Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.586
Filtrar
1.
Comput Biol Med ; 173: 108377, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569233

RESUMO

Observing cortical vascular structures and functions using laser speckle contrast imaging (LSCI) at high resolution plays a crucial role in understanding cerebral pathologies. Usually, open-skull window techniques have been applied to reduce scattering of skull and enhance image quality. However, craniotomy surgeries inevitably induce inflammation, which may obstruct observations in certain scenarios. In contrast, image enhancement algorithms provide popular tools for improving the signal-to-noise ratio (SNR) of LSCI. The current methods were less than satisfactory through intact skulls because the transcranial cortical images were of poor quality. Moreover, existing algorithms do not guarantee the accuracy of dynamic blood flow mappings. In this study, we develop an unsupervised deep learning method, named Dual-Channel in Spatial-Frequency Domain CycleGAN (SF-CycleGAN), to enhance the perceptual quality of cortical blood flow imaging by LSCI. SF-CycleGAN enabled convenient, non-invasive, and effective cortical vascular structure observation and accurate dynamic blood flow mappings without craniotomy surgeries to visualize biodynamics in an undisturbed biological environment. Our experimental results showed that SF-CycleGAN achieved a SNR at least 4.13 dB higher than that of other unsupervised methods, imaged the complete vascular morphology, and enabled the functional observation of small cortical vessels. Additionally, the proposed method showed remarkable robustness and could be generalized to various imaging configurations and image modalities, including fluorescence images, without retraining.


Assuntos
Hemodinâmica , Aumento da Imagem , Aumento da Imagem/métodos , Crânio/diagnóstico por imagem , Fluxo Sanguíneo Regional/fisiologia , Cabeça , Processamento de Imagem Assistida por Computador/métodos
2.
BMC Med Imaging ; 24(1): 76, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561667

RESUMO

BACKGROUND: It is challenging to identify residual or recurrent fistulas from the surgical region, while MR imaging is feasible. The aim was to use dynamic contrast-enhanced MR imaging (DCE-MRI) technology to distinguish between active anal fistula and postoperative healing (granulation) tissue. METHODS: Thirty-six patients following idiopathic anal fistula underwent DCE-MRI. Subjects were divided into Group I (active fistula) and Group IV (postoperative healing tissue), with the latter divided into Group II (≤ 75 days) and Group III (> 75 days) according to the 75-day interval from surgery to postoperative MRI reexamination. MRI classification and quantitative analysis were performed. Correlation between postoperative time intervals and parameters was analyzed. The difference of parameters between the four groups was analyzed, and diagnostic efficiency was tested by receiver operating characteristic curve. RESULTS: Wash-in rate (WI) and peak enhancement intensity (PEI) were significantly higher in Group I than in Group II (p = 0.003, p = 0.040), while wash-out rate (WO), time to peak (TTP), and normalized signal intensity (NSI) were opposite (p = 0.031, p = 0.007, p = 0.010). Area under curves for discriminating active fistula from healing tissue within 75 days were 0.810 in WI, 0.708 in PEI, 0.719 in WO, 0.783 in TTP, 0.779 in NSI. All MRI parameters were significantly different between Group I and Group IV, but not between Group II and Group III, and not related to time intervals. CONCLUSION: In early postoperative period, DCE-MRI can be used to identify active anal fistula in the surgical area. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR2000033072.


Assuntos
Meios de Contraste , Fístula Retal , Humanos , Imageamento por Ressonância Magnética/métodos , Curva ROC , Fístula Retal/diagnóstico por imagem , Fístula Retal/etiologia , Fístula Retal/cirurgia , Aumento da Imagem/métodos
3.
PLoS One ; 19(4): e0302358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640105

RESUMO

This study aims to develop an optimally performing convolutional neural network to classify Alzheimer's disease into mild cognitive impairment, normal controls, or Alzheimer's disease classes using a magnetic resonance imaging dataset. To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. Subsequently, a convolutional neural network model comprising four convolutional layers and two hidden layers was devised for classifying Alzheimer's disease into three (3) distinct categories, namely mild cognitive impairment, Alzheimer's disease, and normal controls. The model was trained and evaluated using a 10-fold cross-validation sampling approach with a learning rate of 0.001 and 200 training epochs at each instance. The proposed model yielded notable results, such as an accuracy of 93.45% and an area under the curve value of 0.99 when trained on the three classes. The model further showed superior results on binary classification compared with existing methods. The model recorded 94.39%, 94.92%, and 95.62% accuracies for Alzheimer's disease versus normal controls, Alzheimer's disease versus mild cognitive impairment, and mild cognitive impairment versus normal controls classes, respectively.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Aumento da Imagem , Disfunção Cognitiva/diagnóstico por imagem , Neuroimagem/métodos
4.
PLoS One ; 19(3): e0294609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442130

RESUMO

Underwater image enhancement has become the requirement for more people to have a better visual experience or to extract information. However, underwater images often suffer from the mixture of color distortion and blurred quality degradation due to the external environment (light attenuation, background noise and the type of water). To solve the above problem, we design a Divide-and-Conquer network (DC-net) for enhancing underwater image, which mainly consists of a texture network, a color network and a refinement network. Specifically, the multi-axis attention block is presented in the texture network, which combine different region/channel features into a single stream structure. And the color network employs an adaptive 3D look-up table method to obtain the color enhanced results. Meanwhile, the refinement network is presented to focus on image features of ground truth. Compared to state-of-the-art (SOTA) underwater image enhance methods, our proposed method can obtain the better visual quality of underwater images and better qualitative and quantitative performance. The code is publicly available at https://github.com/zhengshijian1993/DC-Net.


Assuntos
Aumento da Imagem , Decoração de Interiores e Mobiliário , Humanos , Água
5.
Med J Malaysia ; 79(Suppl 1): 74-81, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38555889

RESUMO

INTRODUCTION: Motion and pulsation artifacts are the most prominent types of artifacts in Magnetic Resonance Imaging (MRI) of the shoulder. Therefore, this study examined the Periodically Rotating Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) technique with small flex coil (SFC) and dedicated shoulder coil (DSC) for the reduction of motion and pulsation artifacts. The signalto- noise ratio (SNR) and contrast-to-noise ratio (CNR) of the standard proton density fat saturation (PDFS) pulse sequence and the PROPELLER proton density fat saturation (PROPELLER PDFS) pulse sequence were also evaluated. MATERIALS AND METHODS: Eighteen (18) participants who met the inclusion and exclusion criteria were scanned using a standard non-contrast MRI shoulder protocol including the PDFS pulse sequence and the PROPELLER PDFS pulse sequence using a small flex coil and a dedicated shoulder coil. Two experienced musculoskeletal (MSK) radiologists evaluated and graded the presence of artifacts on the MR images and the SNR and CNR were measured quantitatively. RESULTS: The non-parametric Wilcoxon Signed Rank test revealed a significant reduction in motion and pulsation artifacts between the PROPELLER PDFS pulse sequence and the standard PDFS pulse sequence. In addition, the nonparametric Mann-Whitney U test revealed that the mean rank of SNR for the standard sequence was statistically significant when compared to the PROPELLER sequence for both coil types. The CNR of the PROPELLER sequence was statistically significant between fat-fluid, bone-fluid, bonetendon, bone-muscle, and muscle-fluid when using SFC and DSC. CONCLUSION: This study proved that the PROPELLER-PDFS pulse sequence effectively eliminates motion and pulsation artifacts, regardless of the coils utilised. The PROPELLERPDFS pulse sequence can therefore be implemented into the standard MRI shoulder procedure.


Assuntos
Prótons , Ombro , Humanos , Ombro/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Artefatos
6.
Neuroimage ; 291: 120571, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518829

RESUMO

DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics-driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.


Assuntos
Meios de Contraste , Aprendizado Profundo , Humanos , Meios de Contraste/farmacocinética , Simulação por Computador , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Reprodutibilidade dos Testes
7.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473947

RESUMO

Intracranial aneurysms are common, but only a minority rupture and cause subarachnoid haemorrhage, presenting a dilemma regarding which to treat. Vessel wall imaging (VWI) is a contrast-enhanced magnetic resonance imaging (MRI) technique used to identify unstable aneurysms. The pathological basis of MR enhancement of aneurysms is the subject of debate. This review synthesises the literature to determine the pathological basis of VWI enhancement. PubMed and Embase searches were performed for studies reporting VWI of intracranial aneurysms and their correlated histological analysis. The risk of bias was assessed. Calculations of interdependence, univariate and multivariate analysis were performed. Of 228 publications identified, 7 met the eligibility criteria. Individual aneurysm data were extracted for 72 out of a total of 81 aneurysms. Univariate analysis showed macrophage markers (CD68 and MPO, p = 0.001 and p = 0.002), endothelial cell markers (CD34 and CD31, p = 0.007 and p = 0.003), glycans (Alcian blue, p = 0.003) and wall thickness (p = 0.030) were positively associated with enhancement. Aneurysm enhancement therefore appears to be associated with inflammatory infiltrate and neovascularisation. However, all these markers are correlated with each other, and the literature is limited in terms of the numbers of aneurysms analysed and the parameters considered. The data are therefore insufficient to determine if these associations are independent of each other or of aneurysm size, wall thickness and rupture status. Thus, the cause of aneurysm-wall enhancement currently remains unknown.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Aneurisma Intracraniano/patologia , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem
8.
Magn Reson Imaging ; 109: 42-48, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447629

RESUMO

PURPOSE: To evaluate the performance of high-resolution free-breathing (FB) hepatobiliary phase imaging of the liver using the eXtra-Dimension Golden-angle RAdial Sparse Parallel (XD-GRASP) MRI technique. METHODS: Fifty-eight clinical patients (41 males, mean age = 52.9 ± 12.9) with liver lesions who underwent dynamic contrast-enhanced MRI with a liver-specific contrast agent were prospectively recruited for this study. Both breath-hold volumetric interpolated examination (BH-VIBE) imaging and FB imaging were performed during the hepatobiliary phase. FB images were acquired using a stack-of-stars golden-angle radial sequence and were reconstructed using the XD-GRASP method. Two experienced radiologists blinded to acquisition schemes independently scored the overall image quality, liver edge sharpness, hepatic vessel clarity, conspicuity of lesion, and overall artifact level of each image. The non-parametric paired two-tailed Wilcoxon signed-rank test was used for statistical analysis. RESULTS: Compared to BH-VIBE images, XD-GRASP images received significantly higher scores (P < 0.05) for the liver edge sharpness (4.83 ± 0.45 vs 4.29 ± 0.46), the hepatic vessel clarity (4.64 ± 0.67 vs 4.15 ± 0.56) and the conspicuity of lesion (4.75 ± 0.53 vs 4.31 ± 0.50). There were no significant differences (P > 0.05) between BH-VIBE and XD-GRASP images for the overall image quality (4.61 ± 0.50 vs 4.74 ± 0.47) and the overall artifact level (4.13 ± 0.44 vs 4.05 ± 0.61). CONCLUSION: Compared to conventional BH-VIBE MRI, FB radial acquisition combined with XD-GRASP reconstruction facilitates higher spatial resolution imaging of the liver during the hepatobiliary phase. This enhancement can significantly improve the visualization and evaluation of the liver.


Assuntos
Interpretação de Imagem Assistida por Computador , Respiração , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Interpretação de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Suspensão da Respiração , Meios de Contraste , Artefatos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos
9.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38530800

RESUMO

MOTIVATION: The full automation of digital neuronal reconstruction from light microscopic images has long been impeded by noisy neuronal images. Previous endeavors to improve image quality can hardly get a good compromise between robustness and computational efficiency. RESULTS: We present the image enhancement pipeline named Neuronal Image Enhancement through Noise Disentanglement (NIEND). Through extensive benchmarking on 863 mouse neuronal images with manually annotated gold standards, NIEND achieves remarkable improvements in image quality such as signal-background contrast (40-fold) and background uniformity (10-fold), compared to raw images. Furthermore, automatic reconstructions on NIEND-enhanced images have shown significant improvements compared to both raw images and images enhanced using other methods. Specifically, the average F1 score of NIEND-enhanced reconstructions is 0.88, surpassing the original 0.78 and the second-ranking method, which achieved 0.84. Up to 52% of reconstructions from NIEND-enhanced images outperform all other four methods in F1 scores. In addition, NIEND requires only 1.6 s on average for processing 256 × 256 × 256-sized images, and images after NIEND attain a substantial average compression rate of 1% by LZMA. NIEND improves image quality and neuron reconstruction, providing potential for significant advancements in automated neuron morphology reconstruction of petascale. AVAILABILITY AND IMPLEMENTATION: The study is conducted based on Vaa3D and Python 3.10. Vaa3D is available on GitHub (https://github.com/Vaa3D). The proposed NIEND method is implemented in Python, and hosted on GitHub along with the testing code and data (https://github.com/zzhmark/NIEND). The raw neuronal images of mouse brains can be found at the BICCN's Brain Image Library (BIL) (https://www.brainimagelibrary.org). The detailed list and associated meta information are summarized in Supplementary Table S3.


Assuntos
Compressão de Dados , Neurônios , Animais , Camundongos , Tomografia Computadorizada por Raios X/métodos , Aumento da Imagem , Encéfalo , Processamento de Imagem Assistida por Computador/métodos
10.
PLoS One ; 19(2): e0297642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315697

RESUMO

In order to solve the surface detection problems of low accuracy, low precision and inability to automate in the production process of late-model display panels, a little sample-based deep learning organic light-emitting diodes detection model SmartMuraDetection is proposed. First, aiming at the detection difficulty of low surface defect contrast, a gradient boundary enhancement algorithm module is designed to automatically identify and enhance defects and background gray difference. Then, the problem of insufficient little sample data sets is solved, Poisson fusion image enhancement module is designed for sample enhancement. Then, a TinyDetection model adapted to small-scale target detection is constructed to improve the detection accuracy of defects in small-scale targets. Finally, SEMUMaxMin quantization module is proposed as a post-processing module for the result images derived from network model reasoning, and accurate defect data is obtained by setting a threshold filter. The number of sample images in the experiment is 334. This study utilizes an organic light-emitting diodes detection model. The detection accuracy of surface defects can be improved by 85% compared with the traditional algorithm. The method in this paper is used for mass production evaluation in the actual display panel production site. The detection accuracy of surface defects reaches 96%, which can meet the mass production level of the detection equipment in this process section.


Assuntos
Aprendizado Profundo , Algoritmos , Aumento da Imagem , Resolução de Problemas
11.
PLoS One ; 19(2): e0297984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306351

RESUMO

Images obtained in low-light scenes are often accompanied by problems such as low visibility, blurred details, and color distortion, enhancing them can effectively improve the visual effect and provide favorable conditions for advanced visual tasks. In this study, we propose a Multi-Technology Fusion of Low-light Image Enhancement Network (MTIE-Net) that modularizes the enhancement task. MTIE-Net consists of a residual dense decomposition network (RDD-Net) based on Retinex theory, an encoder-decoder denoising network (EDD-Net), and a parallel mixed attention-based self-calibrated illumination enhancement network (PCE-Net). The low-light image is first decomposed by RDD-Net into a lighting map and reflectance map; EDD-Net is used to process noise in the reflectance map; Finally, the lighting map is fused with the denoised reflectance map as an input to PCE-Net, using the Fourier transform for illumination enhancement and detail recovery in the frequency domain. Numerous experimental results show that MTIE-Net outperforms the comparison methods in terms of image visual quality enhancement improvement, denoising, and detail recovery. The application in nighttime face detection also fully demonstrates its promise as a pre-processing means in practical applications.


Assuntos
Aumento da Imagem , Procedimentos Cirúrgicos Refrativos , Iluminação , Tecnologia , Processamento de Imagem Assistida por Computador
12.
Phys Med Biol ; 69(6)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38359452

RESUMO

Objective. During deep-learning-aided (DL-aided) ultrasound (US) diagnosis, US image classification is a foundational task. Due to the existence of serious speckle noise in US images, the performance of DL models may be degraded. Pre-denoising US images before their use in DL models is usually a logical choice. However, our investigation suggests that pre-speckle-denoising is not consistently advantageous. Furthermore, due to the decoupling of speckle denoising from the subsequent DL classification, investing intensive time in parameter tuning is inevitable to attain the optimal denoising parameters for various datasets and DL models. Pre-denoising will also add extra complexity to the classification task and make it no longer end-to-end.Approach. In this work, we propose a multi-scale high-frequency-based feature augmentation (MSHFFA) module that couples feature augmentation and speckle noise suppression with specific DL models, preserving an end-to-end fashion. In MSHFFA, the input US image is first decomposed to multi-scale low-frequency and high-frequency components (LFC and HFC) with discrete wavelet transform. Then, multi-scale augmentation maps are obtained by computing the correlation between LFC and HFC. Last, the original DL model features are augmented with multi-scale augmentation maps.Main results. On two public US datasets, all six renowned DL models exhibited enhanced F1-scores compared with their original versions (by 1.31%-8.17% on the POCUS dataset and 0.46%-3.89% on the BLU dataset) after using the MSHFFA module, with only approximately 1% increase in model parameter count.Significance. The proposed MSHFFA has broad applicability and commendable efficiency and thus can be used to enhance the performance of DL-aided US diagnosis. The codes are available athttps://github.com/ResonWang/MSHFFA.


Assuntos
Aprendizado Profundo , Ultrassonografia/métodos , Aumento da Imagem/métodos , Análise de Ondaletas , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Algoritmos
13.
Eur J Radiol ; 173: 111360, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342061

RESUMO

PURPOSE: To determine the diagnostic accuracy of volumetric interpolated breath-hold examination sequences with fat suppression in Dixon technique (VIBE-Dixon) for cardiac thrombus detection. METHOD: From our clinical database, we retrospectively identified consecutive patients between 2014 and 2022 who had definite diagnosis or exclusion of cardiac thrombus confirmed by an independent adjudication committee, serving as the reference standard. All patients received 2D-Cine plus 2D-Late-Gadolinium-Enhancement (Cine + LGE) and VIBE-Dixon sequences. Two blinded readers assessed all images for the presence of cardiac thrombus. The diagnostic accuracy of Cine + LGE and VIBE-Dixon was determined and compared. RESULTS: Among 141 MRI studies (116 male, mean age: 61 years) mean image examination time was 28.8 ± 3.1 s for VIBE-Dixon and 23.3 ± 2.5 min for Cine + LGE. Cardiac thrombus was present in 49 patients (prevalence: 35 %). For both readers sensitivity for thrombus detection was significantly higher in VIBE-Dixon compared with Cine + LGE (Reader 1: 96 % vs.73 %, Reader 2: 96 % vs. 78 %, p < 0.01 for both readers), whereas specificity did not differ significantly (Reader 1: 96 % vs. 98 %, Reader 2: 92 % vs. 93 %, p > 0.1). Overall diagnostic accuracy of VIBE-Dixon was higher than for Cine + LGE (95 % vs. 89 %, p = 0.02) and was non-inferior to the reference standard (Delta ≤ 5 % with probability > 95 %). CONCLUSIONS: Biplanar VIBE-Dixon sequences, acquired within a few seconds, provided a very high diagnostic accuracy for cardiac thrombus detection. They could be used as stand-alone sequences to rapidly screen for cardiac thrombus in patients not amenable to lengthy acquisition times.


Assuntos
Meios de Contraste , Trombose , Humanos , Masculino , Pessoa de Meia-Idade , Gadolínio , Estudos Retrospectivos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Trombose/diagnóstico por imagem , Aumento da Imagem/métodos
14.
Sensors (Basel) ; 24(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38400470

RESUMO

Cardiac CINE, a form of dynamic cardiac MRI, is indispensable in the diagnosis and treatment of heart conditions, offering detailed visualization essential for the early detection of cardiac diseases. As the demand for higher-resolution images increases, so does the volume of data requiring processing, presenting significant computational challenges that can impede the efficiency of diagnostic imaging. Our research presents an approach that takes advantage of the computational power of multiple Graphics Processing Units (GPUs) to address these challenges. GPUs are devices capable of performing large volumes of computations in a short period, and have significantly improved the cardiac MRI reconstruction process, allowing images to be produced faster. The innovation of our work resides in utilizing a multi-device system capable of processing the substantial data volumes demanded by high-resolution, five-dimensional cardiac MRI. This system surpasses the memory capacity limitations of single GPUs by partitioning large datasets into smaller, manageable segments for parallel processing, thereby preserving image integrity and accelerating reconstruction times. Utilizing OpenCL technology, our system offers adaptability and cross-platform functionality, ensuring wider applicability. The proposed multi-device approach offers an advancement in medical imaging, accelerating the reconstruction process and facilitating faster and more effective cardiac health assessment.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Coração/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos
15.
PLoS One ; 19(2): e0299110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408101

RESUMO

Underwater images are often scattered due to suspended particles in the water, resulting in light scattering and blocking and reduced visibility and contrast. Color shifts and distortions are also caused by the absorption of different wavelengths of light in the water. This series of problems will make the underwater image quality greatly impaired, resulting in some advanced visual work can not be carried out underwater. In order to solve these problems, this paper proposes an underwater image enhancement method based on multi-task fusion, called MTF. Specifically, we first use linear constraints on the input image to achieve color correction based on the gray world assumption. The corrected image is then used to achieve visibility enhancement using an improved type-II fuzzy set-based algorithm, while the image is contrast enhanced using standard normal distribution probability density function and softplus function. However, in order to obtain more qualitative results, we propose multi-task fusion, in which we solve for similarity, then we obtain fusion weights that guarantee the best features of the image as much as possible from the obtained similarity, and finally we fuse the image with the weights to obtain the output image, and we find that multi-task fusion has excellent image enhancement and restoration capabilities, and also produces visually pleasing results. Extensive qualitative and quantitative evaluations show that MTF method achieves optimal results compared to ten state-of-the-art underwater enhancement algorithms on 2 datasets. Moreover, the method can achieve better results in application tests such as target detection and edge detection.


Assuntos
Algoritmos , Aumento da Imagem , Funções Verossimilhança , Distribuição Normal , Água
16.
Curr Med Imaging ; 20: 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389368

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) is a handy diagnostic tool for orthopedic disorders, particularly spinal and joint diseases. METHODS: The lumbar intervertebral disc is visible in the T1 and T2 weight sequences of the spine MRI, which aids in diagnosing lumbar disc herniation, lumbar spine tuberculosis, lumbar spine tumors, and other conditions. The lumbar intervertebral disc cannot be seen accurately in the Spectral Attenuated Inversion Recovery (SPAIR) due to weaknesses in the fat and frequency offset parameters, which is not conducive to developing the intelligence diagnosis model of medical image. RESULTS: In order to solve this problem, we propose a composite framework, which is first to use the contrast limited adaptive histogram equalization (CLAHE) method to enhance the SPAIR image contrast of the spine MRI and then use the non-local means method to remove the noise of the image to ensure that the image contrast is uniform without losing details. We employ the Information Entropy (IE), Peak signal-to-noise ratio (PSNR), and feature similarity index measure (FSIM) to quantify image quality after enhancement by the composite framework. CONCLUSION: The outcomes of the experiments' output images and quantitative data indicate that our composite framework is better than others.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído , Vértebras Lombares/diagnóstico por imagem
17.
Br J Radiol ; 97(1156): 812-819, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38366622

RESUMO

OBJECTIVE: To demonstrate that a T2 periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique using deep learning reconstruction (DLR) will provide better image quality and decrease image noise. METHODS: From December 2020 to March 2021, 35 patients examined cervical spine MRI were included in this study. Four sets of images including fast spin echo (FSE), original PROPELLER, PROPELLER DLR50%, and DLR75% were quantitatively and qualitatively reviewed. We calculated the signal-to-noise ratio (SNR) of the spinal cord and sternocleidomastoid (SCM) muscle and the contrast-to-noise ratio (CNR) of the spinal cord by applying region-of-interest at the spinal cord, SCM muscle, and background air. We evaluated image noise with regard to the spinal cord, SCM, and back muscles at each level from C2-3 to C6-7 in the 4 sets. RESULTS: At all disc levels, the mean SNR values for the spinal cord and SCM muscles were significantly higher in PROPELLER DLR50% and DLR75% compared to FSE and original PROPELLER images (P < .0083). The mean CNR values of the spinal cord were significantly higher in PROPELLER DLR50% and DLR75% compared to FSE at the C3-4 and 4-5 levels and PROPELLER DLR75% compared to FSE at the C6-7 level (P < .0083). Qualitative analysis of image noise on the spinal cord, SCM, and back muscles showed that PROPELLER DLR50% and PROPELLER DLR75% images showed a significant denoising effect compared to the FSE and original PROPELLER images. CONCLUSION: The combination of PROPELLER and DLR improved image quality with a high SNR and CNR and reduced noise. ADVANCES IN KNOWLEDGE: Motion-insensitive imaging technique (PROPELLER) increased the image quality compared to conventional FSE images. PROPELLER technique with a DLR reduced image noise and improved image quality.


Assuntos
Aprendizado Profundo , Humanos , Aumento da Imagem/métodos , Artefatos , Imageamento por Ressonância Magnética/métodos , Vértebras Cervicais/diagnóstico por imagem , Resultado do Tratamento
18.
Br J Radiol ; 97(1156): 868-873, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38400772

RESUMO

PURPOSE: To evaluate intra-patient and interobserver agreement in patients who underwent liver MRI with gadoxetic acid using two different multi-arterial phase (AP) techniques. METHODS: A total of 154 prospectively enrolled patients underwent clinical gadoxetic acid-enhanced liver MRI twice within 12 months, using two different multi-arterial algorithms: CAIPIRINHA-VIBE and TWIST-VIBE. For every patient, breath-holding time, body mass index, sex, age were recorded. The phase without contrast media and the APs were independently evaluated by two radiologists who quantified Gibbs artefacts, noise, respiratory motion artefacts, and general image quality. Presence or absence of Gibbs artefacts and noise was compared by the McNemar's test. Respiratory motion artefacts and image quality scores were compared using Wilcoxon signed rank test. Interobserver agreement was assessed by Cohen kappa statistics. RESULTS: Compared with TWIST-VIBE, CAIPIRINHA-VIBE images had better scores for every parameter except higher noise score. Triple APs were always acquired with TWIST-VIBE but failed in 37% using CAIPIRINHA-VIBE: 11% have only one AP, 26% have two. Breath-holding time was the only parameter that influenced the success of multi-arterial techniques. TWIST-VIBE images had worst score for Gibbs and respiratory motion artefacts but lower noise score. CONCLUSION: CAIPIRINHA-VIBE images were always diagnostic, but with a failure of triple-AP in 37%. TWIST-VIBE was successful in obtaining three APs in all patients. Breath-holding time is the only parameter which can influence the preliminary choice between CAIPIRINHA-VIBE and TWIST-VIBE algorithm. ADVANCES IN KNOWLEDGE: If the patient is expected to perform good breath-holds, TWIST-VIBE is preferable; otherwise, CAIPIRINHA-VIBE is more appropriate.


Assuntos
Gadolínio DTPA , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Suspensão da Respiração , Artefatos , Fígado/diagnóstico por imagem
19.
Magn Reson Med ; 91(6): 2391-2402, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317286

RESUMO

PURPOSE: Clinical scanners require pulsed CEST sequences to maintain amplifier and specific absorption rate limits. During off-resonant RF irradiation and interpulse delay, the magnetization can accumulate specific relative phases within the pulse train. In this work, we show that these phases are important to consider, as they can lead to unexpected artifacts when no interpulse gradient spoiling is performed during the saturation train. METHODS: We investigated sideband artifacts using a CEST-3D snapshot gradient-echo sequence at 3 T. Initially, Bloch-McConnell simulations were carried out with Pulseq-CEST, while measurements were performed in vitro and in vivo. RESULTS: Sidebands can be hidden in Z-spectra, and their structure becomes clearly visible only at high sampling. Sidebands are further influenced by B0 inhomogeneities and the RF phase cycling within the pulse train. In vivo, sidebands are mostly visible in liquid compartments such as CSF. Multi-pulse sidebands can be suppressed by interpulse gradient spoiling. CONCLUSION: We provide new insights into sidebands occurring in pulsed CEST experiments and show that, similar as in imaging sequences, gradient and RF spoiling play an important role. Gradient spoiling avoids misinterpretations of sidebands as CEST effects especially in liquid environments including pathological tissue or for CEST resonances close to water. It is recommended to simulate pulsed CEST sequences in advance to avoid artifacts.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Aumento da Imagem/métodos , Concentração de Íons de Hidrogênio , Interpretação de Imagem Assistida por Computador/métodos
20.
MAGMA ; 37(2): 257-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366129

RESUMO

OBJECTIVE: To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design. METHODS: The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations. RESULTS: Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds. DISCUSSION: An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online "push-button" workflow. Both fat saturation homogeneity and the level of suppression are improved.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Frequência Cardíaca , Vértebras Cervicais/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...