Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 657
Filtrar
1.
Appl Radiat Isot ; 208: 111307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564840

RESUMO

Early works that used thermoluminescent dosimeters (TLDs) to measure absorbed dose from alpha particles reported relatively high variation (10%) between TLDs, which is undesirable for modern dosimetry applications. This work outlines a method to increase precision for absorbed dose measured using TLDs with alpha-emitting radionuclides by applying an alpha-specific chip factor (CF) that individually characterizes the TLD sensitivity to alpha particles. Variation between TLDs was reduced from 21.8% to 6.7% for the standard TLD chips and 7.9% to 3.3% for the thin TLD chips. It has been demonstrated by this work that TLD-100 can be calibrated to precisely measure the absorbed dose to water from alpha-emitting radionuclides.


Assuntos
Dosímetros de Radiação , Dosimetria Termoluminescente , Dosimetria Termoluminescente/métodos , Radioisótopos , Radiometria/métodos , Calibragem
2.
J Radiol Prot ; 44(2)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507786

RESUMO

Vision badge is an eye lens dosimeter to measureHp(3). This study aimed to evaluate the basic characteristics of the Vision badge and its performance as an eye lens dosimeter for endoscopists by phantom study. Energy dependence was evaluated by changing the tube voltage to 50 kV (effective energy of 27.9 keV), 80 kV (32.2 keV), and 120 kV (38.7 keV). Dose linearity was evaluated by changing the number of irradiation to 1, 5, and 40 times, which corresponded to 0.53, 5.32, and 21.4 mGy. Batch uniformity was evaluated by calculating the coefficient of variation ofHp(3) obtained from 10 Vision badges. Angular dependence was evaluated at 0° (perpendicular to the incident direction of x-rays), 30°, 60°, 75°, and 90°. The Vision badge and optically stimulated luminescence (OSL) dosimeter were attached to the inside of the radioprotective glasses, worn on the endoscopist phantom, and theHp(3) obtained from both dosimeters were compared. TheHp(3) obtained from the Vision badge with 38.7 keV was 3.8% higher than that with 27.9 keV. The Vision badge showed excellent linearity (R2= 1.00) with the air kerma up to 21.4 mGy. The coefficient of variation of theHp(3) for 10 Vision badges was 3.47%. The relative dose of the Vision badge decreased as the angle increased up to 75°, but increased at 90°. TheHp(3) obtained by the OSL dosimeter and the Vision badge were decreased as the endoscopist phantom was turned away from the patient phantom. TheHp(3) that was obtained by the Vision badge was 35.5%-55.0% less than that obtained by the nanoDot. In conclusion, the Vision badge showed specific angular dependence due to its shape, but satisfactory basic properties were exhibited for all characteristics. In phantom study, the Vision badge showed generally similar trends with the OSL dosimeter.


Assuntos
Cristalino , Dosímetros de Radiação , Humanos , Radiografia , Raios X , Imagens de Fantasmas , Cristalino/efeitos da radiação
3.
Biosens Bioelectron ; 255: 116237, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537429

RESUMO

Scintillation-based fiber dosimeters are a powerful tool for minimally invasive localized real-time monitoring of the dose rate during Low Dose Rate (LDR) and High Dose Rate (HDR) brachytherapy (BT). This paper presents the design, fabrication, and characterization of such dosimeters, consisting of scintillating sensor tips attached to polymer optical fiber (POF). The sensor tips consist of inorganic scintillators, i.e. Gd2O2S:Tb for LDR-BT, and Y2O3:Eu+4YVO4:Eu for HDR-BT, dispersed in a polymer host. The shape and size of the tips are optimized using non-sequential ray tracing simulations towards maximizing the collection and coupling of the scintillation signal into the POF. They are then manufactured by means of a custom moulding process implemented on a commercial hot embossing machine, paving the way towards series production. Dosimetry experiments in water phantoms show that both the HDR-BT and LDR-BT sensors feature good consistency in the magnitude of the average photon count rate and that the photon count rate signal is not significantly affected by variations in sensor tip composition and geometry. Whilst individual calibration remains necessary, the proposed dosimeters show great potential for in-vivo dosimetry for brachytherapy.


Assuntos
Técnicas Biossensoriais , Braquiterapia , Dosímetros de Radiação , Fibras Ópticas , Polímeros
4.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474163

RESUMO

This work presents an ecological, flexible 2D radiochromic dosimeter for measuring ionizing radiation in the kilogray dose range. Cotton woven fabric made of cellulose was volume-modified with nitrotetrazolium blue chloride as a radiation-sensitive compound. Its features include a color change during exposure from yellowish to purple-brown and flexibility that allows it to adapt to various shapes. It was found that (i) the dose response is up to ~80 kGy, (ii) it is independent of the dose rate for 1.1-73.1 kGy/min, (iii) it can be measured in 2D using a flatbed scanner, (iv) the acquired images can be filtered using a mean filter, which improves its dose resolution, (v) the dose resolution is -0.07 to -0.4 kGy for ~0.6 to ~75.7 kGy for filtered images, and (vi) two linear dose subranges can be distinguished: ~0.6 to ~7.6 kGy and ~9.9 to ~62.0 kGy. The dosimeter combined with flatbed scanner reading and data processing using dedicated software packages constitutes a comprehensive system for measuring dose distributions for objects with complex shapes.


Assuntos
Dosímetros de Radiação , Radiação Ionizante , Celulose , Radiometria/métodos
5.
Health Phys ; 126(5): 322-338, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526251

RESUMO

ABSTRACT: Radiation exposure is a primary concern in emergency response scenarios and long-term health assessments. Accurate quantification of radiation doses is critical for informed decision-making and patient care. This paper reviews the dose reconstruction technique using both X- and Q-bands, with tooth enamel as a reliable dosimeter. Tooth enamel, due to its exceptional resistance to alteration over time, offers a unique opportunity for assessing both acute and chronic radiation exposures. This review delves into the principles underlying enamel dosimetry, the mechanism of radiation interactions, and dose retention in tooth enamel. We explore state-of-the-art analytical methods, such as electron paramagnetic resonance (EPR) spectroscopy, that accurately estimate low and high doses in acute and chronic exposure. Furthermore, we discuss the applicability of tooth enamel dosimetry in various scenarios, ranging from historical radiological incidents to recent nuclear events or radiological incidents. The ability to reconstruct radiation doses from dental enamel provides a valuable tool for epidemiological studies, validating the assessment of health risks associated with chronic exposures and aiding in the early detection and management of acute radiation incidents. This paper underscores the significance of tooth enamel as an essential medium for radiation dose reconstruction and its broader implications for enhancing radiation protection, emergency response, and public health preparedness. Incorporating enamel EPR dosimetry into standard protocols has the potential to transform the field of radiation assessment, ensuring more accurate and timely evaluations of radiation exposure and its associated risks.


Assuntos
Exposição à Radiação , Radiologia , Humanos , Espectroscopia de Ressonância de Spin Eletrônica , Exposição à Radiação/efeitos adversos , Saúde Pública , Dosímetros de Radiação
6.
Phys Med Biol ; 69(9)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38530300

RESUMO

Objective.The successful implementation of FLASH radiotherapy in clinical settings, with typical dose rates >40 Gy s-1, requires accurate real-time dosimetry.Approach.Silicon carbide (SiC) p-n diode dosimeters designed for the stringent requirements of FLASH radiotherapy have been fabricated and characterized in an ultra-high pulse dose rate electron beam. The circular SiC PiN diodes were fabricated at IMB-CNM (CSIC) in 3µm epitaxial 4H-SiC. Their characterization was performed in PTB's ultra-high pulse dose rate reference electron beam. The SiC diode was operated without external bias voltage. The linearity of the diode response was investigated up to doses per pulse (DPP) of 11 Gy and pulse durations ranging from 3 to 0.5µs. Percentage depth dose measurements were performed in ultra-high dose per pulse conditions. The effect of the total accumulated dose of 20 MeV electrons in the SiC diode sensitivity was evaluated. The temperature dependence of the response of the SiC diode was measured in the range 19 °C-38 °C. The temporal response of the diode was compared to the time-resolved beam current during each electron beam pulse. A diamond prototype detector (flashDiamond) and Alanine measurements were used for reference dosimetry.Main results.The SiC diode response was independent both of DPP and of pulse dose rate up to at least 11 Gy per pulse and 4 MGy s-1, respectively, with tolerable deviation for relative dosimetry (<3%). When measuring the percentage depth dose under ultra-high dose rate conditions, the SiC diode performed comparably well to the reference flashDiamond. The sensitivity reduction after 100 kGy accumulated dose was <2%. The SiC diode was able to follow the temporal structure of the 20 MeV electron beam even for irregular pulse estructures. The measured temperature coefficient was (-0.079 ± 0.005)%/°C.Significance.The results of this study demonstrate for the first time the suitability of silicon carbide diodes for relative dosimetry in ultra-high dose rate pulsed electron beams up to a DPP of 11 Gy per pulse.


Assuntos
Compostos Inorgânicos de Carbono , Dosímetros de Radiação , Radiometria , Radiometria/métodos , Compostos de Silício , Elétrons
7.
J Radiol Prot ; 44(1)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38306678

RESUMO

This research investigates the effects of new definitions of operational dosimetric quantities, especiallyHp(10) to Hp recommended by ICRU Report 95, on the dosimetry system. This paper focuses on the responses of two dosimeter types, nanoDot® and InLight®, using conversional coefficients from ICRU report 57 and ICRU report 95 conversion coefficients. The dosimeters were irradiated with various beam qualities, and their responses were compared to the acceptant limits provided by the IEC 62387. The results demonstrate higher responses at new definitions recommended by ICRU report 95, indicating the need for algorithm modifications in the dose calculation.


Assuntos
Dosímetros de Radiação , Radiometria , Doses de Radiação , Tailândia , Radiometria/métodos
8.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339627

RESUMO

Source localisation and real-time dose verification are at the forefront of medical research in brachytherapy, an oncological radiotherapy procedure based on radioactive sources implanted in the patient body. The ORIGIN project aims to respond to this medical community's need by targeting the development of a multi-point dose mapping system based on fibre sensors integrating a small volume of scintillating material into the tip and interfaced with silicon photomultipliers operated in counting mode. In this paper, a novel method for the selection of the optimal silicon photomultipliers to be used is presented, as well as a laboratory characterisation based on dosimetric figures of merit. More specifically, a technique exploiting the optical cross-talk to maintain the detector linearity in high-rate conditions is demonstrated. Lastly, it is shown that the ORIGIN system complies with the TG43-U1 protocol in high and low dose rate pre-clinical trials with actual brachytherapy sources, an essential requirement for assessing the proposed system as a dosimeter and comparing the performance of the system prototype against the ORIGIN project specifications.


Assuntos
Braquiterapia , Humanos , Braquiterapia/métodos , Dosagem Radioterapêutica , Dosímetros de Radiação , Radiometria/métodos , Software
9.
J Appl Clin Med Phys ; 25(1): e14180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38011008

RESUMO

For commissioning and quality assurance for adaptive workflows on the MR-linac, a dosimeter which can measure time-resolved dose during MR image acquisition is desired. The Blue Physics model 10 scintillation dosimeter is potentially an ideal detector for such measurements. However, some detectors can be influenced by the magnetic field of the MR-linac. To assess the calibration methods and magnetic field dependency of the Blue Physics scintillator in the 1.5 T MR-linac. Several calibration methods were assessed for robustness. Detector characteristics and the influence of the calibration methods were assessed based on dose reproducibility, dose linearity, dose rate dependency, relative output factor (ROF), percentage depth dose profile, axial rotation and the radial detector orientation with respect to the magnetic field. The potential application of time-resolved dynamic dose measurements during MRI acquisition was assessed. A variation of calibration factors was observed for different calibration methods. Dose reproducibility, dose linearity and dose rate stability were all found to be within tolerance and were not significantly affected by different calibration methods. Measurements with the detector showed good correspondence with reference chambers. The ROF and radial orientation dependence measurements were influenced by the calibration method used. Axial detector dependence was assessed and relative readout differences of up to 2.5% were observed. A maximum readout difference of 10.8% was obtained when rotating the detector with respect to the magnetic field. Importantly, measurements with and without MR image acquisition were consistent for both static and dynamic situations. The Blue Physics scintillation detector is suitable for relative dosimetry in the 1.5 T MR-linac when measurements are within or close to calibration conditions.


Assuntos
Aceleradores de Partículas , Dosímetros de Radiação , Humanos , Reprodutibilidade dos Testes , Imagens de Fantasmas , Radiometria/métodos , Imageamento por Ressonância Magnética/métodos , Campos Magnéticos
10.
J Appl Clin Med Phys ; 25(2): e14159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735808

RESUMO

PURPOSE: Radiotherapy delivered at ultra-high-dose-rates (≥40 Gy/s), that is, FLASH, has the potential to effectively widen the therapeutic window and considerably improve the care of cancer patients. The underlying mechanism of the FLASH effect is not well understood, and commercial systems capable of delivering such dose rates are scarce. The purpose of this study was to perform the initial acceptance and commissioning tests of an electron FLASH research product for preclinical studies. METHODS: A linear accelerator (Clinac 23EX) was modified to include a non-clinical FLASH research extension (the Clinac-FLEX system) by Varian, a Siemens Healthineers company (Palo Alto, CA) capable of delivering a 16 MeV electron beam with FLASH and conventional dose rates. The acceptance, commissioning, and dosimetric characterization of the FLEX system was performed using radiochromic film, optically stimulated luminescent dosimeters, and a plane-parallel ionization chamber. A radiation survey was conducted for which the shielding of the pre-existing vault was deemed sufficient. RESULTS: The Clinac-FLEX system is capable of delivering a 16 MeV electron FLASH beam of approximately 1 Gy/pulse at isocenter and reached a maximum dose rate >3.8 Gy/pulse near the upper accessory mount on the linac gantry. The percent depth dose curves of the 16 MeV FLASH and conventional modes for the 10 × 10 cm2 applicator agreed within 0.5 mm at a range of 50% of the maximum dose. Their respective profiles agreed well in terms of flatness but deviated for field sizes >10 × 10 cm2 . The output stability of the FLASH system exhibited a dose deviation of <1%. Preliminary cell studies showed that the FLASH dose rate (180 Gy/s) had much less impact on the cell morphology of 76N breast normal cells compared to the non-FLASH dose rate (18 Gy/s), which induced large-size cells. CONCLUSION: Our studies characterized the non-clinical Clinac-FLEX system as a viable solution to conduct FLASH research that could substantially increase access to ultra-high-dose-rate capabilities for scientists.


Assuntos
Elétrons , Radiometria , Humanos , Dosagem Radioterapêutica , Aceleradores de Partículas , Dosímetros de Radiação
11.
Z Med Phys ; 34(1): 111-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37225603

RESUMO

Ionizing radiation in general and mixed fields of space radiation in particular pose a risk of serious harm to human health. The risk of such adverse effects increases with the duration of the mission, and for all missions outside the protective properties of the Earth's magnetic field and atmosphere. Accordingly, radiation protection is of central importance for all human spaceflight, which is recognized by all international space agencies. To date various systems, analyze and determine the exposure to ionizing radiation within the environment and to the crew onboard the International Space Station (ISS). In addition to this operational monitoring, experiments and technology demonstrations are carried out. This to further enhance systems capabilities, to prepare for exploratory missions, to the Deep Space Gateway and/or to enable for human presence at other celestial bodies. Subsequently the European Space Agency (ESA) decided early to support the development of an active personal dosimeter. Under the auspices of the European Space Research and Technology Center (ESTEC) together with the European Astronaut Center's (EAC) Medical Operations and Space Medicine (HRE-OM) team, a European industrial consortium was formed to develop, build, and test this system. To complete the ESA Active Dosimeter (EAD) Technology Demonstration in space, EAD components were delivered to ISS with the ESA's space missions 'iriss' and 'proxima' in 2015 and 2016. This marked Phase 1 (2015) and 2 (2016-2017) of the EAD Technology Demonstration to which focus is given in this publication. All EAD systems and their functionalities, the different radiation detector, their properties, and calibrations procedures are described. Emphasis is first on the "iriss" mission of September 2015, that provided a complete set of data for an entire space mission from launch to landing, for the first time. Data obtained during Phase 2 in 2016-2017 are discussed thereafter. Measurements with the active radiation detectors of the EAD system provided data of the absorbed dose, dose equivalent, quality factor as well as the various dose contributions during the crossings of the South Atlantic Anomaly (SAA) and/or resulting from galactic cosmic radiation (GCR). Results of the in-flight cross-calibrations among the internal sensors of the EAD systems are discussed and alternative usage of the EAD Mobile Units as area monitors at various different locations inside the ISS is described.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Humanos , Dosímetros de Radiação , Monitoramento de Radiação/métodos , Astronautas , Doses de Radiação
12.
Chemistry ; 30(12): e202303771, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38118132

RESUMO

This work explores the potential of carbon dots as a fluorescent probe in the determination of heavy ions and as an electrochemical biosensor. It also discusses how carbon dots can be introduced into the Fricke solution to potentially serve as an ionizing radiation sensor. The study presents a novel tissue equivalent dosimeter carbon dots-based as an ionizing radiation sensor. The methodology for the synthesis of Nitrogen-doped Carbon Dots N-CDs and the characterization of the material are described. The results show that the N-CDs have a high sensitivity to ionizing radiation and can be used as a dosimeter for radiation detection. The study also discusses the limitations and challenges of using carbon dots as a dosimeter for ionizing radiation. Overall, this study provides valuable insights into the potential applications of carbon dots in different fields and highlights the importance of further research in this area.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Dosímetros de Radiação , Nitrogênio/química , Corantes Fluorescentes/química
13.
Radiat Prot Dosimetry ; 199(20): 2537-2541, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126864

RESUMO

The exposure to high levels of ionising radiation can cause severe health risks including cancer. The monitoring of background radiation is a primary task of nuclear scientists and researchers in the present day. The aim of the present work is to measure effective annual dose rate due to gamma-ray background radiation in dwellings of selected villages around Tumkur. It is very important to monitor background radiation in dwellings to safeguard from the harmful effects of gamma-ray background radiation. The dose rates in dwellings were measured using a German-made portable gamma dosemeter, Gamma-Scout. The measured annual dose rates were in the range of 1.103-2.824 mSv/y. From this survey, it was observed that the average annual dose rate for dwellings under study area with concrete ceiling and tiles floor are comparatively higher than the dwellings with griddle ceiling and stone floor.


Assuntos
Radiação de Fundo , Médicos , Humanos , Dosímetros de Radiação , Radiação Ionizante
14.
Molecules ; 28(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138632

RESUMO

(1) Background: Radioprotective agents have garnered considerable interest due to their prospective applications in radiotherapy, public health medicine, and situations of large-scale accidental radiation exposure or impending radiological emergencies. Cystamine, an organic diamino-disulfide compound, is recognized for its radiation-protective and antioxidant properties. This study aims to utilize the aqueous ferrous sulfate (Fricke) dosimeter to measure the free-radical scavenging capabilities of cystamine during irradiation by fast carbon ions. This analysis spans an energy range from 6 to 500 MeV per nucleon, which correlates with "linear energy transfer" (LET) values ranging from approximately 248 keV/µm down to 9.3 keV/µm. (2) Methods: Monte Carlo track chemistry calculations were used to simulate the radiation-induced chemistry of aerated Fricke-cystamine solutions across a broad spectrum of cystamine concentrations, ranging from 10-6 to 1 M. (3) Results: In irradiated Fricke solutions containing cystamine, cystamine is observed to hinder the oxidation of Fe2+ ions, an effect triggered by oxidizing agents from the radiolysis of acidic water, resulting in reduced Fe3+ ion production. Our simulations, conducted both with and without accounting for the multiple ionization of water, confirm cystamine's ability to capture free radicals, highlighting its strong antioxidant properties. Aligning with prior research, our simulations also indicate that the protective and antioxidant efficiency of cystamine diminishes with increasing LET of the radiation. This result can be attributed to the changes in the geometry of the track structures when transitioning from lower to higher LETs. (4) Conclusions: If we can apply these fundamental research findings to biological systems at a physiological pH, the use of cystamine alongside carbon-ion hadrontherapy could present a promising approach to further improve the therapeutic ratio in cancer treatments.


Assuntos
Cistamina , Transferência Linear de Energia , Cistamina/farmacologia , Antioxidantes , Dosímetros de Radiação , Íons , Núcleons , Água/química , Carbono
15.
Biomed Phys Eng Express ; 10(1)2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38109792

RESUMO

Effective dose is sometimes used to compare medical radiation exposure to patients and natural radiation for providing explanations about radiation exposure to patients, but its calculation is lengthy and requires dedicated measuring devices. The purpose of this study was to identify the most suitable conversion coefficient for conversion of easily measurable dose to effective dose in posterior-anterior chest radiography, and to evaluate its accuracy by direct measurement. We constructed an examination environment using Monte Carlo simulation, and evaluated the variation in conversion coefficients from incident air kerma (IAK), entrance-surface air kerma (ESAK), and air kerma-area product (KAP) to effective dose when the irradiation field size and radiation quality were changed. Effective doses were also measured directly using thermoluminescence dosimeters and compared with the effective dose obtained from conversion coefficients. The KAP conversion coefficient most effectively suppressed the effect of irradiation field size, and was then used to set conversion coefficients for various half-value layers. The optimal conversion coefficient was 0.00023 [mSv/(mGy·cm2)] at 120 kVp (half-value layer = 5.5 mmAl). Evaluation of the direct measurements obtained with various radiation qualities revealed that the accuracy of the conversion coefficient was maintained at ≤ 11%. The proposed conversion coefficient can be easily calculated even in facilities that do not have equipment for measuring effective dose, and might enable the use of effective dose for providing explanations about radiation exposure to patients.


Assuntos
Dosímetros de Radiação , Humanos , Doses de Radiação , Radiografia , Simulação por Computador , Método de Monte Carlo
16.
Life Sci Space Res (Amst) ; 39: 119-130, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945084

RESUMO

The knowledge of the space radiation environment in spacecraft transition and in Mars vicinity is of importance for the preparation of the human exploration of Mars. ExoMars Trace Gas Orbiter (TGO) was launched on March 14, 2016 and was inserted into circular Mars science orbit (MSO) with a 400 km altitude in March 2018. The Liulin-MO dosimeter is a module of the Fine Resolution Epithermal Neutron Detector (FREND) aboard ExoMars TGO and has been measuring the radiation environment during the TGO interplanetary travel to Mars and continues to do so in the TGO MSO. One of the scientific objectives of the Liulin-MO investigations is to provide data for verification and benchmarking of the Mars radiation environment models. In this work we present results of comparisons of the flux measured by the Liulin-MO in TGO Mars orbit with calculated estimations. Described is the methodology for estimation the particle flux in Liulin-MO detectors in MSO, which includes modeling the albedo spectra and procedure for calculation the fluxes, recorded by Liulin-MO on the basis of the detectors shielding model. The galactic cosmic rays (GCR) and Mars albedo radiation contribution to the detectors count rate was taken into account. The GCR particle flux was calculated using the Badhwar O'Neil 2014 model for December 1, 2018. Detailed calculations of the albedo spectra of protons, helium ions, neutrons and gamma rays at 70 km height, performed with Atmospheric Radiation Interaction Simulator (AtRIS), were used for deriving the albedo radiation fluxes at the TGO altitude. In particular, the sensitivity of the Liulin-MO semiconductor detectors to neutron and gamma radiation has been considered in order to calculate the contribution of the neutral particles to the detected flux. The results from the calculations suggest that the contribution of albedo radiation can be about 5% of the measured total flux from GCR and albedo at the TGO altitude. The critical effect of TGO orientation, causing different shading of the GCR flux by Mars, is also analysed in detail. The comparison between the measurements and estimations shows that the measured fluxes exceed the calculated values by at least 20% and that the effect of TGO orientation change is approximately the same for the calculated and measured fluxes. Accounting for the ACR contribution, secondary radiation and the gradient of GCR spectrum from 1 AU to 1.5 AU, the calculated flux may increase to match the measurement results. The results can serve for the benchmarking of GCRs models at Martian orbit.


Assuntos
Marte , Monitoramento de Radiação , Humanos , Dosímetros de Radiação , Meio Ambiente Extraterreno , Órbita , Monitoramento de Radiação/métodos
17.
Life Sci Space Res (Amst) ; 39: 95-105, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945094

RESUMO

Monitoring space radiation is of vital importance for risk reduction strategies in human space exploration. Radiation protection programs on Earth and in space rely on personal and area radiation monitoring instruments. Crew worn radiation detectors are crucial for successful crew radiation protection programs since they measure what each crewmember experiences in different shielding configurations within the space habitable volume. The Space Radiation Analysis Group at NASA Johnson Space Center investigated several compact, low power, real-time instruments for personal dosimetry. Following these feasibility studies, the Crew Active Dosimeter (CAD) has been chosen as a replacement for the legacy crew passive radiation detectors. The CAD device, based on direct ion storage technology, was developed by Mirion Dosimetry Services to meet the specified NASA design requirements for the International Space Station (ISS) and Artemis programs. After a successful Technology demonstration on ISS, the CAD has been implemented for ISS Crew operations since 2020. The current paper provides an overview of the CAD development, ISS results and comparison with the ISS Radiation Assessment Detector (RAD) and the Radiation Environment Monitor 2 (REM2) instruments.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Humanos , Astronave , Dosímetros de Radiação , Radiometria , Monitoramento de Radiação/métodos , Doses de Radiação
18.
J Med Syst ; 47(1): 107, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851155

RESUMO

The use of two personal dosimeters, one worn over and one worn under a protective apron, provides the best estimate of effective dose. However, inappropriate positioning of dosimeters is a common occurrence, resulting in abnormally high or low radiation exposure records. Although such incorrect positioning can be identified by radiation exposure records, doing so is time-consuming and labor-intensive for administrators. Therefore, a system that can identify incorrect locations of dosimeters without burdening administrators must be developed. In this study, we developed a radio frequency identification (RFID) gate system that can differentiate between two RFID-tagged dosimeters placed over and under a metal apron and identify misused dosimeters. To simulate the position of the RFID-tagged dosimeters, we designed four dosimeter-wearing classes, including "proper use" and three types of "misuse" (i.e., "reversed," "both under," and "both over"). When the system predicts "misuse" based on the tag reading, the worker is alerted with lights and alarms. The system performance was evaluated using a confusion matrix, with an overall accuracy of 97.75%, demonstrating high classification performance. The safety of the system against life support devices was also investigated, demonstrating that they were not affected by the electric field at 0.3 m or more from the antenna of the system under any transmit powers tested. This RFID gate system is highly capable of identifying incorrectly positioned dosimeters, enabling real-time monitoring of dosimeters to manage their positioning.


Assuntos
Dispositivo de Identificação por Radiofrequência , Humanos , Dosímetros de Radiação
19.
Nat Biomed Eng ; 7(10): 1212-1214, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37848557
20.
Phys Med Biol ; 68(22)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37857285

RESUMO

Objective. This work focuses on the optically stimulated luminescence dosimetry (OSLD) dose-response characterization, with emphasis on 1.5T MR-Linacs.Approach. Throughout this study, the nanoDots OSLDs (Landauer, USA) were considered. In groups of three, the mean OSLD response was measured in a conventional linac and an MR-Linac under various irradiation conditions to investigate (i) dose-response linearity with and without the 1.5T magnetic field, (ii) signal fading rate and its dependencies, (iii) beam quality, detector orientation and dose rate dependencies in a conventional linac, (iii) potential MR imaging related effects on OSLD response and (iv) detector orientation dependence in an MR-Linac. Monte Carlo calculations were performed to further quantify angular dependence after rotating the detector around its central axis parallel to the magnetic field, and determine the magnetic field correction factors,kB,Q,for all cardinal detector orientations.Main results. OSLD dose-response supralinearity in an MR-Linac setting was found to agree within uncertainties with the corresponding one in a conventional linac, for the axial detector orientation investigated. Signal fading rate does not depend on irradiation conditions for the range of 3-30 d considered. OSLD angular (orientation) dependence is more pronounced under the presence of a magnetic field. OSLDs irradiated with and without real-time T2w MR imaging enabled during irradiation yielded the same response within uncertainties.kB,Qvalues were determined for all three cardinal orientations. Corrections needed reached up to 6.4%. However, if OSLDs are calibrated in the axial orientation and then irradiated in an MR-Linac placed again in the axial orientation (perpendicular to the magnetic field), then simulations suggest thatkB,Qcan be considered unity within uncertainties, irrespective of the incident beam angle.Significance. This work contributes towards OSLD dose-response characterization and relevant correction factors availability. OSLDs are suitable for QA checks in MR-based beam gating applications andin vivodosimetry in MR-Linacs.


Assuntos
Dosimetria por Luminescência Estimulada Opticamente , Dosímetros de Radiação , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...