0.5 kb. In this study, we assessed genomic damage by the reduced efficiency of reverse transcription of regions of up to 7.2 kb. Our data seem to indicate that genomic damage was directly proportional to the size of the genome, and a single hit of damage was sufficient for inactivation of RNA viruses. The high efficacy of UV-C is already effectively adopted to inactivate airborne RNA viruses.


Assuntos
Vírus de RNA , Raios Ultravioleta , Inativação de Vírus , Vírus de RNA/efeitos da radiação , Vírus de RNA/genética , Vírus de RNA/fisiologia , Inativação de Vírus/efeitos da radiação , Genoma Viral , Humanos , Transcrição Reversa , RNA Viral/genética
13.
Biomed Khim ; 70(3): 161-167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38940205

RESUMO

Electrochemical profiling of formaldehyde-inactivated poliovirus particles demonstrated a relationship between the D-antigen concentration and the intensity of the maximum amplitude currents of the poliovirus samples. The resultant signal was therefore identified as electrochemical oxidation of the surface proteins of the poliovirus. Using registration of electrooxidation of amino acid residues of the capsid proteins, a comparative electrochemical analysis of poliovirus particles inactivated by electrons accelerated with doses of 5 kGy, 10 kGy, 15 kGy, 25 kGy, 30 kGy at room temperature was carried out. An increase in the radiation dose was accompanied by an increase in electrooxidation signals. A significant increase in the signals of electrooxidation of poliovirus capsid proteins was detected upon irradiation at doses of 15-30 kGy. The data obtained suggest that the change in the profile and increase in the electrooxidation signals of poliovirus capsid proteins are associated with an increase in the degree of structural reorganization of surface proteins and insufficient preservation of the D-antigen under these conditions of poliovirus inactivation.


Assuntos
Proteínas do Capsídeo , Poliovirus , Poliovirus/efeitos da radiação , Poliovirus/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Oxirredução , Formaldeído/química , Humanos , Vírion/química , Vírion/efeitos da radiação
15.
PLoS Negl Trop Dis ; 18(6): e0012264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900788

RESUMO

Despite continued outbreaks of yellow fever virus (YFV) in endemic regions, data on its environmental stability or guidelines for its effective inactivation is limited. Here, we evaluated the susceptibility of the YFV 17D vaccine strain to inactivation by ethanol, 2-propanol, World Health Organization (WHO)-recommended hand rub formulations I and II, as well as surface disinfectants. In addition, two pathogenic strains were tested to compare inactivation kinetics by WHO-recommended hand rub formulations I and II. Furthermore, environmental stability of the vaccine strain was assessed. YFV 17D particles displayed infectivity half-life decay profiles of ~13 days at room temperature. Despite this extended environmental stability, YFV was efficiently inactivated by alcohols, WHO-recommended hand formulations, and four out of five tested surface disinfectants. These results are useful in defining disinfection protocols to prevent non-vector borne YFV transmission.


Assuntos
Desinfetantes , Inativação de Vírus , Organização Mundial da Saúde , Vírus da Febre Amarela , Vírus da Febre Amarela/efeitos dos fármacos , Desinfetantes/farmacologia , Inativação de Vírus/efeitos dos fármacos , Humanos , Febre Amarela/prevenção & controle , Febre Amarela/transmissão , Febre Amarela/virologia , Desinfecção das Mãos/métodos , Animais , Chlorocebus aethiops
16.
J R Soc Interface ; 21(215): 18, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38920060

RESUMO

The inactivation of viruses in aerosol particles (aerosols) and droplets depends on many factors, but the precise mechanisms of inactivation are not known. The system involves complex physical and biochemical interactions. We reviewed the literature to establish current knowledge about these mechanisms and identify knowledge gaps. We identified 168 relevant papers and grouped results by the following factors: virus type and structure, aerosol or droplet size, temperature, relative humidity (RH) and evaporation, chemical composition of the aerosol or droplet, pH and atmospheric composition. These factors influence the dynamic microenvironment surrounding a virion and thus may affect its inactivation. Results indicate that viruses experience biphasic decay as the carrier aerosols or droplets undergo evaporation and equilibrate with the surrounding air, and their final physical state (liquid, semi-solid or solid) depends on RH. Virus stability, RH and temperature are interrelated, but the effects of RH are multifaceted and still not completely understood. Studies on the impact of pH and atmospheric composition on virus stability have raised new questions that require further exploration. The frequent practice of studying virus inactivation in large droplets and culture media may limit our understanding of inactivation mechanisms that are relevant for transmission, so we encourage the use of particles of physiologically relevant size and composition in future research.


Assuntos
Aerossóis , Inativação de Vírus , Humanos , Concentração de Íons de Hidrogênio , Umidade , Temperatura , Tamanho da Partícula , Vírion
17.
Eur J Pharm Biopharm ; 201: 114387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944210

RESUMO

Monoclonal antibodies (mAbs) are an essential class of therapeutic proteins for the treatment of cancer, autoimmune and rare diseases. During their production, storage, and administration processes, these proteins encounter various stressors such as temperature fluctuations, vibrations, and light exposure, able to induce chemico-physical modifications to their structure. Viral inactivation is a key step in downstream processes, and it is achieved by titration of the mAb at low pH, followed by neutralization. The changes of the pH pose a significant risk of unfolding and subsequent aggregation to proteins, thereby affecting their manufacturing. This study aims to investigate whether a combined exposure to light during the viral inactivation process can further affect the structural integrity of Ipilimumab, a mAb primarily used in the treatment of metastatic melanoma. The biophysical and biochemical characterization of Ipilimumab revealed that pH variation is a considerable risk for its stability with irreversible unfolding at pH 2. The threshold for Ipilimumab denaturation lies between pH 2 and 3 and is correlated with the loss of the protein structural cooperativity, which is the most critical factor determining the protein refolding. Light has demonstrated to exacerbate some local and global effects making pH-induced exposed regions more vulnerable to structural and chemical changes. Therefore, specific precautions to real-life exposure to ambient light during the sterilization process of mAbs should be considered to avoid loss of the therapeutic activity and to increase the yield of production. Our findings underscore the critical role of pH optimization in preserving the structural integrity and therapeutic efficacy of mAbs. Moreover, a detailed conformational study on the structural modifications of Ipilimumab may improve the chemico-physical knowledge of this effective drug and suggest new production strategies for more stable products under some kind of stress conditions.


Assuntos
Ipilimumab , Luz , Concentração de Íons de Hidrogênio , Ipilimumab/administração & dosagem , Ipilimumab/farmacologia , Desdobramento de Proteína , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação , Estabilidade Proteica , Estabilidade de Medicamentos , Desnaturação Proteica , Temperatura , Humanos , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/administração & dosagem , Melanoma/tratamento farmacológico
18.
Environ Sci Technol ; 58(27): 12260-12271, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38923944

RESUMO

Despite the critical importance of virus disinfection by chlorine, our fundamental understanding of the relative susceptibility of different viruses to chlorine and robust quantitative relationships between virus disinfection rate constants and environmental parameters remains limited. We conducted a systematic review of virus inactivation by free chlorine and used the resulting data set to develop a linear mixed model that estimates chlorine inactivation rate constants for viruses based on experimental conditions. 570 data points were collected in our systematic review, representing 82 viruses over a broad range of environmental conditions. The harmonized inactivation rate constants under reference conditions (pH = 7.53, T = 20 °C, [Cl-] < 50 mM) spanned 5 orders of magnitude, ranging from 0.0196 to 1150 L mg-1 min-1, and uncovered important trends between viruses. Whereas common surrogate bacteriophage MS2 does not serve as a conservative chlorine disinfection surrogate for many human viruses, CVB5 was one of the most resistant viruses in the data set. The model quantifies the role of pH, temperature, and chloride levels across viruses, and an online tool allows users to estimate rate constants for viruses and conditions of interest. Results from the model identified potential shortcomings in current U.S. EPA drinking water disinfection requirements.


Assuntos
Cloro , Desinfecção , Cloro/farmacologia , Inativação de Vírus/efeitos dos fármacos , Vírus/efeitos dos fármacos , Desinfetantes/farmacologia
19.
J Innate Immun ; 16(1): 354-366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38852581

RESUMO

INTRODUCTION: Inactivated parapoxvirus ovis (iPPVO) exerts strong immunomodulatory effects on innate immune cells, making it an attractive therapeutic candidate. However, little is known about the signaling pathways that are involved in iPPVO-induced immune responses. METHODS: In this study, we systematically analyzed how different types of dendritic cells (DCs) react to iPPVO (Zylexis, strain D1701) in both BALB/c and C57BL/6 mice by flow cytometry and ELISAs, and investigated which signaling pathway is related to DC activation by Western blotting and protein profiling. RESULTS: We demonstrated that bone marrow-derived conventional DCs (BM-cDCs) and bone marrow-derived plasmacytoid DCs (BM-pDCs) matured and secreted type I interferons in response to Zylexis stimulation in both mouse strains. Similarly, Zylexis promoted the secretion of IL-12/23p40 and TNF by pDCs. However, IL-12/23p40 and TNF secretion by cDCs were induced in BALB/c mice but not in C57BL/6 mice. Analyzing the underlying signaling pathways revealed that iPPVO-induced maturation of cDCs was Toll-like receptor 9 (TLR9) independent, while the maturation of pDCs partially depended on the TLR9 pathway. Moreover, the production of proinflammatory cytokines by cDCs and the secretion of IFN-α/ß by pDCs partially depended on the TLR9 pathway in both mouse strains. Therefore, other signaling pathways seem to participate in the response of DCs to iPPVO, supported by protein profiling. CONCLUSION: Our data provide useful insights into the diversity of iPPVO sensors and their varying effects across different strains and species.


Assuntos
Células Dendríticas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Parapoxvirus , Transdução de Sinais , Receptor Toll-Like 9 , Animais , Células Dendríticas/imunologia , Camundongos , Parapoxvirus/imunologia , Receptor Toll-Like 9/metabolismo , Células Cultivadas , Imunidade Inata , Células da Medula Óssea/imunologia , Camundongos Knockout , Infecções por Poxviridae/imunologia , Feminino , Vacinas de Produtos Inativados/imunologia , Especificidade da Espécie , Inativação de Vírus
20.
Sci Rep ; 14(1): 11823, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783052

RESUMO

Our previous findings indicated that many respiratory syncytial virus (RSV) isolates are unstable at 4 °C compared to 20 °C. Some of the strains completely lose infectivity after 24 h at 4 °C. This study analyzed the inactivation process at 4 °C using a representative strain, RSV/Sendai/851/13. After 24 h of storage at 4 °C, the virus was completely inactivated but retained its ability to attach to and to be taken into host cells. It suggested a reduced fusion ability between the viral and cellular membranes. During storage at 4 °C, the RSV fusion (F) protein underwent a conformational change and was no longer recognized by pre-fusion form-specific antibodies. When the RSV/Sendai/851/13 strain was passaged at 4 °C, a variant with an amino acid substitution, I148T, in the F protein fusion peptide was selected. Also, an amino acid change in G protein demonstrating stability at low temperatures was obtained. These results show that the inactivation of RSV at 4 °C is due to the loss of membrane fusion activity in the F protein, which cannot maintain its pre-fusion state at 4 °C.


Assuntos
Temperatura Baixa , Vírus Sincicial Respiratório Humano , Proteínas Virais de Fusão , Inativação de Vírus , Proteínas Virais de Fusão/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/química , Humanos , Vírus Sincicial Respiratório Humano/fisiologia , Animais , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA