Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.597
Filtrar
1.
Mikrochim Acta ; 191(5): 235, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570380

RESUMO

A fast and accurate identification of Listeria monocytogenes. A new quartz crystal microbalance (QCM) aptasensor was designed for the specific and rapid detection of L. monocytogenes. Before detection of the target bacterium from samples in the QCM aptasensor, a magnetic pre-enrichment system was used to eliminate any contaminant in the samples. The prepared magnetic system was characterized using ATR-FTIR, SEM, VSM, BET, and analytical methods. The saturation magnetization values of the Fe3O4, Fe3O4@PDA, and Fe3O4@PDA@DAPEG particles were 57.2, 40.8, and 36.4 emu/g, respectively. The same aptamer was also immobilized on the QCM crystal integrated into QCM flow cell and utilized to quantitatively detect L. monocytogenes cells from the samples. It was found that a specific aptamer-magnetic pre-concentration system efficiently captured L. monocytogenes cells in a short time (approximately 10 min). The Fe3O4@PDA@DA-PEG-Apt particles provided selective isolation of L. monocytogenes from the bacteria-spiked media up to 91.8%. The immobilized aptamer content of the magnetic particles was 5834 µg/g using 500 ng Apt/mL. The QCM aptasensor showed a very high range of analytical performance to the target bacterium from 1.0 × 102 and 1.0 × 107 CFU/mL. The limit of detection (LOD) and limit of quantitation (LOQ) were 148 and 448 CFU/mL, respectively, from the feeding of the QCM aptasensor flow cell with the eluent of the magnetic pre-concentration system. The reproducibility of the aptasensor was more than 95%. The aptasensor was very specific to L. monocytogenes compared to the other Listeria species (i.e., L. ivanovii, L. innocua, and L. seeligeri) or other tested bacteria such as Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. The QCM aptasensor was regenerated with NaOH solution, and the system was reused many times.


Assuntos
Aptâmeros de Nucleotídeos , Listeria monocytogenes , Técnicas de Microbalança de Cristal de Quartzo , Reprodutibilidade dos Testes , Aptâmeros de Nucleotídeos/química , Escherichia coli , Fenômenos Magnéticos
2.
Biointerphases ; 19(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416603

RESUMO

Applications of quartz crystal microbalance with dissipation to studying soft and biological interfaces are reviewed. The focus is primarily on data analysis through viscoelastic modeling and a model-free approach focusing on the acoustic ratio. Current challenges and future research and development directions are discussed.


Assuntos
Acústica , Técnicas de Microbalança de Cristal de Quartzo
3.
Anal Methods ; 16(8): 1215-1224, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38314668

RESUMO

Nivalenol as a mycotoxin pesticide is toxic to humans and animals and causes major health problems including hemorrhage, anemia, and vomiting. Thus, the need for fast and reliable analytical systems in terms of the management of health risks resulting from nivalenol exposure has increased in recent years. The aim of this study involved a novel molecularly imprinted quartz crystal microbalance sensor preparation based on sulphur-incorporating cobalt ferrite for nivalenol detection in rice samples. For this aim, cobalt ferrite and sulfur incorporated cobalt ferrite were successfully synthesized by sol-gel and calcination methods, respectively. Then, nivalenol imprinted quartz crystal microbalance chips based on cobalt ferrite and sulfur incorporated cobalt ferrite were prepared by an ultraviolet polymerization technique including N,N'-azobisisobutyronitrile as the initiator, ethylene glycol dimethacrylate as the cross-linker, methacryloylamidoglutamic acid as the monomer, and nivalenol as the analyte. After some spectroscopic, electrochemical and microscopic characterization studies, the developed sensor was applied to rice grain samples for the determination of nivalenol. The linearity of the prepared sensor was observed to be 1.0-10.0 ng L-1 and the limit of quantification and detection limit were found to be 1.0 and 0.33 ng L-1, respectively. Finally, the high selectivity, repeatability, and stability of the prepared sensor based on sulphur-incorporating cobalt ferrite and a molecularly imprinted polymer can ensure safe food consumption worldwide.


Assuntos
Cobalto , Compostos Férricos , Impressão Molecular , Oryza , Tricotecenos , Humanos , Animais , Técnicas de Microbalança de Cristal de Quartzo/métodos , Impressão Molecular/métodos , Limite de Detecção , Polímeros/química , Enxofre
4.
J Colloid Interface Sci ; 661: 588-597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308897

RESUMO

Interactions between nanoparticles and the mucus layer are crucial to understand the behaviours in biological environments and design drug delivery systems. In this study, we developed a kinetic deposition model for the dynamic mucin-nanoparticle interactions using quartz crystal microbalance with dissipation (QCM-D). We investigated the effects of the physiochemical properties of several nanoparticles (including size, charge, and shape) and the physiological conditions on the mucin-nanoparticle interaction. Interestingly, layered double hydroxide (LDH) nanoparticles showed stronger interactions with the mucus layer compared to other types of nanoparticles due to their unique plate-like morphology. In specific for sheet-like LDH nanoparticles, our model found that their equilibrium adsorption capacity (Qe) followed the Langmuir adsorption isotherm, and the adsorption rate (k1) increased proportionally with the nanoparticle concentration. In addition, the particle size and thickness affected Qe and the surface coverage. Furthermore, bovine serum albumin (BSA) coating dramatically increased k1 of LDH nanoparticles. We proposed a novel mechanism to elucidate mucin-nanoparticle interactions, shedding light on the synergistic roles of drag force (Fd), repulsive force (Fr), and adsorptive force (Fa). These findings offer valuable insights into the complex mucin-nanoparticle interactions and provide guidance for the design of drug delivery systems.


Assuntos
Mucinas , Nanopartículas , Adsorção , Tamanho da Partícula , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície , Soroalbumina Bovina/química
5.
Biomed Microdevices ; 26(1): 11, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236465

RESUMO

Quartz crystal microbalance (QCM) is a versatile sensing platform that has gained increasing attention for its use in bioapplications due to its high sensitivity, real-time measurement capabilities, and label-free detection. This article presents a portable QCM system for liquid biosensing that uses a modified Hartley oscillator to drive 14 mm-diameter commercial QCM sensors. The system is designed to be low-cost, easy to use, and highly sensitive, making it ideal for various bioapplications. A new flow cell design to deliver samples to the surface of the sensor has been designed, fabricated, and tested. For portability and miniaturization purposes, a micropump-based pumping system is used in the current system. The system has a built-in temperature controller allowing for accurate frequency measurements. In addition, the system can be used in benchtop mode. The capability of the present system to be used in liquid biosensing is demonstrated through an experimental test for sensitivity to changes in the viscosity of glycerol samples. It was found to have a sensitivity of 263.51 Hz/mPa.s using a 10 MHz QCM sensor. Future work regarding potential applications was suggested.


Assuntos
Glicerol , Técnicas de Microbalança de Cristal de Quartzo , Temperatura , Viscosidade
6.
Anal Methods ; 16(4): 599-607, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38197200

RESUMO

Glycated hemoglobin (HbA1c) has been an important biomarker for long-term diagnosis and monitoring of diabetes mellitus. The development of a rapid, reliable, and less sophisticated device to measure HbA1c is imperative to facilitate efficient early-care diabetes management. To date, no existing aptamer-based biosensor (aptasensor) for detecting HbA1c has been developed using a quartz crystal microbalance (QCM). In this study, the aptamer specific to HbA1c as a novel biosensing receptor was covalently functionalized onto a QCM substrate via mixed self-assembled monolayers (SAMs). A portable QCM equipped with a liquid-flow module was used to investigate the biospecificity, sensitivity, and interaction dynamics of the aptamer functionalized surfaces. The real-time kinetic analysis of HbA1c binding to the surface-functionalized aptamers revealed "on" and "off" binding rates of 4.19 × 104 M-1 s-1 and 2.43 × 10-3 s-1, respectively. These kinetic parameters imply that the QCM-based aptasensor specifically recognizes HbA1c with an equilibrium dissociation constant as low as 57.99 nM. The linear detection of HbA1c spanned from 13 to 108 nM, with a limit of detection (LOD) of 26.29 nM. Moreover, the spiked plasma sample analysis offered compelling evidence that this aptasensor is a promising technique for developing a point-of-care device for diabetes mellitus.


Assuntos
Aptâmeros de Nucleotídeos , Diabetes Mellitus , Humanos , Hemoglobinas Glicadas , Técnicas de Microbalança de Cristal de Quartzo/métodos , Cinética , Aptâmeros de Nucleotídeos/química , Diabetes Mellitus/diagnóstico
7.
Biochim Biophys Acta Proteins Proteom ; 1872(3): 140987, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128808

RESUMO

A biomembrane-related fibrillogenesis of Amyloid ß from Alzheimer' disease (Aß) is closely related to its accumulation behavior. A binding property of Aß peptides from Alzheimer' disease to lipid membranes was then classified by a quartz crystal microbalance (QCM) method combined with an immobilization technique using thiol self-assembled membrane. The accumulated amounts of Aß, Δfmax, was determined from the measurement of the maximal frequency reduction using QCM. The plots of Δfmax to Aß concentration gave the slope and saturated value of Δfmax, (Δfmax)sat that are the parameters for binding property of Aß to lipid membranes. Therefore, the Aß-binding property on lipid membranes was classified by the slope and (Δfmax)sat. The plural lipid system was described as X + Y where X = L1, L1/L2, and L1/L2/L3. The slope and (Δfmax)sat values plotted as a function of mixing ratio of Y to X was classified on a basis of the lever principle (LP). The LP violation observed in both parameters resulted from the formation of the crevice or pothole, as Aß-specific binding site, generated at the boundary between ld and lo phases. The LP violation observed only in the slope resulted from glycolipid-rich domain acting as Aß-specific binding site. Furthermore, lipid planar membranes indicating strong LP violation favored strong fibrillogenesis. Especially, lipid planar membranes indicating the LP violation only in the slope induced lateral aggregated and spherulitic fibrillar aggregates. Thus, the classification of Aß binding property on lipid membranes appeared to be related to the fibrillogenesis with a certain morphology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Doença de Alzheimer/metabolismo , Técnicas de Microbalança de Cristal de Quartzo , Sítios de Ligação , Lipídeos
8.
Int J Biol Macromol ; 257(Pt 2): 128710, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101660

RESUMO

α-Amylase activity differs between individuals and is influenced by dietary behavior and salivary constituents, but limited information is available on the relationship between α-amylase activity and saliva components. This study investigated the impact of salivary proteins on α-amylase activity, their various correlations, the effect of mucin (MUC5B and MUC7) and lactoferrin on the enzymatic kinetics of α-amylase, and the mechanisms of these interactions using the quartz crystal microbalance with dissipation (QCM-D) technique and molecular docking. The results showed that α-amylase activity was significantly correlated with the concentrations of MUC5B (R2 = 0.42, p < 0.05), MUC7 (R2 = 0.35, p < 0.05), and lactoferrin (R2 = 0.35, p < 0.05). An in vitro study demonstrated that α-amylase activity could be significantly increased by mucins and lactoferrin by decreasing the Michaelis constant (Km) of α-amylase. Moreover, the results from the QCM-D and molecule docking suggested that mucin and lactoferrin could interact with α-amylase to form stable α-amylase-mucin and α-amylase-lactoferrin complexes through hydrophobic interactions, electrostatic interactions, Van der Waals forces, and hydrogen bonds. In conclusion, these findings indicated that the salivary α-amylase activity depended not only on the α-amylase content, but also could be enhanced by the interactions of mucin/lactoferrin with α-amylase.


Assuntos
Mucinas , Saliva , Humanos , Mucinas/química , Saliva/química , Lactoferrina/metabolismo , Simulação de Acoplamento Molecular , Técnicas de Microbalança de Cristal de Quartzo , alfa-Amilases/metabolismo
9.
ACS Sens ; 8(12): 4607-4614, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38051524

RESUMO

Film-based fluorescence sensors have been demonstrated to be powerful tools for real-time detection of trace chemical vapors. While explosive vapor detection via fluorescence quenching has been widely explored, fluorescence-based real-time detection and identification of illicit drug vapors remains a challenge. Here, we report two perylene diimide-based sensing materials, P1 and P2, incorporating 2,2-dihexyloctanyl chains and 4-[tris(4-{tert-butyl}phenyl)methyl]phenyl moieties at the imide positions, respectively. Quartz crystal microbalance with in situ photoluminescence measurements showed that N-methylphenethylamine, a simulant of methamphetamine (MA), diffused into films of P1 and P2 via Fickian and case-II mechanisms, respectively. The difference in the analyte diffusion mechanism led to P2 showing significantly faster luminescence quenching but slower luminescence recovery compared to P1. Finally, the different diffusion mechanisms were used as the basis for developing a simple sensor array based on P1 and P2 that could selectively detect free-base illicit drugs (MA, cocaine, and tetrahydrocannabinol) from potential interferants (organic amines, alcohol, and cosmetics) within 40 s.


Assuntos
Substâncias Explosivas , Drogas Ilícitas , Técnicas de Microbalança de Cristal de Quartzo
10.
Langmuir ; 39(49): 17770-17781, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039387

RESUMO

Applications of nanoparticles (NPs) in nanodrugs, food additives, and cosmetics can result in the presence of nanomaterials in the human circulatory system and their attachment to red blood cells (RBCs), which may lead to cytotoxic effects. To investigate the interactions of NPs with RBC membranes (RBCm), supported erythrocyte membranes (SRBCm) were developed on piezoelectric sensors in a quartz crystal microbalance with dissipation (QCM-D) at 25 °C. A well-dispersed RBCm suspension at 1 mM NaCl and 0.2 mM NaHCO3 was obtained from whole blood and comprised colloidal membrane fragments with the average hydrodynamic diameter and zeta potential of 390 nm and -0.53 mV, respectively, at pH 7.0. The thin and rigid SRBCm was formed mainly through the deposition of RBCm fragments on the poly-l-lysine-modified crystal sensor, leading to the average frequency shift of -26.2 Hz and the low ratio of the dissipation to frequency shift (7.2 × 10-8 Hz-1). The complete coverage of SRBCm was indicated by the plateau of the frequency shift in the stage of SRBCm formation and no deposition of negatively charged 106 nm polystyrene nanoparticles (PSNPs) on the SRBCm. Atomic force microscopy and immunofluorescence microscopy images showed that RBCm aggregates with the average size of 420 nm and erythrocyte membrane proteins existed on SRBCm, respectively. The methods of determining attachment efficiencies of model positively charged NPs (i.e., hematite NPs or HemNPs) and model negatively charged NPs (i.e., PSNPs) on SRBCm were demonstrated in 1 mM NaCl solution at pH 5.1 and pH 7.0, respectively. HemNPs exhibited a favorable deposition with an attachment efficiency of 0.99 while PSNPs did not show any attachment propensity toward SRBCm.


Assuntos
Nanopartículas , Nanoestruturas , Humanos , Cloreto de Sódio , Nanopartículas/química , Membrana Eritrocítica , Técnicas de Microbalança de Cristal de Quartzo
11.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069027

RESUMO

Rapid and accurate serological analysis of SARS-CoV-2 antibodies is important for assessing immune protection from vaccination or infection of individuals and for projecting virus spread within a population. The quartz crystal microbalance (QCM) is a label-free flow-based sensor platform that offers an opportunity to detect the binding of a fluid-phase ligand to an immobilized target molecule in real time. A QCM-based assay was developed for the detection of SARS-CoV-2 antibody binding and evaluated for assay reproducibility. The assay was cross-compared to the Roche electrochemiluminescence assay (ECLIA) Elecsys® Anti-SARS-CoV-2 serology test kit and YHLO's chemiluminescence immunoassay (CLIA). The day-to-day reproducibility of the assay had a correlation of r2 = 0.99, p < 0.001. The assay linearity was r2 = 0.96, p < 0.001, for dilution in both serum and buffer. In the cross-comparison analysis of 119 human serum samples, 59 were positive in the Roche, 52 in the YHLO, and 48 in the QCM immunoassay. Despite differences in the detection method and antigen used for antibody capture, there was good coherence between the assays, 80-100% for positive and 96-100% for negative test results. In summation, the QCM-based SARS-CoV-2 IgG immunoassay showed high reproducibility and linearity, along with good coherence with the ELISA-based assays. Still, factors including antibody titer and antigen-binding affinity may differentially affect the various assays' responses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Técnicas de Microbalança de Cristal de Quartzo , Reprodutibilidade dos Testes , Imunoensaio/métodos , Anticorpos Antivirais , Sensibilidade e Especificidade
12.
Sci Rep ; 13(1): 21851, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071203

RESUMO

The procedures currently used for hepatitis B (HB) detection are not suitable for screening, clinical diagnosis, and point-of-care testing (POCT). Therefore, we developed and tested a QCM-based immunosensor by surface modification with AuNP-PEIs to amplify the signal and provide an oriented-immobilization surface. The AuNP-PEIs were characterized by ICP-Mass, UV/Vis, DLS, FE-SEM, and ATR-FTIR. After coating AuNP-PEIs on the gold electrode surface, anti-HBsAg antibodies were immobilized using NHS/EDC chemistry based on response surface methodology (RSM) optimization. The efficiency of the immunosensor was assessed by human sera and data were compared to gold-standard ELISA using receiver-operating-characteristic (ROC) analysis. FE-SEM, AFM, EDS, and EDS mapping confirmed AuNP-PEIs are homogeneously distributed on the surface with a high density and purity. After antibody immobilization, the immunosensor exhibited good recognition of HBsAg with a calibration curve of ∆F = - 6.910e-7x + 10(R2 = 0.9905), a LOD of 1.49 ng/mL, and a LOQ of 4.52 ng/mL. The immunosensor yielded reliable and accurate results with a specificity of 100% (95% CI 47.8-100.0) and sensitivity of 100% (95% CI 96.2-100.0). In conclusion, the fabricated immunosensor has the potential as an analytic tool with high sensitivity and specificity. However, further investigations are needed to convert it to a tiny lab-on-chip for HB diagnosis in clinical samples.


Assuntos
Técnicas Biossensoriais , Hepatite B , Nanopartículas Metálicas , Humanos , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Polietilenoimina , Ouro , Técnicas de Microbalança de Cristal de Quartzo/métodos , Imunoensaio/métodos , Hepatite B/diagnóstico , Limite de Detecção
13.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139667

RESUMO

A gas sensor array was developed and evaluated using four high-frequency quartz crystal microbalance devices (with a 30 MHz resonant frequency in fundamental mode). The QCM devices were coated with ethyl cellulose (EC), polymethylmethacrylate (PMMA), Apiezon L (ApL), and Apiezon T (ApT) sensing films, and deposited by the ultrasonic atomization method. The objective of this research was to propose a non-invasive technique for acetone biomarker detection, which is associated with diabetes mellitus disease. The gas sensor array was exposed to methanol, ethanol, isopropanol, and acetone biomarkers in four different concentrations, corresponding to 1, 5, 10, and 15 µL, at temperature of 22 °C and relative humidity of 20%. These samples were used because human breath contains them and they are used for disease detection. Moreover, the gas sensor responses were analyzed using principal component analysis and discriminant analysis, achieving the classification of the acetone biomarker with a 100% membership percentage when its concentration varies from 327 to 4908 ppm, and its identification from methanol, ethanol, and isopropanol.


Assuntos
Diabetes Mellitus , Técnicas de Microbalança de Cristal de Quartzo , Humanos , Acetona/análise , 2-Propanol , Metanol , Biomarcadores , Etanol , Quartzo/química , Diabetes Mellitus/diagnóstico
14.
Anal Chem ; 95(45): 16481-16488, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37910865

RESUMO

Understanding the interactions between cancer cells and smart substrates is of great benefit to physiology and pathology. Herein, we successfully fabricated two phenylboronic acid (PBA)-functionalized films with different surface topographies using a PBA homopolymer (PBAH) and self-assembled nanoparticles (PBAS) via a layer-by-layer assembly technique. We used a quartz crystal microbalance with dissipation (QCM-D) to monitor the entire cell adhesion process and figured out the adhesion kinetics of HepG2 cells on the two PBA-functionalized films. As seen from the QCM-D data, the HepG2 cells displayed distinctly different adhesion behaviors on the two PBA-functionalized films (PBAS and PBAH films). The results showed that the PBAS film promoted cell adhesion and cell spreading owing to its specific physicochemical properties. Likewise, the slope changes in the D-f plots clearly revealed the evolution of the cell adhesion process, which could be classified into three stages during cell adhesion on the PBA-functionalized films. In addition, compared with the PBAH film, the PBAS film could also control cell detachment behavior in the presence of glucose based on the molecular recognition between the PBA group and the cell membrane. Such a glucose-responsive PBAS film is promising for biological applications, including cell-based diagnostics and tissue engineering. In addition, the QCM-D proved to be a useful tool for in situ and real-time monitoring and analysis of interactions between cells and surfaces of supporting substrates.


Assuntos
Neoplasias , Técnicas de Microbalança de Cristal de Quartzo , Glucose , Ácidos Borônicos/química , Fenômenos Físicos , Quartzo , Adesão Celular
15.
ACS Sens ; 8(11): 4031-4041, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37943682

RESUMO

The occurrence and development of diseases are closely related to overexpression of specific biomarkers in the serum of patients. Rapid and sensitive biomarker detection is beneficial for early diagnosis and treatment. However, the current laboratory processes and assays for biomarker detection are expensive and time-consuming, and their operation also requires a large number of professionals. We developed a magnetically modulated differential quartz crystal microbalance (MMD-QCM) method combined with magnetic bead (MB) labels for rapid and highly sensitive quantitative detection of prostate-specific antigen (PSA). Because MBs exhibit magnetized rotation motion under an applied AC magnetic field, a pair of QCMs are utilized to measure the difference between the magnetic motion intensities of the MBs and the MB-PSA immune complex to determine the PSA concentration. Experimental results demonstrate that the proposed method can be adopted to determine the PSA concentration in a wide range of 0.01-1000 ng/mL as well as exhibit a low detection limit of 0.065 ng/mL. In addition, the proposed scheme enables fast detection and low sample consumption. The single detection process takes less than 4 h and requires only 113 µL of sample solution. The proposed detection strategy is superior to the existing detection method and can be effectively used in early screening and prognostic diagnosis of cancer and other related diseases owing to its simplicity, low cost, and high speed.


Assuntos
Antígeno Prostático Específico , Técnicas de Microbalança de Cristal de Quartzo , Masculino , Humanos , Técnicas de Microbalança de Cristal de Quartzo/métodos , Próstata , Biomarcadores , Fenômenos Magnéticos
16.
Langmuir ; 39(46): 16522-16531, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37930305

RESUMO

In this study, cationic poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride) (PMTAC) brush surfaces were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP), and their properties were systematically investigated to discuss the factors affecting their bactericidal properties and interactions with proteins. Model equations for the analysis of electrophoretic behaviors were considered for accurate parameter estimation to indicate the charge density at the interface. The zeta potential dependency of the PMTAC brushes was successfully analyzed using Smolchowski's equation and the Gouy-Chapman model, which describes the diffusive electric double layer. The analysis of the quartz crystal microbalance with dissipation (QCM-D) indicated that the electrostatic interaction promoted protein adsorption, with a large quantity of a negatively charged protein, bovine serum albumin (BSA), being adsorbed. The bactericidal efficiency of the high-graft-density polymer brush (0.45 chains nm-2) was higher than that of the low-graft-density polymer brush (0.06 chains nm-2). To investigate the mechanism of this phenomenon, we applied the dissipation change (ΔD) of QCM-D analysis. The BSA was likewise adsorbed when the brush structure was changed; however, the negative ΔD indicated that the BSA-adsorbed, high-graft-density PMTAC brush became a rigid state. In the bacteria culture media, the behaviors were the same as BSA adsorption, and the high-graft-density polymer brush was also estimated to be more rigid than the low-graft-density polymer brush. Moreover, for S. aureus adhesion after incubating in TSB, a small slope of ΔD/ΔF plots considered initial adsorption of bacteria on the high-graft-density polymer brush strongly interacted compared to that of the low-graft-density polymer brush. The scattered value of the slope of ΔD/ΔF on the high-graft-density polymer brush was considered to be due to the dead bacteria between the bacteria and the polymer brush interface. These investigations for a well-defined cationic polymer brush will contribute to the design of antibacterial surfaces.


Assuntos
Polímeros , Técnicas de Microbalança de Cristal de Quartzo , Polímeros/química , Staphylococcus aureus , Propriedades de Superfície , Soroalbumina Bovina/química , Adsorção
17.
Colloids Surf B Biointerfaces ; 230: 113514, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37598610

RESUMO

Microalgal cell adhesion and biofilm formation are affected by interactions between microalgae strains and membrane materials. Variations of surface properties of microalgae and membrane materials are expected to affect cell-membranes and cell-cell interactions and thus initial microalgal cell adhesion and biofilm formation rates. Hence, it should be possible to identify the dominant mechanisms controlling microalgal cell adhesion and biofilm formation. The effects of surface properties of three different microalgal strains and three different types of membrane materials on microalgal cell adhesion and biofilm formation were systematically investigated in real time by monitoring changes in the oscillation frequency and dissipation of the quartz crystal resonator (QCM-D). The results revealed that in general a higher surface free energy, more negative zeta potential, and higher surface roughness of membrane materials positively correlated with a larger quantity of microalgae cell deposition, while a more hydrophilic microalgae with a larger negative zeta potential preferred to attach to a more hydrophobic membrane material. The adhered microalgal layers exhibited viscoelastic properties. The relative importance of these mechanisms in controlling microalgae cell attachment and biofilm formation might vary, depending on the properties of specific microalgae species and hydrophobic membrane materials used.


Assuntos
Microalgas , Adesão Celular , Técnicas de Microbalança de Cristal de Quartzo , Membranas , Membrana Celular
18.
J Pharm Sci ; 112(12): 3154-3163, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37597752

RESUMO

As a growing number of protein drug products are developed, formulation characterization is becoming important. An IgG drug product is tested at concentrations from 0.0001-0.1 mg/mL for adsorption behavior to polymer surfaces polyvinyl chloride (PVC) and polypropylene (PP) upon dilution in normal saline (NS) using quartz crystal microbalance with dissipation (QCM-D). The studies mimicked IgG antibody interaction during IV administration with polymeric surfaces within syringes, lines, and bags. Drug product was characterized with excipients, with focus on surfactant. Drug solutions were run over polymer-coated sensors to measure the adsorption behavior of the formulation with emphasis on the behavior of each of the formulation's components. Over 60 sensorgram data sets were correlated with assayed protein solution concentrations in mock NS-diluted infusions of drug product in the equivalent concentrations to QCM experiments to build a preliminary predictive model for determining fraction of drug and surfactant adsorbed and lost at the hydrophobic surface during administration. These results create a method for reliably and predictively estimating drug product adsorption behavior and protein drug dose loss on polymers at different protein drug concentrations.


Assuntos
Proteínas , Técnicas de Microbalança de Cristal de Quartzo , Preparações Farmacêuticas , Proteínas/química , Polímeros/química , Tensoativos , Adsorção , Propriedades de Superfície
19.
Langmuir ; 39(32): 11213-11223, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526362

RESUMO

Plasma polymerized pyrrole/iodine (PPPy/I) microparticles and bovine serum albumin (BSA) protein have shown interesting results in experimental models for the treatment of traumatic spinal cord injury. By studying the interaction between BSA and PPPy/I by a quartz crystal microbalance (QCM) and docking, we obtained important results to elucidate possible cellular interactions and promote the use of these polymers as biomaterials. These measurements were also used to characterize the adsorption process using an equilibrium constant. In addition, atomic force microscopy (AFM) was used to obtain images of the QCM surface sensors before and after BSA adsorption. Furthermore, we carried out molecular dynamics simulations and molecular docking to characterize the molecular recognition between BSA and the previously reported PPPy/I structure. For this study, we used two combinatorial models that have not been tested. Thus, we could determine the electrostatic (ΔGele) and nonelectrostatic (ΔGnonelec) components of the free binding energy (ΔGb). We demonstrated that BSA is adsorbed on PPPy/I with an adsorption constant of K = 24.35 µ-1 indicating high affinity. This observation combined with molecular docking and binding free energy calculations showed that the interaction between BSA and both combinatorial models of the PPPy structure is spontaneous.


Assuntos
Materiais Biocompatíveis , Soroalbumina Bovina , Soroalbumina Bovina/química , Materiais Biocompatíveis/farmacologia , Simulação de Acoplamento Molecular , Técnicas de Microbalança de Cristal de Quartzo , Pirróis/química , Adsorção , Propriedades de Superfície
20.
Sensors (Basel) ; 23(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37420848

RESUMO

Suspended particulate matter (PMx) is one of the most important environmental pollutants. Miniaturized sensors capable of measuring and analyzing PMx are crucial in environmental research fields. The quartz crystal microbalance (QCM) is one of the most well-known sensors that could be used to monitor PMx. In general, in environmental pollution science, PMx is divided into two main categories correlated to particle diameter (e.g., PM < 2.5 µm and PM < 10 µm). QCM-based systems are capable of measuring this range of particles, but there is an important issue that limits the application. In fact, if particles with different diameters are collected on QCM electrodes, the response will be a result of the total mass of particles; there are no simple methods to discriminate the mass of the two categories without the use of a filter or manipulation during sampling. The QCM response depends on particle dimensions, fundamental resonant frequency, the amplitude of oscillation, and system dissipation properties. In this paper, we study the effects of oscillation amplitude variations and fundamental frequency (10, 5, and 2.5 MHz) values on the response, when particle matter with different sizes (2 µm and 10 µm) is deposited on the electrodes. The results showed that the 10 MHz QCM was not capable of detecting the 10 µm particles, and its response was not influenced by oscillation amplitude. On the other hand, the 2.5 MHz QCM detected the diameters of both particles, but only if a low amplitude value was used.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Quartzo , Microesferas , Quartzo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...