Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.769
Filtrar
1.
Ultrason Sonochem ; 109: 107015, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142027

RESUMO

In the present study, non-conventional and green technology (ultrasonication) was utilized to recover bioactive compounds from the small, medium and large sized defatted date seed powder (DDSP) particles. Bioactive compounds recovered from DDSP and the remaining fiber-rich residue were incorporated as functional ingredient in the biscuit dough to enhance the functionality and the quality characteristics of the dough and biscuit. The polyphenolic extract and 2.5 %, 5 % and 7.5 % substitution levels of fiber-rich extraction residue were incorporated in formulations followed by investigating the effect on rheological, physical and microstructural properties of dough and biscuit. Loss and storage moduli, G'' and G', respectively, of dough increased with decreasing particle size and increasing substitution level while tan δ decreased with increasing substitution level of fiber-rich extraction residue. The smallest particles at 7.5 % substitution level resulted in the lowest creep strain value in dough. Hardness of the dough and biscuit increased with decreasing particle size and increasing substitution level of the residue. The 7.5 % substitution level of the smallest particle size resulted in the darkest dough and biscuit. Spread ratio and diameter of the biscuit decreased with increasing substitution level of the residue. The smallest diameter of 50.61 mm and spread ratio of 8.36 was observed in the biscuits substituted with the largest particle size with 7.5 % substitution level. Microstructural images of dough and biscuit revealed that the continuity of the gluten network was disrupted by the incorporation of the fiber-rich extraction residue. This study provided valuable insights into extracting bioactive components from date by-products using green ultrasonication technique and utilizing such compounds to improve functional attributes of bakery products, as a sustainable approach for valorizing date by-products.


Assuntos
Reologia , Sementes , Sementes/química , Tamanho da Partícula , Sonicação , Pão/análise , Farinha/análise , Manipulação de Alimentos/métodos , Fenômenos Físicos , Qualidade dos Alimentos
2.
Ultrason Sonochem ; 108: 106978, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971086

RESUMO

Drying, as a critical step in the production of air-dried beef, has a direct impact on the quality of the final product. Innovatively, a composite system incorporating contact ultrasound (CU) and infrared radiation (IR) as auxiliary measures within a hot air drying (HAD) framework was built in this research, and the effects of these techniques on the drying kinetics, protein denaturation, and moisture transformation of air-dried beef were investigated. In comparison to HAD treatment, the integrated CU and IR (CU-IRD) system displayed marked enhancements in heat and moisture transport efficiency, thereby saving 36.84% of time expenditure and contributing favorably to the improved moisture distribution of the end-product. This was mainly ascribed to the denaturation of myosin induced by IR thermal effect and the micro-channel produced by CU sponge effect, thus increasing T2 relaxation time and the proportion of free water. In conclusion, the composite system solved the problem of surface hardening and reduces hardness and chewiness of air-dried beef by 40.42% and 45.25% respectively, but inevitably increased the energy burden by 41.60%.


Assuntos
Ar , Dessecação , Raios Infravermelhos , Água , Água/química , Cinética , Dessecação/métodos , Bovinos , Animais , Ondas Ultrassônicas , Temperatura Alta , Carne Vermelha , Fenômenos Físicos
3.
J Mech Behav Biomed Mater ; 155: 106563, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678747

RESUMO

OBJECTIVES: The aim of the study was to investigate the impact of organic additives (binder, plasticizer, and the cross-linking ink) in the formulation of water-based feedstocks on the properties of a dental feldspathic glass-ceramic material developed for the slurry-based additive manufacturing technology "LSD-print." MATERIAL AND METHODS: Three water-based feldspathic feedstocks were produced to study the effects of polyvinyl alcohol (AC1) and poly (sodium 4-styrenesulfonate) (AC2) as binder systems. A feedstock without organic additives was tested as the control group (CG). Disc-shaped (n = 15) and bar (n = 7) specimens were slip-cast and characterized in the green and fired states. In the green state, density and flexural strength were measured. In the fired state, density, shrinkage, flexural strength (FS), Weibull modulus, fracture toughness (KIC), Martens parameters, and microstructure were analyzed. Disc-shaped and bar specimens were also cut from commercially available CAD/CAM blocks and used as a target reference (TR) for the fired state. RESULTS: In the green state, CG showed the highest bulk density but the lowest FS, while the highest FS in the green state was achieved with the addition of a cross-linking ink. After firing, no significant differences in density and a similar microstructure were observed for all slip-cast groups, indicating that almost complete densification could be achieved. The CAD/CAM specimens showed the highest mean FS, Weibull modulus, and KIC, with significant differences between some of the slip-cast groups. SIGNIFICANCE: These results suggest that the investigated feedstocks are promising candidates for the slurry-based additive manufacturing of restorations meeting the class 1a requirements according to DIN EN ISO 6871:2019-01.


Assuntos
Cerâmica , Teste de Materiais , Silicatos , Cerâmica/química , Silicatos/química , Fenômenos Mecânicos , Resistência à Flexão , Fenômenos Físicos , Materiais Dentários/química
4.
J Texture Stud ; 55(2): e12832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613251

RESUMO

Puffed-grain food is a crispy snack whose consumer satisfaction depends on snack crispness and crunchiness, which can be characterized by the sound and the acoustic signals of food breaking. This study aimed to evaluate whether acoustic characteristics can be used to predict the crispness of various puffed-grain food. Sensory evaluation was performed on puffed-grain products with varying hygroscopic durations and different types. The relation between sensory evaluation and acoustic characteristics of nine different types of food was examined. The Hilbert-Huang transform was used to perform energy segmentation of the acoustic signal of puffed-grain food and observe its energy migration process. The results showed that energy release was more concentrated in the low-frequency range for grain-puffed foods with different hygroscopic durations. No notable correlation was observed between the low-frequency interval and sensory crispness for the different types of puffed-grain foods. However, the acoustic features extracted from their inherent low-frequency intervals showed a significantly improved correlation with sensory crispness. Therefore, it provides a theoretical reference for applying acoustic characteristics to describe food texture.


Assuntos
Acústica , Som , Grão Comestível , Fenômenos Físicos , Lanches
5.
J Texture Stud ; 55(2): e12823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613313

RESUMO

In 2017, the International Dysphagia Diet Standardisation Initiative (IDDSI) introduced the IDDSI flow test which enables patients, clinicians, caregivers, food service professionals and researchers to classify liquid thickness into five levels based on the volume of liquid remaining in a standard 10 mL slip tip syringe after 10 s of flow under gravity. Within a few months of publishing the IDDSI flow test instructions, several barriers emerged: (1) the preferred model of syringe (BD 303134) was not equally accessible around the world, causing some users to perform flow tests with alternate models of syringe; (2) differences in syringe geometry across models led to variations in IDDSI flow test results; and (3) the need to use a second syringe for sample loading added complexity and cost to end users. To address these barriers, IDDSI designed the IDDSI funnel, a novel device, which combines the geometry of the BD 303134 syringe with a kitchen funnel to facilitate easy loading of liquid samples without need for a second syringe. In this report, we compare the IDDSI flow test results across two devices: syringe BD 303134 and IDDSI funnel. IDDSI level classifications were in complete agreement with the syringe reference test results in 67/73 (92%) of the test fluids and temperature conditions with mean difference of residual liquid across devices of 0.2 (2% full scale). These results demonstrate excellent correspondence between the two devices.


Assuntos
Transtornos de Deglutição , Serviços de Alimentação , Humanos , Fenômenos Físicos , Temperatura
6.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610349

RESUMO

Seismocardiography (SCG), a method for measuring heart-induced chest vibrations, is gaining attention as a non-invasive, accessible, and cost-effective approach for cardiac pathologies, diagnosis, and monitoring. This study explores the integration of SCG acquired through smartphone technology by assessing the accuracy of metrics derived from smartphone recordings and their consistency when performed by patients. Therefore, we assessed smartphone-derived SCG's reliability in computing median kinetic energy parameters per record in 220 patients with various cardiovascular conditions. The study involved three key procedures: (1) simultaneous measurements of a validated hardware device and a commercial smartphone; (2) consecutive smartphone recordings performed by both clinicians and patients; (3) patients' self-conducted home recordings over three months. Our findings indicate a moderate-to-high reliability of smartphone-acquired SCG metrics compared to those obtained from a validated device, with intraclass correlation (ICC) > 0.77. The reliability of patient-acquired SCG metrics was high (ICC > 0.83). Within the cohort, 138 patients had smartphones that met the compatibility criteria for the study, with an observed at-home compliance rate of 41.4%. This research validates the potential of smartphone-derived SCG acquisition in providing repeatable SCG metrics in telemedicine, thus laying a foundation for future studies to enhance the precision of at-home cardiac data acquisition.


Assuntos
Doenças Cardiovasculares , Smartphone , Humanos , Reprodutibilidade dos Testes , Fenômenos Físicos , Benchmarking , Doenças Cardiovasculares/diagnóstico
7.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597934

RESUMO

Termites build complex nests which are an impressive example of self-organization. We know that the coordinated actions involved in the construction of these nests by multiple individuals are primarily mediated by signals and cues embedded in the structure of the nest itself. However, to date there is still no scientific consensus about the nature of the stimuli that guide termite construction, and how they are sensed by termites. In order to address these questions, we studied the early building behavior of Coptotermes gestroi termites in artificial arenas, decorated with topographic cues to stimulate construction. Pellet collections were evenly distributed across the experimental setup, compatible with a collection mechanism that is not affected by local topography, but only by the distribution of termite occupancy (termites pick pellets at the positions where they are). Conversely, pellet depositions were concentrated at locations of high surface curvature and at the boundaries between different types of substrate. The single feature shared by all pellet deposition regions was that they correspond to local maxima in the evaporation flux. We can show analytically and we confirm experimentally that evaporation flux is directly proportional to the local curvature of nest surfaces. Taken together, our results indicate that surface curvature is sufficient to organize termite building activity and that termites likely sense curvature indirectly through substrate evaporation. Our findings reconcile the apparently discordant results of previous studies.


Assuntos
Isópteros , Humanos , Animais , Consenso , Sinais (Psicologia) , Personalidade , Fenômenos Físicos
8.
PLoS One ; 19(4): e0301852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625980

RESUMO

In view of the growing role of magnetic particles under magnetic field influence in medical and other applications, and perforce the bead chaining, it is important to understand more generally the chain dynamics. As is well known, in the presence of a magnetic field, magnetic beads tend to form chains that are aligned with the magnetic field vector. In addition, if there is a magnetic field gradient, there will be a magnetic force acting on this chain. The main goal of the present research is to study the motion of a magnetic bead chain that makes an arbitrary angle with the magnetic force vector in the Stokes flow limit, that is, in the limit of zero Reynolds number. We used the public-domain computer program HYDRO++ to calculate the mobility matrix, which relates the magnetic force acting on the chain to the velocity of the chain, for a chain of N beads making an arbitrary angle with the magnetic force vector. Because of the presence of off-diagonal elements of the mobility matrix, as the chain is drawn in the direction of the magnetic force, it is also deflected to the side. We derived analytic solutions for this motion. Also, for bead chains moving in directions both parallel and perpendicular to their lengths, we fit three-parameter functions to solutions from HYDRO++. We found the fits to be excellent. Combining these results with the analytic solutions, we obtained expressions for the velocity components for the bead chains that provide excellent fits to HYDRO++ solutions for arbitrary angles. Finally, we apply the methodology used for the bead chain studies to the study of an obliquely falling rod in a viscous fluid and derive analytic solutions for the velocity components of the obliquely falling rod.


Assuntos
Magnetismo , Campos Magnéticos , Movimento (Física) , Fenômenos Físicos
9.
ACS Appl Mater Interfaces ; 16(15): 19411-19420, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588486

RESUMO

Zinc oxide (ZnO) is a widely employed material for enhancing the performance of cellulose-based triboelectric nanogenerators (C-TENGs). Our study provides a novel chemical interpretation for the improved output efficiency of ZnO in C-TENGs. C-TENGs exhibit excellent flexibility and integration, achieving a maximum open-circuit voltage (Voc) of 210 V. The peak power density is 54.4 µW/cm2 with a load resistance of 107 Ω, enabling the direct powering of 191 light-emitting diodes with the generated electrical output. Moreover, when deployed as self-powered sensors, C-TENGs exhibit prolonged operational viability and responsiveness, adeptly discerning bending and motion induced by human interaction. The device's sensitivity, flexibility, and stability position it as a promising candidate for a diverse array of energy-harvesting applications and advanced healthcare endeavors. Specifically, envisaging sensitized wearable sensors for human activities underscores the multifaceted potential of C-TENGs in enhancing both energy-harvesting technologies and healthcare practices.


Assuntos
Óxido de Zinco , Humanos , Fenômenos Físicos , Movimento (Física) , Celulose , Atividades Humanas
10.
PLoS One ; 19(4): e0301622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630695

RESUMO

This paper proposes a reinforced concrete (RC) boundary beam-wall system that requires less construction material and a smaller floor height compared to the conventional RC transfer girder system. The structural performance of this system subjected to axial compression was evaluated by performing a structural test on four specimens of 1/2 scale. In addition, three-dimensional nonlinear finite element analysis was also performed to verify the effectiveness of the boundary beam-wall system. Three test parameters such as the lower wall length-to-upper wall length ratio, lower wall thickness, and stirrup details of the lower wall were considered. The load-displacement curve was plotted for each specimen and its failure mode was identified. The test results showed that decrease in the lower wall length-to-upper wall length ratio significantly reduced the peak strength of the boundary beam-wall system and difference in upper and lower wall thicknesses resulted in lateral bending caused by eccentricity in the out-of-plane direction. Additionally, incorporating cross-ties and reducing stirrup spacing in the lower wall significantly improved initial stiffness and peak strength, effectively minimizing stress concentration.


Assuntos
Materiais de Construção , Compressão de Dados , Análise de Elementos Finitos , Fenômenos Físicos
11.
J Orthop Surg Res ; 19(1): 231, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589910

RESUMO

BACKGROUND: Internal and external fixation are common surgical procedures for treating fractures. However, the impact of different surgical approaches (including internal and external fixations) on patients' psychological status and Quality of Life (QoL) is rarely examined. Herein, we aimed to investigate the effects of internal and external fixation on anxiety, depression, insomnia, and overall mental and physical health in Distal Radius Fractures (DRF) patients. METHODS: We performed a retrospective study on 96 fracture patients who underwent internal fixation (57 patients) or external fixation (39 patients). The Visual Analog Scale (VAS), the Hospital Anxiety and Depression Scale (HADS), the Athens Insomnia Scale (AIS), and the Medical Outcomes Study Short Form 36 (SF-36) questionnaire were used to assess the patients' pain, anxiety, depression, sleep, and QoL before surgery and at seven days, one month, and three months post-surgery. RESULTS: The VAS scores were significantly lower in the Internal Fixation Group (IFG) than in the External Fixation Group (EFG) on the seventh day and one month postoperatively (P < 0.05). Although both groups showed no significant anxiety, depression, or insomnia before surgery (P > 0.05), the EFG showed significantly higher HADS-A, HADS-D, and AIS scores than the IFG at seven days and one and three months postoperatively (P < 0.05). Additionally, changes in HADS-A, HADS-D, and AIS scores were most significant at day seven post-surgery in the EFG (P < 0.05). Furthermore, no significant difference was found between the two groups in the average Physical Component Summary (PCS) and Mental Component Summary (MCS) scores before surgery (P > 0.05). However, both groups showed positive changes in PCS and MCS scores at postoperative day seven and one and three months postoperatively, with the IFG having significantly higher average PCS and MCS scores compared to the EFG (P < 0.05). CONCLUSION: Compared to external fixation, internal fixation did not significantly impact patients' emotions regarding anxiety and depression in the early postoperative period, and physical and mental health recovery was better during the postoperative rehabilitation period. Furthermore, when there are no absolute indications, the impact on patients' psychological well-being should be considered as one of the key factors in the treatment plan during surgical approach selection.


Assuntos
Fraturas Ósseas , Distúrbios do Início e da Manutenção do Sono , Humanos , Qualidade de Vida , Distúrbios do Início e da Manutenção do Sono/etiologia , Fixadores Externos , Estudos Retrospectivos , Fixação de Fratura/efeitos adversos , Fixação Interna de Fraturas/efeitos adversos , Fenômenos Físicos
12.
Proc Natl Acad Sci U S A ; 121(12): e2306818121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489386

RESUMO

Cells often migrate on curved surfaces inside the body, such as curved tissues, blood vessels, or highly curved protrusions of other cells. Recent in vitro experiments provide clear evidence that motile cells are affected by the curvature of the substrate on which they migrate, preferring certain curvatures to others, termed "curvotaxis." The origin and underlying mechanism that gives rise to this curvature sensitivity are not well understood. Here, we employ a "minimal cell" model which is composed of a vesicle that contains curved membrane protein complexes, that exert protrusive forces on the membrane (representing the pressure due to actin polymerization). This minimal-cell model gives rise to spontaneous emergence of a motile phenotype, driven by a lamellipodia-like leading edge. By systematically screening the behavior of this model on different types of curved substrates (sinusoidal, cylinder, and tube), we show that minimal ingredients and energy terms capture the experimental data. The model recovers the observed migration on the sinusoidal substrate, where cells move along the grooves (minima), while avoiding motion along the ridges. In addition, the model predicts the tendency of cells to migrate circumferentially on convex substrates and axially on concave ones. Both of these predictions are verified experimentally, on several cell types. Altogether, our results identify the minimization of membrane-substrate adhesion energy and binding energy between the membrane protein complexes as key players of curvotaxis in cell migration.


Assuntos
Actinas , Proteínas de Membrana , Movimento Celular , Fenômenos Físicos , Fenótipo , Actinas/metabolismo
13.
Sci Rep ; 14(1): 5457, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443433

RESUMO

The effects of boiling water treatment on the physical properties of Quercus variabilis virgin cork (Qv VC) were examined and compared with those of Quercus suber reproduction cork (Qs RC). The water treatment was conducted at 100 °C for 1 h. Qv VC showed a significantly higher dimensional change in the three directions and lower weight loss than Qs RC by boiling water treatment. Untreated and boiled Qv VC showed higher density, air-dried moisture content, red/green (a*) and yellow/blue (b*) chromaticity, overall color change, shrinkage in all three directions, moisture adsorption on the entire surface, and swelling per 1% moisture content than untreated and boiled Qs RC. However, the lightness (L*) and water absorption on each surface were higher for Qs RC than for Qv VC. Moisture adsorption on each surface was comparable before and after heat treatment for both species. After boiling water treatment, the air-dried moisture content, dimensions, volume shrinkage, water absorption, and moisture adsorption on each surface and the entire surface increased, whereas L*, a*, b*, and swelling per 1% moisture content decreased. The results of the present study could be useful for further utilization of Qv cork growing in Korea.


Assuntos
Hipertermia Induzida , Quercus , Fenômenos Físicos , Adsorção , Fatores de Transcrição , Água , República da Coreia
14.
PLoS One ; 19(3): e0297154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446783

RESUMO

This study introduces a novel concrete-filled tube (CFT) column system featuring a steel tube comprised of four internal triangular units. The incorporation of these internal triangular units serves to reduce the width-thickness ratio of the steel tube and augment the effective confinement area of the infilled concrete. This design enhancement is anticipated to result in improved structural strength and ductility, contributing to enhanced overall performance and sustainability. To assess the effectiveness of the newly proposed column system, a full-scale test was conducted on five square steel tube column specimens subjected to axial compression. Among these specimens, two adhered to the conventional steel tube column design, while the remaining three featured the new CFT columns with internal triangular units. The shape of the CFT column, the presence of infilled concrete and the presence of openings on the ITUs were considered as test parameters. The test results reveal that the ductility of the newly proposed CFT column system exhibited a minimum 30% improvement compared to the conventional CFT column. In addition, the initial stiffness and axial compressive strength of the new system were found to be comparable to those of the conventional CFT column.


Assuntos
Compressão de Dados , Força Compressiva , Fenômenos Físicos , Aço , Resistência à Tração
15.
PLoS One ; 19(3): e0299226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502643

RESUMO

This paper presents a novel approach to addressing the challenges associated with energy storage capacity allocation in high-permeability wind and solar distribution networks. The proposed method is a two-phase distributed robust energy storage capacity allocation method, which aims to regulate the stochasticity and volatility of net energy output. Firstly, an energy storage capacity allocation model is established, which considers energy storage's investment and operation costs to minimize the total cost. Then, a two-stage distributed robust energy storage capacity allocation model is established with the confidence set of uncertainty probability distribution constrained by 1-norm and ∞-norm. Finally, a Column and Constraint Generation (C&CG) algorithm is used to solve the problem. The validity of the proposed energy storage capacity allocation model is confirmed by examining different wind and solar penetration levels. Furthermore, the model's superiority is demonstrated by comparing it with deterministic and robust models.


Assuntos
Energia Solar , Vento , Algoritmos , Incerteza , Fenômenos Físicos
16.
Radiol Cardiothorac Imaging ; 6(2): e230217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451189

RESUMO

Purpose To compare image quality, diagnostic performance, and conspicuity between single-energy and multi-energy images for endoleak detection at CT angiography (CTA) after endovascular aortic repair (EVAR). Materials and Methods In this single-center prospective randomized controlled trial, individuals undergoing CTA after EVAR between August 2020 and May 2022 were allocated to imaging using either low-kilovolt single-energy images (SEI; 80 kV, group A) or low-kiloelectron volt virtual monoenergetic images (VMI) at 40 and 50 keV from multi-energy CT (80/Sn150 kV, group B). Scan protocols were dose matched (volume CT dose index: mean, 4.5 mGy ± 1.8 [SD] vs 4.7 mGy ± 1.3, P = .41). Contrast-to-noise ratio (CNR) was measured. Two expert radiologists established the reference standard for the presence of endoleaks. Detection and conspicuity of endoleaks and subjective image quality were assessed by two different blinded radiologists. Interreader agreement was calculated. Nonparametric statistical tests were used. Results A total of 125 participants (mean age, 76 years ± 8; 103 men) were allocated to groups A (n = 64) and B (n = 61). CNR was significantly lower for 40-keV VMI (mean, 19.1; P = .048) and 50-keV VMI (mean, 16.8; P < .001) as compared with SEI (mean, 22.2). In total, 45 endoleaks were present (A: 23 vs B: 22). Sensitivity for endoleak detection was higher for SEI (82.6%, 19 of 23; P = .88) and 50-keV VMI (81.8%, 18 of 22; P = .90) as compared with 40-keV VMI (77.3%, 17 of 22). Specificity was comparable among groups (SEI: 92.7%, 38 of 41; both VMI energies: 92.3%, 35 of 38; P = .99), with an interreader agreement of 1. Conspicuity of endoleaks was comparable between SEI (median, 2.99) and VMI (both energies: median, 2.87; P = .04). Overall subjective image quality was rated significantly higher for SEI (median, 4 [IQR, 4-4) as compared with 40 and 50 keV (both energies: median, 4 [IQR, 3-4]; P < .001). Conclusion SEI demonstrated higher image quality and comparable diagnostic accuracy as compared with 50-keV VMI for endoleak detection at CTA after EVAR. Keywords: Aneurysms, CT, CT Angiography, Vascular, Aorta, Technology Assessment, Multidetector CT, Abdominal Aortic Aneurysms, Endoleaks, Perigraft Leak Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Angiografia por Tomografia Computadorizada , Endoleak , Idoso , Humanos , Masculino , Aorta , Endoleak/diagnóstico por imagem , Fenômenos Físicos , Estudos Prospectivos , Feminino
17.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542384

RESUMO

We present ionization cross sections of hydrogen molecules by electron and positron impact for impact energies between 20 and 1000 eV. A three-body Classical Trajectory Monte Carlo approximation is applied to mimic the collision system. In this approach, the H2 molecule is modeled by a hydrogen-type atom with one active electron bound to a central core of effective charge with an effective binding energy. Although this model is crude for describing a hydrogen molecule, we found that the total cross sections for positron impact agree reasonably well with the experimental data. For the electron impact, our calculated cross sections are in good agreement with the experimental data in impact energies between 80 eV and 400 eV but are smaller at higher impact energies and larger at lower impact energies. Our calculated cross sections are compared with the scaled cross sections obtained experimentally for an atomic hydrogen target. We also present single differential cross sections as a function of the energy and angle of the ejected electron and scattered projectiles for a 250 eV impact. These are shown to agree well with available data. Impact parameter distributions are also compared for several impact energies.


Assuntos
Elétrons , Hidrogênio , Água/química , Fenômenos Físicos , Método de Monte Carlo
18.
Bioinspir Biomim ; 19(3)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528733

RESUMO

Aquatic organisms utilizing attachment often contend with unpredictable environments that can dislodge them from substrates. To counter these forces, many organisms (e.g. fish, cephalopods) have evolved suction-based organs for adhesion. Morphology is diverse, with some disc shapes deviating from a circle to more ovate designs. Inspired by the diversity of multiple aquatic species, we investigated how bioinspired cups with different disc shapes performed in shear loading conditions. These experiments highlighted pertinent physical characteristics found in biological discs (regions of stiffness, flattened margins, a sealing rim), as well as ecologically relevant shearing conditions. Disc shapes of fabricated cups included a standard circle, ellipses, and other bioinspired designs. To consider the effects of sealing, these stiff silicone cups were produced with and without a soft rim. Cups were tested using a force-sensing robotic arm, which directionally sheared them across surfaces of varying roughness and compliance in wet conditions while measuring force. In multiple surface and shearing conditions, elliptical and teardrop shapes outperformed the circle, which suggests that disc shape and distribution of stiffness may play an important role in resisting shear. Additionally, incorporating a soft rim increased cup performance on rougher substrates, highlighting interactions between the cup materials and surfaces asperities. To better understand how these cup designs may resist shear, we also utilized a visualization technique (frustrated total internal reflection; FTIR) to quantify how contact area evolves as the cup is sheared.


Assuntos
Cefalópodes , Peixes , Animais , Sucção , Fenômenos Físicos
19.
Nat Commun ; 15(1): 2160, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461256

RESUMO

Rotating magnetic fields enable biomedical microrobots to overcome physiological barriers and promote extravasation and accumulation in tumors. Nevertheless, targeting deeply situated tumors requires suppression of off-target actuation in healthy tissue. Here, we investigate a control strategy for applying spatially selective torque density to microrobots by combining rotating fields with magnetostatic selection fields. Taking magnetotactic bacteria as diffuse torque-based actuators, we numerically model off-target torque suppression, indicating the feasibility of centimeter to millimeter resolution for human applications. We study focal torque application in vitro, observing off-target suppression of actuation-dependent effects such as colonization of bacteria in tumor spheroids. We then design and construct a mouse-scale torque-focusing apparatus capable of maneuvering the focal point. Applying this system to a mouse tumor model increased accumulation of intravenously injected bacteria within tumors receiving focused actuation compared to non-actuated or globally actuated groups. This control scheme combines the advantages of torque-based actuation with spatial targeting.


Assuntos
Magnetismo , Neoplasias , Animais , Humanos , Camundongos , Torque , Fenômenos Físicos , Campos Magnéticos , Bactérias
20.
Bioinspir Biomim ; 19(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38430560

RESUMO

In animal and robot swimmers of body and caudal fin (BCF) form, hydrodynamic thrust is mainly produced by their caudal fins, the stiffness of which has profound effects on both thrust and efficiency of swimming. Caudal fin stiffness also affects the motor control and resulting swimming gaits that correspond to optimal swimming performance; however, their relationship remains scarcely explored. Here using magnetic, modular, undulatory robots (µBots), we tested the effects of caudal fin stiffness on both forward swimming and turning maneuver. We developed six caudal fins with stiffness of more than three orders of difference. For aµBot equipped with each caudal fin (andµBot absent of caudal fin), we applied reinforcement learning in experiments to optimize the motor control for maximizing forward swimming speed or final heading change. The motor control ofµBot was generated by a central pattern generator for forward swimming or by a series of parameterized square waves for turning maneuver. In forward swimming, the variations in caudal fin stiffness gave rise to three modes of optimized motor frequencies and swimming gaits including no caudal fin (4.6 Hz), stiffness <10-4Pa m4(∼10.6 Hz) and stiffness >10-4Pa m4(∼8.4 Hz). Swimming speed, however, varied independently with the modes of swimming gaits, and reached maximal at stiffness of 0.23 × 10-4Pa m4, with theµBot without caudal fin achieving the lowest speed. In turning maneuver, caudal fin stiffness had considerable effects on the amplitudes of both initial head steering and subsequent recoil, as well as the final heading change. It had relatively minor effect on the turning motor program except for theµBots without caudal fin. Optimized forward swimming and turning maneuver shared an identical caudal fin stiffness and similar patterns of peduncle and caudal fin motion, suggesting simplicity in the form and function relationship inµBot swimming.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Natação , Fenômenos Biomecânicos , Fenômenos Físicos , Nadadeiras de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA