Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.335
Filtrar
1.
Front Immunol ; 15: 1360237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576617

RESUMO

Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αßT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos T , Imunoterapia , Imunoterapia Adotiva , Engenharia Celular , Neoplasias/terapia
2.
J Mater Chem B ; 12(14): 3356-3375, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38505950

RESUMO

Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.


Assuntos
Terapia Genética , Imunoterapia Adotiva , Imunoterapia Adotiva/métodos , Técnicas de Transferência de Genes , Imunoterapia/métodos , Engenharia Celular
3.
Methods Mol Biol ; 2774: 31-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441756

RESUMO

Protein interactions play a crucial role in a variety of biological processes. Therefore, regulation of these interactions has received considerable attention in terms of synthetic biology tool development. Of those, a toolbox of small peptides known as coiled coils (CCs) represents a unique effective tool for mediating protein-protein interactions because their binding specificity and affinity can be designed and controlled. CC peptides have been used as a building module for designing synthetic regulatory circuits in mammalian cells, construction of fast response to a signal, amplification of the response, and localization and regulation of function of diverse proteins. In this chapter, we describe a designed set of CCs used for mammalian cell engineering and provide a protocol for the construction of CC-mediated logic circuits in mammalian cells. Ultimately, these tools could be used for diverse biotechnological and therapeutic applications.


Assuntos
Biotecnologia , Engenharia Celular , Animais , Domínios Proteicos , Biologia Sintética , Peptídeos , Mamíferos
4.
ACS Appl Mater Interfaces ; 16(13): 15893-15906, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512725

RESUMO

Polymer-mediated cell surface engineering can be a powerful tool to modify the cell's biological behavior, but a simple ligation strategy must be identified. This manuscript assessed the use of transglutamination as a versatile and adaptable approach for cell surface engineering in various cellular models relevant to biomedical applications. This enzymatic approach was evaluated for its feasibility and potential for conjugating polymers to diverse cell surfaces and its biological effects. Transglutaminase-mediated ligation was successfully performed at temperatures ranging from 4 to 37 °C in as quickly as 30 min, while maintaining biocompatibility and preserving cell viability. This approach was successfully applied to nine different cell surfaces (including adherent cells and suspension cells) by optimizing the enzyme source (guinea pig liver vs microbial), buffer compositions, and incubation conditions. Finally, polymer-mediated cell surface engineering using transglutaminase exhibited immunocamouflage abilities for endothelial cells, T cells, and red blood cells by preventing the recognition of cell surface proteins by antibodies. Employing transglutaminase in polymer-mediated cell surface engineering is a promising approach to maximize its application in cell therapy and other biomedical applications.


Assuntos
Polímeros , Transglutaminases , Animais , Cobaias , Polímeros/metabolismo , Transglutaminases/metabolismo , Células Endoteliais/metabolismo , Membrana Celular/metabolismo , Engenharia Celular
6.
ACS Appl Bio Mater ; 7(3): 1801-1809, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38416780

RESUMO

Bacterial nanocellulose (BNC) is an attractive green-synthesized biomaterial for biomedical applications and various other applications. However, effective engineering of BNC production has been limited by our poor knowledge of the related metabolic processes. In contrast to the traditional perception that genome critically determines biosynthesis behaviors, here we discover that the glucose metabolism could also drastically affect the BNC synthesis in Gluconacetobacter hansenii. The transcriptomic profiles of two model BNC-producing strains, G. hansenii ATCC 53582 and ATCC 23769, which have highly similar genomes but drastically different BNC yields, were compared. The results show that their BNC synthesis capacities were highly related to metabolic activities such as ATP synthesis, ion transport protein assembly, and carbohydrate metabolic processes, confirming an important role of metabolism-related transcriptomes in governing the BNC yield. Our findings provide insights into the microbial biosynthesis behaviors from a transcriptome perspective, potentially guiding cellular engineering for biomaterial synthesis.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Transcriptoma/genética , Materiais Biocompatíveis , Engenharia Celular , Transporte de Íons
7.
Metab Eng ; 82: 89-99, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325641

RESUMO

Precise control over mammalian cell growth dynamics poses a major challenge in biopharmaceutical manufacturing. Here, we present a multi-level cell engineering strategy for the tunable regulation of growth phases in mammalian cells. Initially, we engineered mammalian death phase by employing CRISPR/Cas9 to knockout pro-apoptotic proteins Bax and Bak, resulting in a substantial attenuation of apoptosis by improving cell viability and extending culture lifespan. The second phase introduced a growth acceleration system, akin to a "gas pedal", based on an abscidic acid inducible system regulating cMYC gene expression, enabling rapid cell density increase and cell cycle control. The third phase focused on a stationary phase inducing system, comparable to a "brake pedal". A tetracycline inducible genetic circuit based on BLIMP1 gene led to cell growth cessation and arrested cell cycle upon activation. Finally, we developed a dual controllable system, combining the "gas and brake pedals", enabling for dynamic and precise orchestration of mammalian cell growth dynamics. This work exemplifies the application of synthetic biology tools and combinatorial cell engineering, offering a sophisticated framework for manipulating mammalian cell growth and providing a unique paradigm for reprogramming cell behaviour for enhancing biopharmaceutical manufacturing and further biomedical applications.


Assuntos
Produtos Biológicos , Redes Reguladoras de Genes , Divisão Celular , Sistemas CRISPR-Cas , Engenharia Genética/métodos , Engenharia Celular
8.
J Biosci Bioeng ; 137(4): 245-253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336581

RESUMO

In the practical scale of cyanobacterial cultivation, the golden algae Poterioochromonas malhamensis is a well-known predator that causes devastating damage to the culture, referred to as pond crash. The establishment and maintenance of monoculture conditions are ideal for large-scale cultures. However, this is a difficult challenge because microbial contamination is unavoidable in practical-scale culture facilities. In the present study, we unexpectedly observed the pond crash phenomenon during the pilot-scale cultivation of Synechococcus elongatus PCC 7942 using a 100-L photobioreactor. This was due to the contamination with P. malhamensis, which probably originated from residual fouling. Interestingly, we found that S.elongatus PCC 7942 can alter its morphological structure when subjected to continuous grazing pressure from predators, resulting in cells that were more than 100 times longer than those of the wild-type strain. These hyper-elongated S.elongatus PCC 7942 cells had mutations in the genes encoding FtsZ or Ftn2 which are involved in bacterial cell division. Importantly, the elongated phenotype remained stable during cultivation, enabling S.elongatus PCC 7942 to thrive and resist grazing. The cultivation of the elongated S.elongatus PCC 7942 mutant strain in a 100-L pilot-scale photobioreactor under non-sterile conditions resulted in increased cyanobacterial biomass without encountering pond crash. This study demonstrates an efficient strategy for cyanobacterial cell culture in practical-scale bioreactors without the need for extensive decontamination or sterilization of the growth medium and culture facility, which can contribute to economically viable cultivation and bioprocessing of microalgae.


Assuntos
Synechococcus , Synechococcus/genética , Engenharia Celular , Mutação
9.
Lab Chip ; 24(6): 1782-1793, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38358122

RESUMO

Non-invasive droplet manipulation with no physical damage to the sample is important for the practical value of manipulation tools in multidisciplinary applications from biochemical analysis and diagnostics to cell engineering. It is a challenge to achieve this for most existing photothermal, electric stimuli, and magnetic field-based technologies. Herein, we present a droplet handling toolbox, the ferrofluid transporter, for non-invasive droplet manipulation in an oil environment. It involves the transport of droplets with high robustness and efficiency owing to low interfacial friction. This capability caters to various scenarios including droplets with varying components and solid cargo. Moreover, we fabricated a droplet array by transporter positioning and achieved droplet gating and sorting for complex manipulation in the droplet array. Benefiting from the ease of scale-up and high biocompatibility, the transporter-based droplet array can serve as a digital microfluidic platform for on-chip droplet-based bioanalysis, cell spheroid culture, and downstream drug screening tests.


Assuntos
Coloides , Microfluídica , Engenharia Celular , Técnicas de Cultura de Células
10.
Adv Drug Deliv Rev ; 208: 115215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401848

RESUMO

Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.


Assuntos
Neoplasias , Linfócitos T , Humanos , RNA/metabolismo , Imunoterapia Adotiva/métodos , Neoplasias/patologia , Engenharia Celular/métodos
11.
Adv Mater ; 36(16): e2308155, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295870

RESUMO

Following the success of the dendritic cell (DC) vaccine, the cell-based tumor vaccine shows its promise as a vaccination strategy. Except for DC cells, targeting other immune cells, especially myeloid cells, is expected to address currently unmet clinical needs (e.g., tumor types, safety issues such as cytokine storms, and therapeutic benefits). Here, it is shown that an in situ injected macroporous myeloid cell adoptive scaffold (MAS) not only actively delivers antigens (Ags) that are triggered by scaffold-infiltrating cell surface thiol groups but also releases granulocyte-macrophage colony-stimulating factor and other adjuvant combos. Consequently, this promotes cell differentiation, activation, and migration from the produced monocyte and DC vaccines (MASVax) to stimulate antitumor T-cell immunity. Neoantigen-based MASVax combined with immune checkpoint blockade induces rejection of established tumors and long-term immune protection. The combined depletion of immunosuppressive myeloid cells further enhances the efficacy of MASVax, indicating the potential of myeloid cell-based therapies for immune enhancement and normalization treatment of cancer.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Vacinação , Engenharia Celular , Células Mieloides , Células Dendríticas
12.
Trends Biotechnol ; 42(2): 241-252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37743158

RESUMO

An emerging cellular engineering method creates synthetic polymer matrices inside cells. By contrast with classical genetic, enzymatic, or radioactive techniques, this materials-based approach introduces non-natural polymers inside cells, thus modifying cellular states and functionalities. Here, we cover various materials and chemistries that have been exploited to create intracellular polymer matrices. In addition, we discuss emergent cellular properties due to the intracellular polymerization, including nonreplicating but active metabolism, maintenance of membrane integrity, and resistance to environmental stressors. We also discuss past work and future opportunities for developing and applying synthetic cells that contain intracellular polymers. The materials-based approach will usher in new applications of synthetic cells for broad biotechnological applications.


Assuntos
Biotecnologia , Polímeros , Polimerização , Engenharia Celular , Materiais Biocompatíveis
13.
Protein Cell ; 15(3): 207-222, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37758041

RESUMO

Non-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey. Here, we report a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. We also found expression of signaling pathways components that may increase the potential for chimera formation. Crucially for biomedical applications, we were also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro. The engineered cells retained embryonic and extra-embryonic developmental potential. Meanwhile, we generated a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals. Our study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.


Assuntos
Células-Tronco Pluripotentes , Primatas , Animais , Macaca fascicularis , Engenharia Celular , Desenvolvimento Embrionário
14.
J Control Release ; 365: 981-1003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123072

RESUMO

Stem cells have garnered significant attention in regenerative medicine owing to their abilities of multi-directional differentiation and self-renewal. Despite these encouraging results, the market for stem cell products yields limited, which is largely due to the challenges faced to the safety and viability of stem cells in vivo. Besides, the fate of cells re-infusion into the body unknown is also a major obstacle to stem cell therapy. Actually, both the functional protection and the fate tracking of stem cells are essential in tissue homeostasis, repair, and regeneration. Recent studies have utilized cell engineering techniques to modify stem cells for enhancing their treatment efficiency or imparting them with novel biological capabilities, in which advances demonstrate the immense potential of engineered cell therapy. In this review, we proposed that the "engineered stem cells" are expected to represent the next generation of stem cell therapies and reviewed recent progress in this area. We also discussed potential applications of engineered stem cells and highlighted the most common challenges that must be addressed. Overall, this review has important guiding significance for the future design of new paradigms of stem cell products to improve their therapeutic efficacy.


Assuntos
Engenharia Celular , Medicina Regenerativa , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Diferenciação Celular
15.
Nano Lett ; 23(22): 10118-10125, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955329

RESUMO

The development of solid biomaterials has rapidly progressed in recent years in applications in bionanotechnology. The immobilization of proteins, such as enzymes, within protein crystals is being used to develop solid catalysts and functionalized materials. However, an efficient method for encapsulating protein assemblies has not yet been established. This work presents a novel approach to displaying protein cages onto a crystalline protein scaffold using in-cell protein crystal engineering. The polyhedra crystal (PhC) scaffold, which displays a ferritin cage, was produced by coexpression of polyhedrin monomer (PhM) and H1-ferritin (H1-Fr) monomer in Escherichia coli. The H1-tag is derived from the H1-helix of PhM. Our technique represents a unique strategy for immobilizing protein assemblies onto in-cell protein crystals and is expected to contribute to various applications in bionanotechnology.


Assuntos
Materiais Biocompatíveis , Engenharia Celular , Materiais Biocompatíveis/química , Escherichia coli/genética , Ferritinas , Engenharia de Proteínas/métodos
16.
Adv Sci (Weinh) ; 10(34): e2304040, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823678

RESUMO

Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.


Assuntos
Engenharia Biomédica , Engenharia Tecidual , Animais , Engenharia Celular , Bioengenharia , Biomimética , Mamíferos
17.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3899-3909, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37805863

RESUMO

In order to improve the teaching quality of engineering courses, we introduced a multi-dimensional teaching method into the teaching reform of biology majors in colleges based on the portfolio assessment in the curriculum of Cell Engineering. We reformed the knowledge system, teaching form and implementation scheme of this course. By combining the reform of online teaching, interactive teaching, case teaching and other teaching modes, the students mastered the relevant professional knowledge and the scientific and technological frontier of Cell Engineering. Moreover, their learning interest and enthusiasm, ability of analyzing and solving professional problems related to Cell Engineering also improved. The implementation of teaching reform of this course provides a reference for other similar professional courses in colleges.


Assuntos
Currículo , Estudantes , Humanos , Aprendizagem , Engenharia Celular
18.
Anal Chem ; 95(42): 15716-15724, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37820298

RESUMO

Synthetic biology relies on engineering cells to have desirable properties, such as the production of select chemicals. A bottleneck in engineering methods is often the need to screen and sort variant libraries for potential activity. Droplet microfluidics is a method for high-throughput sample preparation and analysis which has the potential to improve the engineering of cells, but a limitation has been the reliance on fluorescent analysis. Here, we show the ability to select cell variants grown in 20 nL droplets at 0.5 samples/s using mass-activated droplet sorting (MADS), a method for selecting droplets based on the signal intensity measured by electrospray ionization mass spectrometry (ESI-MS). Escherichia coli variants producing lysine were used to evaluate the applicability of MADS for synthetic biology. E. coli were shown to be effectively grown in droplets, and the lysine produced by these cells was detectable using ESI-MS. Sorting of lysine-producing cells based on the MS signal was shown, yielding 96-98% purity for high-producing variants in the selected pool. Using this technique, cells were recovered after screening, enabling downstream validation via phenotyping. The presented method is translatable to whole-cell engineering for biocatalyst production.


Assuntos
Escherichia coli , Lisina , Engenharia Celular , Movimento Celular , Corantes
19.
Science ; 382(6667): 211-218, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824640

RESUMO

A major challenge facing tumor-antigen targeting therapies such as chimeric antigen receptor (CAR)-T cells is the identification of suitable targets that are specifically and uniformly expressed on heterogeneous solid tumors. By contrast, certain species of bacteria selectively colonize immune-privileged tumor cores and can be engineered as antigen-independent platforms for therapeutic delivery. To bridge these approaches, we developed a platform of probiotic-guided CAR-T cells (ProCARs), in which tumor-colonizing probiotics release synthetic targets that label tumor tissue for CAR-mediated lysis in situ. This system demonstrated CAR-T cell activation and antigen-agnostic cell lysis that was safe and effective in multiple xenograft and syngeneic models of human and mouse cancers. We further engineered multifunctional probiotics that co-release chemokines to enhance CAR-T cell recruitment and therapeutic response.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Escherichia coli , Imunoterapia Adotiva , Probióticos , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Imunoterapia Adotiva/métodos , Ativação Linfocitária , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Probióticos/uso terapêutico , Antígenos de Neoplasias/imunologia , Escherichia coli/genética , Escherichia coli/imunologia , Engenharia Celular , Neoplasias da Mama/terapia , Neoplasias Colorretais/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...