Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.194
Filtrar
1.
Carbohydr Polym ; 335: 122070, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616092

RESUMO

Starches are hydrolyzed into monosaccharides by mucosal α-glucosidases in the human small intestine. However, there are few studies assessing the direct digestion of starch by these enzymes. The objective of this study was to investigate the changes in the structure and enzyme binding of starches during in vitro hydrolysis by mammalian mucosal enzymes. Waxy maize (WMS), normal maize (NMS), high-amylose maize (HAMS), waxy potato (WPS), and normal potato (NPS) starches were examined. The order of the digestion rate was different compared with other studies using a mixture of pancreatic α-amylase and amyloglucosidase. NPS was digested more than other starches. WPS was more digestible than WMS. Hydrolyzed starch from NPS, NMS, WPS, WMS, and HAMS after 24 h was 66.4, 64.2, 61.7, 58.7, and 46.2 %, respectively. Notably, a significant change in the morphology, reduced crystallinity, and a decrease in the melting enthalpy of the three starches (NPS, NMS, and WPS) after 24 h of hydrolysis were confirmed by microscopy, X-ray diffraction, and differential scanning calorimetry, respectively. The bound enzyme fraction of NPS, NMS, and WPS increased as hydrolysis progressed. In contrast, HAMS was most resistant to hydrolysis by mucosal α-glucosidases in terms of digestibility, changes in morphology, crystallinity, and thermal properties.


Assuntos
Amido , alfa-Glucosidases , Humanos , Animais , Hidrólise , Amilose , Varredura Diferencial de Calorimetria , Ceras , Zea mays , Mamíferos
2.
Langmuir ; 40(15): 7883-7895, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38587263

RESUMO

N-Acylated amino acids and neurotransmitters in mammals exert significant biological effects on the nervous system, immune responses, and vasculature. N-Acyl derivatives of γ-aminobutyric acid (N-acyl GABA), which belong to both classes mentioned above, are prominent among them. In this work, a homologous series of N-acyl GABAs bearing saturated N-acyl chains (C8-C18) have been synthesized and characterized with respect to self-assembly, thermotropic phase behavior, and supramolecular organization. Differential scanning calorimetric studies revealed that the transition enthalpies and entropies of N-acyl GABAs are linearly dependent on the acyl chain length. The crystal structure of N-tridecanoyl GABA showed that the molecules are packed in bilayers with the acyl chains aligned parallel to the bilayer normal and that the carboxyl groups from opposite layers associate to form dimeric structures involving strong O-H···O hydrogen bonds. In addition, N-H···O and C-H···O hydrogen bonds between amide moieties of adjacent molecules within each layer stabilize the molecular packing. Powder X-ray diffraction studies showed odd-even alternation in the d spacings, suggesting that the odd chain and even chain compounds pack differently. Equimolar mixtures of N-palmitoyl GABA and dipalmitoylphosphatidylcholine (DPPC) were found to form stable unilamellar vesicles with diameters of ∼300-340 nm, which could encapsulate doxorubicin, an anticancer drug, with higher efficiency and better release characteristics than DPPC liposomes at physiologically relevant pH. These liposomes exhibit faster release of doxorubicin at acidic pH (<7.0), indicating their potential utility as drug carriers in cancer chemotherapy.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Lipossomos , Animais , 1,2-Dipalmitoilfosfatidilcolina/química , Termodinâmica , Doxorrubicina , Ácido gama-Aminobutírico , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Mamíferos
3.
Biochem Biophys Res Commun ; 709: 149806, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579619

RESUMO

Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.


Assuntos
Antineoplásicos , Bicamadas Lipídicas , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Fosfolipídeos/química , Membranas Artificiais , Lipossomos/química
4.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542174

RESUMO

The present study was designed to investigate the physical stability of three organic materials with similar chemical structures. The examined compounds revealed completely different crystallization tendencies in their supercooled liquid states and were classified into three distinct classes based on their tendency to crystallize. (S)-4-Benzyl-2-oxazolidinone easily crystallizes during cooling from the melt; (S)-4-Benzylthiazolidine-2-thione does not crystallize during cooling from the melt, but crystallizes easily during subsequent reheating above Tg; and (S)-4-Benzyloxazolidine-2-thione does not crystallize either during cooling from the melt or during reheating. Such different tendencies to crystallize are observed despite the very similar chemical structures of the compounds, which only differ in oxide or sulfur atoms in one of their rings. We also studied the isothermal crystallization kinetics of the materials that were shown to transform into a crystalline state. Molecular dynamics and thermal properties were thoroughly investigated using broadband dielectric spectroscopy, as well as conventional and temperature-modulated differential scanning calorimetry in the wide temperature range. It was found that all three glass formers have the same dynamic fragility (m = 93), calculated directly from dielectric structural relaxation times. This result verifies that dynamic fragility is not related to the tendency to crystallize. In addition, thermodynamic fragility predictions were also made using calorimetric data. It was found that the thermodynamic fragility evaluated based on the width of the glass transition, observed in the temperature dependence of heat capacity, correlates best with the tendency to crystallize.


Assuntos
Tionas , Cristalização/métodos , Transição de Fase , Temperatura , Termodinâmica , Varredura Diferencial de Calorimetria
5.
PLoS One ; 19(3): e0298969, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427623

RESUMO

It was recently reported that values of the transition heat capacities, as measured by differential scanning calorimetry, for two globular proteins and a short DNA hairpin in NaCl buffer are essentially equivalent, at equal concentrations (mg/mL). To validate the broad applicability of this phenomenon, additional evidence for this equivalence is presented that reveals it does not depend on DNA sequence, buffer salt, or transition temperature (Tm). Based on the equivalence of transition heat capacities, a calorimetric method was devised to determine protein concentrations in pure and complex solutions. The scheme uses direct comparisons between the thermodynamic stability of a short DNA hairpin standard of known concentration, and thermodynamic stability of protein solutions of unknown concentrations. Sequences of two DNA hairpins were designed to confer a near 20°C difference in their Tm values. In all cases, evaluated protein concentrations determined from the DNA standard curves agreed with the UV-Vis concentration for monomeric proteins. For multimeric proteins evaluated concentrations were greater than determined by UV-Vis suggesting the calorimetric approach can also be an indicator of molecular stoichiometry.


Assuntos
DNA , Proteínas , DNA/química , Calorimetria , Termodinâmica , Varredura Diferencial de Calorimetria , Cloreto de Sódio
6.
Int J Pharm ; 655: 123997, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38484861

RESUMO

The superior flexibility, efficient drug loading, high surface-to-volume ratio, ease of formulation, and cost-controlled production are considered exceptional advantages of nanofibers (NFs) as a smart delivery system. Deflazacort (DEF) is an anti-inflammatory and immunosuppressant agent. It is categorized as a poorly soluble class II drug. In this study, DEF-loaded polymeric nanofibrous using the electrospinning technique mats, Polyvinyl pyrrolidone (PVP) with or without Poloxamer 188 (PX) were used as mat-forming polymers. Microscopical imaging, drug content (%), and in vitro dissolution studies were conducted for all NFs formulae (F1-F7). All NFs improved the DEF dissolution compared to the unprocessed form, with the superiority of the PVP/PX hybrid. The optimized formula (F7) exhibited an average diameter of 655.46 ± 90.4 nm and % drug content of 84.33 ± 5.58. The dissolution parameters of DEF loaded in PVP/PX NFs (F7) reflected a release of 95.3 % ± 3.1 and 102.6 % ± 1.7 after 5 and 60 min, respectively. NFs (F7) was investigated for drug-polymer compatibility using Fourier-Transform Infrared Spectroscopy (FTIR), Powder X-ray diffraction analysis (PXRD), and Differential Scanning Calorimetry (DSC). In vivo anti-inflammatory study employing male Sprague-Dawley rats showed a significant reduction of rat paw edema for F7 (p < 0.05) compared with unprocessed DEF with a normal epidermal and dermal skin structure comparable to the healthy negative control. Immunohistochemical and morphometric data displayed similarities between the immune reaction of F7 and the negative healthy control. The finding of this work emphasized that DEF loaded in PVP/PX NFs could be considered a useful strategy for enhancing the therapeutic performance of DEF.


Assuntos
Nanofibras , Povidona , Pregnenodionas , Masculino , Ratos , Animais , Povidona/química , Polivinil , Poloxâmero , Nanofibras/química , Solubilidade , Ratos Sprague-Dawley , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Anti-Inflamatórios , Varredura Diferencial de Calorimetria
7.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474022

RESUMO

In this study, amorphous solid dispersions (ASDs) of pterostilbene (PTR) with polyvinylpyrrolidone polymers (PVP K30 and VA64) were prepared through milling, affirming the amorphous dispersion of PTR via X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Subsequent analysis of DSC thermograms, augmented using mathematical equations such as the Gordon-Taylor and Couchman-Karasz equations, facilitated the determination of predicted values for glass transition (Tg), PTR's miscibility with PVP, and the strength of PTR's interaction with the polymers. Fourier-transform infrared (FTIR) analysis validated interactions maintaining PTR's amorphous state and identified involved functional groups, namely, the 4'-OH and/or -CH groups of PTR and the C=O group of PVP. The study culminated in evaluating the impact of amorphization on water solubility, the release profile in pH 6.8, and in vitro permeability (PAMPA-GIT and BBB methods). In addition, it was determined how improving water solubility affects the increase in antioxidant (ABTS, DPPH, CUPRAC, and FRAP assays) and neuroprotective (inhibition of cholinesterases: AChE and BChE) properties. The apparent solubility of the pure PTR was ~4.0 µg·mL-1 and showed no activity in the considered assays. For obtained ASDs (PTR-PVP30/PTR-PVPVA64, respectively) improvements in apparent solubility (410.8 and 383.2 µg·mL-1), release profile, permeability, antioxidant properties (ABTS: IC50 = 52.37/52.99 µg·mL-1, DPPH: IC50 = 163.43/173.96 µg·mL-1, CUPRAC: IC0.5 = 122.27/129.59 µg·mL-1, FRAP: IC0.5 = 95.69/98.57 µg·mL-1), and neuroprotective effects (AChE: 39.1%/36.2%, BChE: 76.9%/73.2%) were confirmed.


Assuntos
Antioxidantes , Benzotiazóis , Povidona , Ácidos Sulfônicos , Resveratrol , Povidona/química , Polímeros/química , Solubilidade , Difração de Raios X , Água , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474237

RESUMO

The clinical benefits of using exogenous pulmonary surfactant (EPS) as a carrier of budesonide (BUD), a non-halogenated corticosteroid with a broad anti-inflammatory effect, have been established. Using various experimental techniques (differential scanning calorimetry DSC, small- and wide- angle X-ray scattering SAXS/WAXS, small- angle neutron scattering SANS, fluorescence spectroscopy, dynamic light scattering DLS, and zeta potential), we investigated the effect of BUD on the thermodynamics and structure of the clinically used EPS, Curosurf®. We show that BUD facilitates the Curosurf® phase transition from the gel to the fluid state, resulting in a decrease in the temperature of the main phase transition (Tm) and enthalpy (ΔH). The morphology of the Curosurf® dispersion is maintained for BUD < 10 wt% of the Curosurf® mass; BUD slightly increases the repeat distance d of the fluid lamellar phase in multilamellar vesicles (MLVs) resulting from the thickening of the lipid bilayer. The bilayer thickening (~0.23 nm) was derived from SANS data. The presence of ~2 mmol/L of Ca2+ maintains the effect and structure of the MLVs. The changes in the lateral pressure of the Curosurf® bilayer revealed that the intercalated BUD between the acyl chains of the surfactant's lipid molecules resides deeper in the hydrophobic region when its content exceeds ~6 wt%. Our studies support the concept of a combined therapy utilising budesonide-enriched Curosurf®.


Assuntos
Surfactantes Pulmonares , Budesonida , Espalhamento a Baixo Ângulo , Difração de Raios X , Termodinâmica , Bicamadas Lipídicas/química , Varredura Diferencial de Calorimetria , Pulmão , Tensoativos
9.
AAPS PharmSciTech ; 25(4): 67, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519767

RESUMO

Despite being discovered over five decades ago, little is still known about ivermectin. Ivermectin has several physico-chemical properties that can result in it having poor bioavailability. In this study, polymorphic and co-crystal screening was used to see if such solid-state modifications can improve the oil solubility of ivermectin. Span® 60, a lipophilic non-ionic surfactant, was chosen as co-former. The rationale behind attempting to improve oil solubility was to use ivermectin in future topical and transdermal preparations to treat a range of skin conditions like scabies and head lice. Physical mixtures were also prepared in the same molar ratios as the co-crystal candidates, to serve as controls. Solid-state characterization was performed using X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The FTIR spectra of the co-crystal candidates showed the presence of Span® 60's alkyl chain peaks, which were absent in the spectra of the physical mixtures. Due to the absence of single-crystal X-ray data, co-crystal formation could not be confirmed, and therefore these co-crystal candidates were referred to as co-processed crystalline solids. Following characterization, the solid-state forms, physical mixtures and ivermectin raw material were dissolved in natural penetration enhancers, i.e., avocado oil (AVO) and evening primrose oil (EPO). The co-processed solids showed increased oil solubility by up to 169% compared to ivermectin raw material. The results suggest that co-processing of ivermectin with Span® 60 can be used to increase its oil solubility and can be useful in the development of oil-based drug formulations.


Assuntos
Ivermectina , Óleos , Solubilidade , Difração de Raios X , Composição de Medicamentos , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
10.
J Pharm Biomed Anal ; 242: 116038, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428367

RESUMO

In the pharmaceutical industry, the unexpected appearance of crystalline forms could impact the therapeutic efficacy of an Active Pharmaceutical Ingredient (API). For quality control, a thorough qualitative and quantitative monitoring of pharmaceutical solid forms is essential to ensure the detection and the quantification of crystalline forms, wither different or with the same chemical composition (polymorphs) at a low detection level. The purpose of this paper was to review and highlight the importance of choosing adequate solid-state techniques for detection and quantification APIs that present polymorphism - based on limits of detection (LOD) and quantification (LOQ), pharmacopeias specifications, international guidelines and studies reported in the literature. To this study, the powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Infrared and Raman spectroscopies and solid-state nuclear magnetic resonance (NMR) were the solid-state techniques analyzed. Additionally, the Argentine, Brazilian, British, European, International, Japanese, Mexican and the United States of America pharmacopeias were reviewed. Based on the analysis performed, the advantages and disadvantages of these techniques, as well as the LOD and LOQ values of APIs were reported. In comparison to these solid-state techniques, reference material used for identification analyses should be previously identified with the corresponding polymorph. Without this previous procedure, the patterns, the spectra, and DSC curves of the reference material can only be used to confirm the mixture of solid forms, not being able to specify which polymorphs are contained in the sample. A major advantage of PXRD is the use of the calculated diffraction patterns obtained from the Crystallographic Information Frameworks (CIFs) files which could be used as a reference pattern without any other information, assistance technique, or physical standards. Regarding the quantification aspect, different pharmacopeias suggest various methods such as the PXRD combining with Rietveld method, which can be used to obtain lower LOD values for minority phases in the mixture of different substances without the need for a calibration curve. Raman spectroscopy can detect polymorphs in small particles and solid-state NMR spectroscopy is a powerful technique for quantification not only crystalline but also crystalline-amorphous mixtures. Finally, this review intends to be a useful tool to control, with efficiency and accuracy, the polymorphism of APIs in pharmaceutical compounds.


Assuntos
Indústria Farmacêutica , Limite de Detecção , Difração de Raios X , Preparações Farmacêuticas , Brasil , Varredura Diferencial de Calorimetria
11.
J Biomed Mater Res B Appl Biomater ; 112(3): e35394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433621

RESUMO

Kaempferol (KMP) belong to flavonoid class have developed in ethosomal formulation and were evaluated for their potential to treat diabetic foot ulcers. Even though ethosomes are highly deformable, they can pass through human skin intact. KMP ethosomes were formulated using the cold method and optimized by Box-Behnken design (BBD) (three-factor, three-level (33 )). The formulation variables used for optimization are drug concentration of KMP, soylecithin content, and ethanol percentage. The optimized formulation was examined using transmission electronic microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, in-vitro release, ex-vivo permeation studies, and storage stability. The optimized KMP ethosomes was found to have vesicle size (VS) of 283 ± 0.3 nm and zeta potential (ZP) of -29.67 ± 0.3 mV, polydispersity index (PDI) of 0.36, % entrapment efficiency (%EE) of 91.02 ± 0.21%, drug loading (%) of 46.23 ± 2.5% followed by good storage stability at 4°C/60 ± 5% RH. In vitro drug release of optimized KMP ethosomes was 88.2 ± 2.75%, which was approximately double when compared with pure KMP release, that is 49.9 ± 1.89%. The release kinetics for optimized KMP ethosomes follows the Korsmeyer-Peppas model. An apparent permeation coefficient of 356.25 ± 0.5 µg/cm2 was determined and compared with pure KMP (118.46 ± 0.3 µg/cm2 ) for 24 h. According to the study, ethosomes can be a cutting-edge strategy that offers a new delivery method for prolonged and targeted distribution of KMP in a variety of dosage forms including oral, topical, transdermal, and so forth.


Assuntos
Etanol , Quempferóis , Humanos , Quempferóis/farmacologia , Varredura Diferencial de Calorimetria , Liberação Controlada de Fármacos , Cinética
12.
Environ Pollut ; 346: 123607, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382730

RESUMO

Differential scanning calorimetry (DSC), a routine thermoanalytical method in material science, is gaining utility in plastic pollution research to improve polymer identification. We optimized a DSC method, experimentally testing pan types, temperature ramps, number of melts, and minimum sample masses. Using the optimized method, we created an in-house thermogram library from 201 polymer reference standards. We determined peak melting temperature cutoffs for differentiating variants of PE and nylon. PE cutoffs remained stable after experimentally weathering standards outdoors or for severely weathered HDPE debris found on Hawaii's beaches. Marine debris samples, across a range of weathering severity and previously identified as either low-density or high-density polyethylene (LDPE or HDPE) based on the 1377 cm-1 peak indicating methyl groups by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), were analyzed by DSC to confirm or challenge the ATR-FTIR PE differentiation. ATR-FTIR was correct for >80% of the HDPE samples, but <40% of those initially identified as LDPE by ATR-FTIR. Accuracy did not relate to weathering extent. Most samples mis-identified as LDPE were HDPE that had formed methyl groups likely from chain scission during photooxidation. ATR-FTIR alone is unreliable for differentiating weathered PE, DSC is required. We provide a multiple-method workflow for complete and accurate polymer identification, even for microplastics ≥0.03 mg. Applying these methods can better identify the polymer composition of marine debris, essential for sourcing and recycling efforts.


Assuntos
Polímeros , Poluentes Químicos da Água , Plásticos , Polietileno/análise , Varredura Diferencial de Calorimetria , Monitoramento Ambiental/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
13.
Food Chem ; 444: 138631, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325079

RESUMO

Naringenin (NGE), a typical flavanone abundant in citrus fruits, exhibits remarkable antioxidant activities. However, its low solubility in oil restricts its widespread use in inhibiting lipid oxidation. In this study, we present a novel and effective approach to address this limitation by developing a naringenin-phospholipid complex (NGE-PC COM). Comprehensive analytical techniques including Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were employed to confirm the formation of the NGE-PC COM and elucidate the interaction mechanism between NGE and phospholipids molecules. Notably, the oil-solubility of NGE was significantly enhanced by approximately 2700-fold when formulated as a phospholipid complex in soybean oil. The improved oil-solubility of NGE-PC COM enabled effective inhibition of oil thermal oxidation under high temperature conditions. Generally, this investigation proposed a novel and promising strategy for employing flavanones with strong antioxidant activities to enhance the thermal oxidative stability of edible oil during heating processes.


Assuntos
Flavanonas , Fosfolipídeos , Fosfolipídeos/química , Óleo de Soja , Antioxidantes , Calefação , Flavanonas/química , Solubilidade , Estresse Oxidativo , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
14.
Eur J Pharm Sci ; 195: 106722, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336250

RESUMO

Posaconazole is a broad-spectrum antifungal agent exhibiting rich polymorphism. Up to now, a total of fourteen different crystal forms have been reported, sometimes with an ambiguous nomenclature, but less is known about their properties and stability relationships. Investigating the solid-state of a drug compound is essential to identify the most stable form under working conditions and to prevent the risk of undesired solid-phase transformations under processing and storage. In this paper, we study posaconazole polymorphism by providing a description of its polymorphs, hydrates, and solvates. Powder X-ray diffraction (PXRD), dynamic vapor sorption (DVS), spectroscopic and thermal techniques were employed to characterize the different forms. In addition, the solid-phase transformations of posaconazole in aqueous suspensions were studied by means of Raman microscopy. Surprisingly, we found that Form S, the crystal form contained in the marketed oral suspension, is not the most stable form in water. Form S readily converts to a more stable hydrate, i.e. Form A, after storage in water for two weeks. In the commercial oral formulation the conversion between the two forms is prevented by the presence of polysorbate 80. Such insights into the stabilizing excipient effects beyond particle dispersion are critical to formulators.


Assuntos
Triazóis , Água , Água/química , Cristalização/métodos , Estabilidade de Medicamentos , Difração de Raios X , Varredura Diferencial de Calorimetria
15.
Mol Pharm ; 21(3): 1272-1284, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38361428

RESUMO

Rifampicin (RIF) is an antibiotic used to treat tuberculosis and leprosy. Even though RIF is a market-available drug, it has a low aqueous solubility, hindering its bioavailability. Among the strategies for bioavailability improvement of poorly soluble drugs, coamorphous systems have been revealed as an alternative in the increase of the aqueous solubility of drug systems and at the same time also increasing the amorphous state stability and dissolution rate when compared with the neat drug. In this work, a new coamorphous form from RIF and tromethamine (TRIS) was synthesized by slow evaporation. Structural, electronic, and thermodynamic properties and solvation effects, as well as drug-coformer intermolecular interactions, were studied through density functional theory (DFT) calculations. Powder X-ray diffraction (PXRD) data allowed us to verify the formation of a new coamorphous. In addition, the DFT study indicates a possible intermolecular interaction by hydrogen bonds between the available amino and carbonyl groups of RIF and the hydroxyl and amino groups of TRIS. The theoretical spectra obtained are in good agreement with the experimental data, suggesting the main interactions occurring in the formation of the coamorphous system. PXRD was used to study the physical stability of the coamorphous system under accelerated ICH conditions (40 °C and 75% RH), indicating that the material remained in an amorphous state up to 180 days. The thermogravimetry result of this material showed a good thermal stability up to 153 °C, and differential scanning calorimetry showed that the glass temperature (Tg) was at 70.0 °C. Solubility studies demonstrated an increase in the solubility of RIF by 5.5-fold when compared with its crystalline counterpart. Therefore, this new material presents critical parameters that can be considered in the development of new coamorphous formulations.


Assuntos
Rifampina , Trometamina , Composição de Medicamentos , Solubilidade , Água , Modelos Teóricos , Estabilidade de Medicamentos , Varredura Diferencial de Calorimetria , Difração de Raios X
16.
Chem Pharm Bull (Tokyo) ; 72(2): 190-199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369345

RESUMO

A co-amorphous model drug was prepared by the spray-drying (SD) of probucol (PC) and atorvastatin calcium trihydrate salt (ATO) as low water solubility and co-former components, respectively. The physicochemical properties of the prepared samples were characterized by powder X-ray diffraction (PXRD) analysis, thermal analysis, Fourier transform infrared spectroscopy (FTIR), and dissolution tests. Stability tests were also conducted under a stress environment of 40 °C and 75% relative humidity. The results of PXRD measurements and thermal analysis suggested that PC and ATO form a co-amorphous system by SD. Thermal analysis also indicated an endothermic peak that followed an exotherm in amorphous PC and a physical mixture (PM) of amorphous PC and ATO; however, no endothermic peak was detected in the co-amorphous system. The dissolution profiles for PC in the co-amorphous sample composed of PC and ATO were improved compared to those for raw PC crystals or the PM. Stability tests indicated that the co-amorphous material formed by PC and ATO can be stored for 35 d without crystallization, whereas amorphous PC became crystallized within a day. Therefore, co-amorphization of PC and ATO prepared by SD is considered to be a useful method to improve the solubility of PC in water.


Assuntos
Probucol , Água , Atorvastatina , Probucol/química , Estabilidade de Medicamentos , Cristalografia por Raios X , Difração de Raios X , Água/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria
17.
Eur J Pharm Biopharm ; 196: 114202, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309539

RESUMO

The crystal structure of a new Progesterone (PROG) co-crystal with para-aminobenzoic acid (PABA) showing enhanced solution properties is reported. PROG-PABA co-crystal was first identified though an in silico coformer screening process using the CSD Co-crystal deign function, then confirmed through a solution evaporation crystallisation experiment. The resulting co-crystal was characterized using single crystal X-ray diffraction, differential scanning calorimetry and Fourier-transform infrared spectroscopy. Liquid assisted grinding was selected as a suitable scale up method compared to spray drying and antisolvent methods due to minimal starting material phases in the final product. Following scale up, aqueous solubility, stability and dissolution measurements were carried out. PROG-PABA showed increased distinct aqueous solubility and dissolution compared to PROG starting material and was shown to be stable at 75 % relative humidity for 3 months. Tablets containing co-crystal were produced then compared to the Utrogestan® soft gel capsule formulation through a dissolution experiment. PROG-PABA tablets showed a substantial increase in dissolution over the course of the experiment with over 30× the amount of PROG dissolved at the 3-hour time point. This co-crystal shows positive implications for developing an improved oral PROG formulation.


Assuntos
Ácido 4-Aminobenzoico , Progesterona , Progesterona/química , Cristalografia por Raios X , Solubilidade , Cristalização/métodos , Varredura Diferencial de Calorimetria , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
18.
PLoS One ; 19(2): e0297467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394326

RESUMO

Glipizide, a poor water-soluble drug belongs to BCS class II. The proposed work aimed to enhance the solubility of glipizide by preparing solid dispersions, using polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG). Solvent evaporation method was used for the preparation of glipizide solid dispersions. Solid dispersions were prepared in four different drug-to-polymer ratios i.e. 1:1, 1:2, 1:3 and 1:4. Mainly effect of three polymers (PVP K30, PVP K90 and PEG 6000) was evaluated on the solubility and dissolution of glipizide. The in-vitro dissolution of all prepared formulations was performed under pH 6.8 at 37°C using USP type II apparatus. In-vitro dissolution results revealed that the formulations having high concentrations of the polymer showed enhanced solubility. Enhancements in the solubility and rate of dissolution of the drug were noted in solid dispersion formulations compared to the physical blends and pure drug. Solid dispersions containing polyvinyl pyrrolidone exhibited a more favorable pattern of drug release compared to the corresponding solid dispersions with PEG. An increase in the maximum solubility of the drug within the solid dispersion systems was observed in all instances. Two solid dispersion formulations were optimized and formulated into immediate-release tablets, which passed all the pharmacopoeial and non-pharmacopoeial tests. Fourier transformed Infrared (FTIR) spectroscopy X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to indicate drug: polymer interactions in solid state. Analysis of the solid dispersion samples through characterization tests indicated the compatibility between the drug and the polymer.


Assuntos
Glipizida , Polivinil , Solubilidade , Polímeros/química , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Povidona/química , Difração de Raios X , Varredura Diferencial de Calorimetria
19.
Drug Dev Ind Pharm ; 50(4): 297-305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385210

RESUMO

OBJECTIVE: This study aimed to investigate the impact of physical solid dispersions of spray-dried glibenclamide (SG) on the surface of microcrystalline cellulose (MC) and mannitol (M) surfaces, as well as their combination with phosphatidylcholine (P), on enhancing the dissolution rate of glibenclamide (G). METHODS: Solid dispersions were prepared using varying proportions of 1:1, 1:4, and 1:10 for SG on the surface of MC (SGA) and M (SGM), and then combined with P, in a proportion of 1:4:0.02 using spray drying. The particle size, specific surface area, scanning electron microscopy (SEM), X-ray diffraction (XRD), and dissolution rate of SGA and SGM were characterized. RESULTS: SEM analysis revealed successful adhesion of SG onto the surface of the carrier surfaces. XRD showed reduced crystalline characteristic peaks for SGA, while SGM exhibited a sharp peaks pattern. Both SGA and SGM demonstrated higher dissolution rates compared to SG and G alone. Furthermore, the dissolution rates of the solid dispersions of SG, MC and P (SGAP), and SG, M, and P (SGMP) were sequentially higher than that of SGA and SGM. CONCLUSIONS: The study suggests that physical solid dispersions of SG on MC and M, along with their combination with P, can effectively enhance the dissolution rate of G. These findings may be valuable in developing of oral solid drug dosage forms utilizing SGA, SGM, SGAP, and SGMP.


Assuntos
Celulose , Glibureto , Manitol , Fosfatidilcolinas , Solubilidade , Difração de Raios X , Varredura Diferencial de Calorimetria
20.
Mol Pharm ; 21(4): 1768-1776, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381374

RESUMO

A better molecular understanding of the temperature-triggered drug release from lysolipid-based thermosensitive liposomes (LTSLs) is needed to overcome the recent setbacks in developing this important drug delivery system. Enhanced drug release was previously rationalized in terms of detergent-like effects of the lysolipid monostearyl lysophosphatidylcholine (MSPC), stabilizing local membrane defects upon LTSL lipid melting. This is highly surprising and here referred to as the 'lysolipid paradox,' because detergents usually induce the opposite effect─they cause leakage upon freezing, not melting. Here, we aim at better answers to (i) why lysolipid does not compromise drug retention upon storage of LTSLs in the gel phase, (ii) how lysolipids can enhance drug release from LTSLs upon lipid melting, and (iii) why LTSLs typically anneal after some time so that not all drug gets released. To this end, we studied the phase transitions of mixtures of dipalmitoylphosphatidylcholine (DPPC) and MSPC by a combination of differential scanning and pressure perturbation calorimetry and identified the phase structures with small- and wide-angle X-ray scattering (SAXS and WAXS). The key result is that LTSLs, which contain the standard amount of 10 mol % MSPC, are at a eutectic point when they release their cargo upon melting at about 41 °C. The eutectic present below 41 °C consists of a MSPC-depleted gel phase as well as small domains of a hydrocarbon chain interdigitated gel phase containing some 30 mol % MSPC. In these interdigitated domains, the lysolipid is stored safely without compromising membrane integrity. At the eutectic temperature, both the MSPC-depleted bilayer and interdigitated MSPC-rich domains melt at once to fluid bilayers, respectively. Intact, fluid membranes tolerate much less MSPC than interdigitated domains─where the latter have melted, the high local MSPC content causes transient pores. These pores allow for fast drug release. However, these pores disappear, and the membrane seals again as the MSPC distributes more evenly over the membrane so that its local concentration decreases below the pore-stabilizing threshold. We provide a pseudobinary phase diagram of the DPPC-MSPC system and structural and volumetric data for the interdigitated phase.


Assuntos
Bicamadas Lipídicas , Lipossomos , Lipossomos/química , Bicamadas Lipídicas/química , Espalhamento a Baixo Ângulo , Varredura Diferencial de Calorimetria , Difração de Raios X , 1,2-Dipalmitoilfosfatidilcolina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...