Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.893
Filtrar
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 150-155, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605613

RESUMO

Objective: A quality control (QC) system based on the electronic portal imaging device (EPID) system was used to realize the Multi-Leaf Collimator (MLC) position verification and dose verification functions on Primus and VenusX accelerators. Methods: The MLC positions were calculated by the maximum gradient method of gray values to evaluate the deviation. The dose of images acquired by EPID were reconstructed using the algorithm combining dose calibration and dose calculation. The dose data obtained by EPID and two-dimensional matrix (MapCheck/PTW) were compared with the dose calculated by Pinnacle/TiGRT TPS for γ passing rate analysis. Results: The position error of VenusX MLC was less than 1 mm. The position error of Primus MLC was significantly reduced after being recalibrated under the instructions of EPID. For the dose reconstructed by EPID, the average γ passing rates of Primus were 98.86% and 91.39% under the criteria of 3%/3 mm, 10% threshold and 2%/2 mm, 10% threshold, respectively. The average γ passing rates of VenusX were 98.49% and 91.11%, respectively. Conclusion: The EPID-based accelerator quality control system can improve the efficiency of accelerator quality control and reduce the workload of physicists.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Algoritmos , Calibragem , Eletrônica , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodos
2.
J Radiol Prot ; 44(2)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569480

RESUMO

The number of healthcare workers occupationally exposed to ionizing radiation (IR) is increasing every year. As health effects from exposure to low doses IR have been reported, radiation protection (RP) in the context of occupational activities is a major concern. This study aims to assess the compliance of healthcare workers with RP policies, according to their registered cumulative dose, profession, and perception of radiation self-exposure and associated risk. Every healthcare worker from one of the participating hospitals in France with at least one dosimetric record for each year 2009, 2014, and 2019 in the SISERI registry was included and invited to complete an online questionnaire including information on the worker's occupational exposure, perception of IR-exposure risk and RP general knowledge. Hp(10) doses were provided by the SISERI system. Multivariate logistic regressions were used. Dosimeter wearing and RP practices compliance were strongly associated with 'feeling of being IR-exposed' (OR = 3.69, CI95% 2.04-6.66; OR = 4.60, CI95% 2.28-9.30, respectively). However, none of these factors was associated with RP training courses attendance. The main reason given for non-compliance is unsuitability or insufficient numbers of RP devices. This study provided useful information for RP policies. Making exposed workers aware of their own IR-exposure seems to be a key element to address in RP training courses. This type of questionnaire should be introduced into larger epidemiological studies. Dosimeter wearing and RP practices compliance are associated to feeling being IR-exposed. RP training courses should reinforce workers' awareness of their exposure to IR.


Assuntos
Exposição Ocupacional , Proteção Radiológica , Humanos , Conhecimentos, Atitudes e Prática em Saúde , Pessoal de Saúde , Radiometria , Radiação Ionizante , Hospitais , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise
3.
Appl Radiat Isot ; 208: 111307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564840

RESUMO

Early works that used thermoluminescent dosimeters (TLDs) to measure absorbed dose from alpha particles reported relatively high variation (10%) between TLDs, which is undesirable for modern dosimetry applications. This work outlines a method to increase precision for absorbed dose measured using TLDs with alpha-emitting radionuclides by applying an alpha-specific chip factor (CF) that individually characterizes the TLD sensitivity to alpha particles. Variation between TLDs was reduced from 21.8% to 6.7% for the standard TLD chips and 7.9% to 3.3% for the thin TLD chips. It has been demonstrated by this work that TLD-100 can be calibrated to precisely measure the absorbed dose to water from alpha-emitting radionuclides.


Assuntos
Dosímetros de Radiação , Dosimetria Termoluminescente , Dosimetria Termoluminescente/métodos , Radioisótopos , Radiometria/métodos , Calibragem
4.
Cancer Radiother ; 28(2): 195-201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599941

RESUMO

PURPOSE: Preclinical data demonstrated that the use of proton minibeam radiotherapy reduces the risk of toxicity in healthy tissue. Ventricular tachycardia radioablation is an area under clinical investigation in proton beam therapy. We sought to simulate a ventricular tachycardia radioablation with proton minibeams and to demonstrate that it was possible to obtain a homogeneous coverage of an arrhythmogenic cardiac zone with this technique. MATERIAL AND METHODS: An arrhythmogenic target volume was defined on the simulation CT scan of a patient, localized in the lateral wall of the left ventricle. A dose of 25Gy was planned to be delivered by proton minibeam radiotherapy, simulated using a Monte Carlo code (TOPAS v.3.7) with a collimator of 19 0.4 mm-wide slits spaced 3mm apart. The main objective of the study was to obtain a plan ensuring at least 93% of the prescription dose in 93% of the planning target volume without exceeding 110% of the prescribed dose in the planning target volume. RESULTS: The average dose in the planning treatment volume in proton minibeam radiotherapy was 25.12Gy. The percentage of the planning target volume receiving 93% (V93%), 110% (V110%), and 95% (V95%) of the prescribed dose was 94.25%, 0%, and 92.6% respectively. The lateral penumbra was 6.6mm. The mean value of the peak-to-valley-dose ratio in the planning target volume was 1.06. The mean heart dose was 2.54Gy versus 5.95Gy with stereotactic photon beam irradiation. CONCLUSION: This proof-of-concept study shows that proton minibeam radiotherapy can achieve a homogeneous coverage of an arrhythmogenic cardiac zone, reducing the dose at the normal tissues. This technique, ensuring could theoretically reduce the risk of late pulmonary and breast fibrosis, as well as cardiac toxicity as seen in previous biological studies in proton minibeam radiotherapy.


Assuntos
Terapia com Prótons , Prótons , Humanos , Estudos de Viabilidade , Terapia com Prótons/métodos , Radiometria , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Método de Monte Carlo
5.
Biomed Phys Eng Express ; 10(3)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38579691

RESUMO

Background.Modern radiation therapy technologies aim to enhance radiation dose precision to the tumor and utilize hypofractionated treatment regimens. Verifying the dose distributions associated with these advanced radiation therapy treatments remains an active research area due to the complexity of delivery systems and the lack of suitable three-dimensional dosimetry tools. Gel dosimeters are a potential tool for measuring these complex dose distributions. A prototype tabletop solid-tank fan-beam optical CT scanner for readout of gel dosimeters was recently developed. This scanner does not have a straight raypath from source to detector, thus images cannot be reconstructed using filtered backprojection (FBP) and iterative techniques are required.Purpose.To compare a subset of the top performing algorithms in terms of image quality and quantitatively determine the optimal algorithm while accounting for refraction within the optical CT system. The following algorithms were compared: Landweber, superiorized Landweber with the fast gradient projection perturbation routine (S-LAND-FGP), the fast iterative shrinkage/thresholding algorithm with total variation penalty term (FISTA-TV), a monotone version of FISTA-TV (MFISTA-TV), superiorized conjugate gradient with the nonascending perturbation routine (S-CG-NA), superiorized conjugate gradient with the fast gradient projection perturbation routine (S-CG-FGP), superiorized conjugate gradient with with two iterations of CG performed on the current iterate and the nonascending perturbation routine (S-CG-2-NA).Methods.A ray tracing simulator was developed to track the path of light rays as they traverse the different mediums of the optical CT scanner. Two clinical phantoms and several synthetic phantoms were produced and used to evaluate the reconstruction techniques under known conditions. Reconstructed images were analyzed in terms of spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), signal non-uniformity (SNU), mean relative difference (MRD) and reconstruction time. We developed an image quality based method to find the optimal stopping iteration window for each algorithm. Imaging data from the prototype optical CT scanner was reconstructed and analysed to determine the optimal algorithm for this application.Results.The optimal algorithms found through the quantitative scoring metric were FISTA-TV and S-CG-2-NA. MFISTA-TV was found to behave almost identically to FISTA-TV however MFISTA-TV was unable to resolve some of the synthetic phantoms. S-CG-NA showed extreme fluctuations in the SNR and CNR values. S-CG-FGP had large fluctuations in the SNR and CNR values and the algorithm has less noise reduction than FISTA-TV and worse spatial resolution than S-CG-2-NA. S-LAND-FGP had many of the same characteristics as FISTA-TV; high noise reduction and stability from over iterating. However, S-LAND-FGP has worse SNR, CNR and SNU values as well as longer reconstruction time. S-CG-2-NA has superior spatial resolution to all algorithms while still maintaining good noise reduction and is uniquely stable from over iterating.Conclusions.Both optimal algorithms (FISTA-TV and S-CG-2-NA) are stable from over iterating and have excellent edge detection with ESF MTF 50% values of 1.266 mm-1and 0.992 mm-1. FISTA-TV had the greatest noise reduction with SNR, CNR and SNU values of 424, 434 and 0.91 × 10-4, respectively. However, low spatial resolution makes FISTA-TV only viable for large field dosimetry. S-CG-2-NA has better spatial resolution than FISTA-TV with PSF and LSF MTF 50% values of 1.581 mm-1and 0.738 mm-1, but less noise reduction. S-CG-2-NA still maintains good SNR, CNR, and SNU values of 168, 158 and 1.13 × 10-4, respectively. Thus, S-CG-2-NA is a well rounded reconstruction algorithm that would be the preferable choice for small field dosimetry.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Radiometria/métodos , Razão Sinal-Ruído , Algoritmos
7.
Radiat Oncol ; 19(1): 40, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509543

RESUMO

PURPOSE: To assess a large panel of MR compatible detectors on the full range of measurements required for a 0.35 T MR-linac commissioning by using a specific statistical method represented as a continuum of comparison with the Monte Carlo (MC) TPS calculations. This study also describes the commissioning tests and the secondary MC dose calculation validation. MATERIAL AND METHODS: Plans were created on the Viewray TPS to generate MC reference data. Absolute dose points, PDD, profiles and output factors were extracted and compared to measurements performed with ten different detectors: PTW 31010, 31021, 31022, Markus 34045 and Exradin A28 MR ionization chambers, SN Edge shielded diode, PTW 60019 microdiamond, PTW 60023 unshielded diode, EBT3 radiochromic films and LiF µcubes. Three commissioning steps consisted in comparison between calculated and measured dose: the beam model validation, the output calibration verification in four different phantoms and the commissioning tests recommended by the IAEA-TECDOC-1583. MAIN RESULTS: The symmetry for the high resolution detectors was higher than the TPS data of about 1%. The angular responses of the PTW 60023 and the SN Edge were - 6.6 and - 11.9% compared to the PTW 31010 at 60°. The X/Y-left and the Y-right penumbras measured by the high resolution detectors were in good agreement with the TPS values except for the PTW 60023 for large field sizes. For the 0.84 × 0.83 cm2 field size, the mean deviation to the TPS of the uncorrected OF was - 1.7 ± 1.6% against - 4.0 ± 0.6% for the corrected OF whereas we found - 4.8 ± 0.8% for passive dosimeters. The mean absolute dose deviations to the TPS in different phantoms were 0 ± 0.4%, - 1.2 ± 0.6% and 0.5 ± 1.1% for the PTW 31010, PTW 31021 and Exradin A28 MR respectively. CONCLUSIONS: The magnetic field effects on the measurements are considerably reduced at low magnetic field. The PTW 31010 ionization chamber can be used with confidence in different phantoms for commissioning and QA tests requiring absolute dose verifications. For relative measurements, the PTW 60019 presented the best agreement for the full range of field size. For the profile assessment, shielded diodes had a behaviour similar to the PTW 60019 and 60023 while the ionization chambers were the most suitable detectors for the symmetry. The output correction factors published by the IAEA TRS 483 seem to be applicable at low magnetic field pending the publication of new MR specific values.


Assuntos
Aceleradores de Partículas , Radiometria , Humanos , Radiometria/métodos , Método de Monte Carlo , Imagens de Fantasmas , Calibragem
8.
Phys Med Biol ; 69(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537287

RESUMO

Objective.Online magnetic resonance imaging (MRI) guidance could be especially beneficial for pencil beam scanned (PBS) proton therapy of tumours affected by respiratory motion. For the first time to our knowledge, we investigate the dosimetric impact of respiratory motion on MRI-guided proton therapy compared to the scenario without magnetic field.Approach.A previously developed analytical proton dose calculation algorithm accounting for perpendicular magnetic fields was extended to enable 4D dose calculations. For two geometrical phantoms and three liver and two lung patient cases, static treatment plans were optimised with and without magnetic field (0, 0.5 and 1.5 T). Furthermore, plans were optimised using gantry angle corrections (0.5 T +5° and 1.5 T +15°) to reproduce similar beam trajectories compared to the 0 T reference plans. The effect of motion was then considered using 4D dose calculations without any motion mitigation and simulating 8-times volumetric rescanning, with motion for the patient cases provided by 4DCT(MRI) data sets. Each 4D dose calculation was performed for different starting phases and the CTV dose coverageV95%and homogeneityD5%-D95%were analysed.Main results.For the geometrical phantoms with rigid motion perpendicular to the beam and parallel to the magnetic field, a comparable dosimetric effect was observed independent of the magnetic field. Also for the five 4DCT(MRI) cases, the influence of motion was comparable for all magnetic field strengths with and without gantry angle correction. On average, the motion-induced decrease in CTVV95%from the static plan was 17.0% and 18.9% for 1.5 T and 0.5 T, respectively, and 19.9% without magnetic field.Significance.For the first time, this study investigates the combined impact of magnetic fields and respiratory motion on MR-guided proton therapy. The comparable dosimetric effects irrespective of magnetic field strength indicate that the effects of motion for future MR-guided proton therapy may not be worse than for conventional PBS proton therapy.


Assuntos
Neoplasias Pulmonares , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Movimento (Física) , Radiometria/métodos , Prótons , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia
9.
J Cancer Res Ther ; 20(1): 85-92, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554303

RESUMO

INTRODUCTION: The purpose of this study was to evaluate a plastic scintillating plate-based beam monitoring system to perform quality assurance (QA) measurements in pencil beam scanning proton beam. METHODS: Single spots and scanned fields were measured with the high-resolution dosimetry system, consisting of a plastic scintillation plate coupled to a camera in a dark box at the isocenter. The measurements were taken at 110-190 MeV beam energies with 30° gantry angle intervals at each energy. Spot positions were determined using the plastic scintillating plate-based dosimetry system at the isocenter for 70-230 MeV beam energies with 30° gantry angle intervals. The effect of gantry angle on dose distribution was also assessed by determining the scanning pattern for daily QA and 25 fields treated with intensity-modulated proton therapy. RESULTS: Spot size, field flatness, and field symmetry of plastic scintillating plate-based dosimetry system were consistent with EBT3 at all investigated energies and angles. In all investigated energies and angles, the spot size measured was ±10% of the average size of each energy, the spot position measured was within ±2 mm, field flatness was within ±2%, and field symmetry was within ±1%. The mean gamma passing rates with the 3%/3 mm gamma criterion of the scanning pattern and 25 fields were 99.2% and 99.8%, respectively. CONCLUSIONS: This system can be effective for QA determinations of spot size, spot position, field flatness, and field symmetry over 360° of gantry rotation in a time- and cost-effective manner, with spatial resolution comparable to that of EBT3 film.


Assuntos
Terapia com Prótons , Humanos , Prótons , Radiometria , Dosagem Radioterapêutica
10.
J Cancer Res Ther ; 20(1): 389-395, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554351

RESUMO

INTRODUCTION: Total skin electron beam therapy, commonly known as TSET, is a good choice of treatment for patients suffering from mycosis fungoides. The aim of this study was to introduce a new approach to the beam profile measurement using diodes and to calculate the monitor units required for the TSET treatment by the use of a simple setup of output measurement. Dosimetric measurements required for the treatment were taken to establish the Stanford technique in the department, and the measured data was compared with the published data. MATERIALS AND METHODS: High-energy Linear Accelerator Clinac-DHX, Varian medical system, Palo Alto, CA, was commissioned for TSET. The output of the machine was measured by the use of a Parallel-Plate Chamber (PPC40) as per the TRS 398 recommendation. Diode dosimeters (EDD2 and EDD5) were used for beam profile measurements due to easy setup and to reduce the measurement time. RESULTS: Homogeneous dose distribution within a field size of 80 cm x160 cm was observed with the variation of -5.0% on the horizontal axis and -5.4% on the vertical axis. The calculated monitor unit to deliver 200 cGy per fraction per field at the source to surface (SSD) of 416 cm was 489 MU. CONCLUSION: The technique described for the output measurements is simple and accurate. Results of the absorbed dose and MU measured were within good agreement compared to the published literature.


Assuntos
Aceleradores de Partículas , Radiometria , Humanos , Dosagem Radioterapêutica , Radiometria/métodos
11.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452383

RESUMO

Objective. The aim of this work is to investigate the response of the Roos chamber (type 34001) irradiated by clinical proton beams in magnetic fields.Approach. At first, a Fano test was implemented in Monte Carlo software package GATE version 9.2 (based on Geant4 version 11.0.2) using a cylindrical slab geometry in a magnetic field up to 1 T. In accordance to an experimental setup (Fuchset al2021), the magnetic field correction factorskQB⃗of the Roos chamber were determined at different energies up to 252 MeV and magnetic field strengths up to 1 T, by separately simulating the ratios of chamber signalsMQ/MQB⃗,without and with magnetic field, and the dose-conversion factorsDw,QB⃗/Dw,Qin a small cylinder of water, with and without magnetic field. Additionally, detailed simulations were carried out to understand the observed magnetic field dependence.Main results. The Fano test was passed with deviations smaller than 0.25% between 0 and 1 T. The ratios of the chamber signals show both energy and magnetic field dependence. The maximum deviation of the dose-conversion factors from unity of 0.22% was observed at the lowest investigated proton energy of 97.4 MeV andB⃗= 1 T. The resultingkQB⃗factors increase initially with the applied magnetic field and decrease again after reaching a maximum at around 0.5 T; except for the lowest 97.4 MeV beam that show no observable magnetic field dependence. The deviation from unity of the factors is also larger for higher proton energies, where the maximum lies at 1.0035(5), 1.0054(7) and 1.0069(7) for initial energies ofE0= 152, 223.4 and 252 MeV, respectively.Significance. Detailed Monte Carlo studies showed that the observed effect can be mainly attributed to the differences in the transport of electrons produced both outside and inside of the air cavity in the presence of a magnetic field.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Terapia com Prótons/métodos , Campos Magnéticos , Método de Monte Carlo
12.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478998

RESUMO

Objective. Very high energy electrons (VHEE) in the range of 50-250 MeV are of interest for treating deep-seated tumours with FLASH radiotherapy (RT). This approach offers favourable dose distributions and the ability to deliver ultra-high dose rates (UHDR) efficiently. To make VHEE-based FLASH treatment clinically viable, a novel beam monitoring technology is explored as an alternative to transmission ionisation monitor chambers, which have non-linear responses at UHDR. This study introduces the fibre optic flash monitor (FOFM), which consists of an array of silica optical fibre-based Cherenkov sensors with a photodetector for signal readout.Approach. Experiments were conducted at the CLEAR facility at CERN using 200 MeV and 160 MeV electrons to assess the FOFM's response linearity to UHDR (characterised with radiochromic films) required for FLASH radiotherapy. Beam profile measurements made on the FOFM were compared to those using radiochromic film and scintillating yttrium aluminium garnet (YAG) screens.Main results. A range of photodetectors were evaluated, with a complementary-metal-oxide-semiconductor (CMOS) camera being the most suitable choice for this monitor. The FOFM demonstrated excellent response linearity from 0.9 Gy/pulse to 57.4 Gy/pulse (R2= 0.999). Furthermore, it did not exhibit any significant dependence on the energy between 160 MeV and 200 MeV nor the instantaneous dose rate. Gaussian fits applied to vertical beam profile measurements indicated that the FOFM could accurately provide pulse-by-pulse beam size measurements, agreeing within the error range of radiochromic film and YAG screen measurements, respectively.Significance. The FOFM proves to be a promising solution for real-time beam profile and dose monitoring for UHDR VHEE beams, with a linear response in the UHDR regime. Additionally it can perform pulse-by-pulse beam size measurements, a feature currently lacking in transmission ionisation monitor chambers, which may become crucial for implementing FLASH radiotherapy and its associated quality assurance requirements.


Assuntos
Elétrons , Radioterapia de Alta Energia , Dosagem Radioterapêutica , Tecnologia de Fibra Óptica , Radiometria/métodos
13.
J Appl Clin Med Phys ; 25(4): e14213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425126

RESUMO

PURPOSE: To develop a Total Body Irradiation (TBI) technique using IMRT at extended SSD that can be performed in any size Linac room. METHODS: Patients studied were placed on a platform close to the floor, directly under the gantry with cranial-caudal axis parallel to the gantry rotation plane and at SSD ∼200 cm. Two abutting fields with the same external isocenter at gantry angles of ±21˚, collimator angle of 90˚, and field size of 25 × 40 cm2 are employed for both supine and prone positions. An iterative optimization algorithm was developed to generate a uniform dose at the patient mid-plane with adequate shielding to critical organs such as lungs and kidneys. The technique was validated in both phantom and patient CT images for treatment planning, and dose measurement and QA were performed in phantom. RESULTS: A uniform dose distribution in the mid-plane within ±5% of the prescription dose was reached after a few iterations. This was confirmed with ion-chamber measurements in phantom. The mean dose to lungs and kidneys can be adjusted according to clinical requirements and can be as low as ∼25% of the prescription dose. For a typical prescription dose of 200 cGy/fraction, the total MU was ∼2400/1200 for the superior/inferior field. The overall treatment time for both supine/prone positions was ∼54 min to meet the maximum absorbed dose rate criteria of 15 cGy/min. IMRT QA with portal dosimetry shows excellent agreement. CONCLUSIONS: We have developed a promising TBI technique using abutting IMRT fields at extended SSD. The patient is in a comfortable recumbent position with good reproducibility and less motion during treatment. An additional benefit of this technique is that full 3D dose distribution is available from the TPS with a DVH summary for organs of interest. The technique allows precise sparing of lungs and kidneys and can be executed in any linac room.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Irradiação Corporal Total , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Radiometria/métodos , Dosagem Radioterapêutica
14.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474163

RESUMO

This work presents an ecological, flexible 2D radiochromic dosimeter for measuring ionizing radiation in the kilogray dose range. Cotton woven fabric made of cellulose was volume-modified with nitrotetrazolium blue chloride as a radiation-sensitive compound. Its features include a color change during exposure from yellowish to purple-brown and flexibility that allows it to adapt to various shapes. It was found that (i) the dose response is up to ~80 kGy, (ii) it is independent of the dose rate for 1.1-73.1 kGy/min, (iii) it can be measured in 2D using a flatbed scanner, (iv) the acquired images can be filtered using a mean filter, which improves its dose resolution, (v) the dose resolution is -0.07 to -0.4 kGy for ~0.6 to ~75.7 kGy for filtered images, and (vi) two linear dose subranges can be distinguished: ~0.6 to ~7.6 kGy and ~9.9 to ~62.0 kGy. The dosimeter combined with flatbed scanner reading and data processing using dedicated software packages constitutes a comprehensive system for measuring dose distributions for objects with complex shapes.


Assuntos
Dosímetros de Radiação , Radiação Ionizante , Celulose , Radiometria/métodos
15.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465937

RESUMO

The in vitro cytokinesis-block micronucleus (CBMN) assay is a widely used technique in radiobiology research, biological dosimetry, genotoxicity studies, and in vitro radiosensitivity testing. This cytogenetic method is based on the detection of micronuclei in binucleated cells resulting from chromosomal fragments lagging during cell division. Fresh whole blood samples are the most preferred sample type for the CBMN assay. However, the disadvantages of working with fresh blood samples include immediate processing after blood collection and the limited number of repeated analyses that can be performed without extra blood sampling. As the need for fresh blood samples can be logistically challenging, CBMN assay on cryopreserved whole blood samples would be of great advantage, especially in large-scale patient studies. This paper describes a protocol to freeze whole blood samples and to perform the CBMN assay on these frozen blood samples. Blood samples from healthy volunteers have been frozen and thawed at different time points and then, subjected to a modified micronucleus assay protocol. The results demonstrate that this optimized procedure allows the performance of the CBMN assay on frozen blood samples. The described cryopreservation protocol may also be very useful for other cytogenetic assays and a variety of functional assays requiring proliferating lymphocytes.


Assuntos
Citocinese , Radiometria , Humanos , Testes para Micronúcleos/métodos , Divisão Celular , Radiometria/métodos , Linfócitos , Criopreservação
16.
Appl Radiat Isot ; 207: 111235, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430824

RESUMO

The use of radiopharmaceuticals has gained a special place in the diagnosis and treatment of cancers and evaluation of the function of different organs of the body. In this study, the absorbed dose distribution of organs after injection of 188Re-Mu-9 has been investigated using MIRD method and MCNP-4C simulation code. The 188Re-Mu-9 labeled was injected the mouse body and the amount of 188Re-labeled accumulation was evaluated after 1, 4 and 2 4 h. Having a map of the distribution of radiopharmaceutical activity in the animal body, it is possible to convert it into a human model to obtain the internal dose received by 188Re-Mu-9 injection using the MIRD calculation method and the MCNP simulation code. According to the results of the study, the animal/human model can be acceptable method for dose estimation of antibody-based radiopharmaceuticals.


Assuntos
Compostos Radiofarmacêuticos , Rênio , Humanos , Camundongos , Animais , Compostos Radiofarmacêuticos/uso terapêutico , Radioisótopos , Rênio/uso terapêutico , Radiometria/métodos
17.
Appl Radiat Isot ; 207: 111256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432035

RESUMO

3D printing technology has rapidly spread for decades, allowing the fabrication of medical implants and human phantoms and revolutionizing healthcare. The objective of this study is to evaluate some radiological properties of commercially available 3D printing materials as potential tissue mimicking materials. Among fifteen materials, we compared their properties with nine human tissues. In all materials and tissues, exposure and energy absorption buildup factors were calculated for photon energies between 0.015 and 15 MeV and penetration depths up to 40 mean free path. Furthermore, the Geant4 Monte Carlo toolkit (version 10.5) was used to simulate their percentage depth dose distributions. In addition, equivalent atomic numbers, effective atomic numbers, attenuation coefficients, and CT numbers have been examined. All parameters were considered in calculating the average relative error (σ), which was used as a statistical comparison tool. With σ between 6 and 7, we found that Polylactic Acid (PLA) was capable of simulating eye lenses, blood, soft tissue, lung, muscle, and brain tissues. Moreover, Polymethacrylic Acid (PMAA) material has a σ value of 4 when modeling adipose and breast tissues, respectively. Aside from that, variations in 3D printing materials' infilling percentage can affect their CT numbers. We therefore suggest the PLA for mimicking soft tissue, muscle, brain, eye lens, lung and blood tissues, with an infill of between 92.7 and 94.3 percent. We also suggest an 89 percent infill when simulating breast tissue. Furthermore, with a 96.7 percent infill, the PMAA faithfully replicates adipose tissue. Additionally, we found that a 59 percent infill of Fe-PLA material is comparable to cortical bone. Due to the benefits of creating individualized medical phantoms and equipment, the results might be seen as an added value for both patients and clinicians.


Assuntos
Ácidos Polimetacrílicos , Impressão Tridimensional , Radiometria , Humanos , Raios gama , Poliésteres , Imagens de Fantasmas
18.
Sci Rep ; 14(1): 6119, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480827

RESUMO

Non-invasive methods of detecting radiation exposure show promise to improve upon current approaches to biological dosimetry in ease, speed, and accuracy. Here we developed a pipeline that employs Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum to identify a signature of low dose ionizing radiation exposure in mouse ear pinnae over time. Mice exposed to 0.1 to 2 Gy total body irradiation were repeatedly measured by FTIR at the stratum corneum of the ear pinnae. We found significant discriminative power for all doses and time-points out to 90 days after exposure. Classification accuracy was maximized when testing 14 days after exposure (specificity > 0.9 with a sensitivity threshold of 0.9) and dropped by roughly 30% sensitivity at 90 days. Infrared frequencies point towards biological changes in DNA conformation, lipid oxidation and accumulation and shifts in protein secondary structure. Since only hundreds of samples were used to learn the highly discriminative signature, developing human-relevant diagnostic capabilities is likely feasible and this non-invasive procedure points toward rapid, non-invasive, and reagent-free biodosimetry applications at population scales.


Assuntos
Exposição à Radiação , Radiometria , Humanos , Camundongos , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Análise de Fourier , Radiometria/métodos , Proteínas , Radiação Ionizante , Exposição à Radiação/análise , Doses de Radiação
19.
Sci Rep ; 14(1): 7134, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532018

RESUMO

We aimed to investigate the deliverability of dynamic conformal arc therapy (DCAT) by gantry wobble owing to the intrinsic inter-segment break of the Elekta linear accelerator (LINAC) and its adverse influence on the dose to the patient. The deliverability of DCAT was evaluated according to the plan parameters, which affect the gantry rotation speed and resultant positional inaccuracies; the deliverability according to the number of control points and dose rates was investigated by using treatment machine log files and dosimetry devices, respectively. A non-negligible degradation in DCAT deliverability due to gantry wobble was observed in both the treatment machine log files and dosimetry devices. The resulting dose-delivery error occurred below a certain number of control points or above a certain dose rate. Dose simulations in the patient domain showed a similar impact on deteriorated deliverability. For targets located primarily in the isocenter, the dose differences were negligible, whereas for organs at risk located mainly off-isocenter, the dose differences were significant up to - 8.77%. To ensure safe and accurate radiotherapy, optimal plan parameters should be selected, and gantry angle-specific validations should be conducted before treatment.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos
20.
Phys Med Biol ; 69(9)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38530300

RESUMO

Objective.The successful implementation of FLASH radiotherapy in clinical settings, with typical dose rates >40 Gy s-1, requires accurate real-time dosimetry.Approach.Silicon carbide (SiC) p-n diode dosimeters designed for the stringent requirements of FLASH radiotherapy have been fabricated and characterized in an ultra-high pulse dose rate electron beam. The circular SiC PiN diodes were fabricated at IMB-CNM (CSIC) in 3µm epitaxial 4H-SiC. Their characterization was performed in PTB's ultra-high pulse dose rate reference electron beam. The SiC diode was operated without external bias voltage. The linearity of the diode response was investigated up to doses per pulse (DPP) of 11 Gy and pulse durations ranging from 3 to 0.5µs. Percentage depth dose measurements were performed in ultra-high dose per pulse conditions. The effect of the total accumulated dose of 20 MeV electrons in the SiC diode sensitivity was evaluated. The temperature dependence of the response of the SiC diode was measured in the range 19 °C-38 °C. The temporal response of the diode was compared to the time-resolved beam current during each electron beam pulse. A diamond prototype detector (flashDiamond) and Alanine measurements were used for reference dosimetry.Main results.The SiC diode response was independent both of DPP and of pulse dose rate up to at least 11 Gy per pulse and 4 MGy s-1, respectively, with tolerable deviation for relative dosimetry (<3%). When measuring the percentage depth dose under ultra-high dose rate conditions, the SiC diode performed comparably well to the reference flashDiamond. The sensitivity reduction after 100 kGy accumulated dose was <2%. The SiC diode was able to follow the temporal structure of the 20 MeV electron beam even for irregular pulse estructures. The measured temperature coefficient was (-0.079 ± 0.005)%/°C.Significance.The results of this study demonstrate for the first time the suitability of silicon carbide diodes for relative dosimetry in ultra-high dose rate pulsed electron beams up to a DPP of 11 Gy per pulse.


Assuntos
Compostos Inorgânicos de Carbono , Dosímetros de Radiação , Radiometria , Radiometria/métodos , Compostos de Silício , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...