Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.026
Filtrar
1.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619007

RESUMO

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Assuntos
Energia Solar , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Mudança Climática , Poluição Ambiental , Tempo (Meteorologia)
2.
J Mol Graph Model ; 129: 108753, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38461758

RESUMO

Through a comprehensive computational analysis utilizing Density Functional Theory (DFT), we clarify the electronic structure and spectroscopic properties of modified iron(II)-terpyridine derivatives, with the aim of enhancing the efficiency of Dye-Sensitized Solar Cells (DSSCs). We optimized a series of nineteen iron(II)-terpyridine derivatives and related compounds in acetonitrile (MeCN) as the solvent using TDDFT, evaluating their potential as dyes for DSSCs. From the conducted computations on the optimized geometries of the nineteen [Fe(Ln)2]2+ complexes, containing substituted terpyridine and related ligands L1-L19, we determined the wavelengths (λ in nm), transition energy (E in eV), oscillator strength (f), type of transitions, excited state lifetime (τ), light harvesting efficiency (LHE), frontier orbital character and their energies (ELUMO/EHOMO), natural transition orbitals (NTOs), injection driving force of a dye (ΔGinject), and regeneration driving force of a dye (ΔGregenerate). Results show that the theoretically calculated values for assessing dye efficiency in a DSSC correlate with available experimental values. The UV-visible spectra of [Fe(Ln)2]2+ exhibited a peak above 500 nm (λmax) in the visible region, attributed to the ligand-to-metal charge transfer band (LMCT) in literature, and a significant absorbance peak at approximately 300 nm (λA,max) in the UV region. The M06-D3/CEP-121G method replicated all reported λmax and λA,max values with a mean absolute deviation (MAD) of 21 and 18 nm, respectively. Our findings underscore the connections between electronic modifications and absorption spectra, emphasizing their impact on the light-harvesting capabilities and overall performance of DSSCs. This research contributes to the advancement of fundamental principles governing the design and optimization of novel photovoltaic materials, facilitating the development of more efficient and sustainable solar energy technologies.


Assuntos
Corantes , Energia Solar , Corantes/química , Ferro , Espectrofotometria Ultravioleta , Compostos Ferrosos
3.
PLoS One ; 19(3): e0296800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547256

RESUMO

Solar energy generation requires photovoltaic (PV) systems to be optimised, regulated, and simulated with efficiency. The performance of PV systems is greatly impacted by the fluctuation and occasionally restricted accessibility of model parameters, which makes it difficult to identify these characteristics over time. To extract the features of solar modules and build highly accurate models for PV system modelling, control, and optimisation, current-voltage data collecting is essential. To overcome these difficulties, the modified particle swarm optimization rat search algorithm is presented in this manuscript. The modified rat search algorithm is incorporated to increase the PSO algorithm's accuracy and efficiency, which leads to better outcomes. The RSA mechanism increases both the population's diversity and the quality of exploration. For triple diode model of both monocrystalline and polycrystalline, PSORSA has showed exceptional performance in comparison to other algorithm i.e. RMSE for monocrystalline is 3.21E-11 and for polycrystalline is 1.86E-11. Similar performance can be observed from the PSORSA for four diode model i.e. RMSE for monocrystalline is 4.14E-09 and for polycrystalline is 4.72E-09. The findings show that PSORSA outperforms the most advanced techniques in terms of output, accuracy, and dependability. As a result, PSORSA proves to be a trustworthy instrument for assessing solar cell and PV module data.


Assuntos
Algoritmos , Energia Solar , Animais , Ratos , Luz Solar
4.
Water Sci Technol ; 89(5): 1357-1381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483503

RESUMO

The purpose of this study is to explore the architecture and functioning of hybrid solar desalination systems and investigate their potential as a sustainable solution for water purification. The study reveals that solar-powered desalination systems offer a remarkable alternative to traditional methods, as they rely on clean solar energy and produce no noise or sound pollution. In addition, they have demonstrated cost-effectiveness in generating drinking water, especially in desert regions and inaccessible areas. Furthermore, the research highlights the significance of incorporating waste heat energy into the desalination process. Also shows that utilizing waste heat energy can significantly reduce expenses and enhance the overall effectiveness of water desalination. Through an in-depth analysis of the fundamental principles and real-world applications, this study underscores the importance and rationale for implementing hybrid solar desalination systems. By effectively utilizing solar energy, these systems provide a sustainable approach to address water scarcity and ensure the efficient management of water and energy resources. This study emphasizes the fundamental importance of the structure of hybrid solar desalination systems fueled by solar energy in the efficient management of water resources. By combining technological innovations with renewable energy sources, these systems pave the way for a sustainable future.


Assuntos
Energia Solar , Purificação da Água , Poluição Ambiental , Temperatura Alta , Água
5.
PLoS One ; 19(3): e0299226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502643

RESUMO

This paper presents a novel approach to addressing the challenges associated with energy storage capacity allocation in high-permeability wind and solar distribution networks. The proposed method is a two-phase distributed robust energy storage capacity allocation method, which aims to regulate the stochasticity and volatility of net energy output. Firstly, an energy storage capacity allocation model is established, which considers energy storage's investment and operation costs to minimize the total cost. Then, a two-stage distributed robust energy storage capacity allocation model is established with the confidence set of uncertainty probability distribution constrained by 1-norm and ∞-norm. Finally, a Column and Constraint Generation (C&CG) algorithm is used to solve the problem. The validity of the proposed energy storage capacity allocation model is confirmed by examining different wind and solar penetration levels. Furthermore, the model's superiority is demonstrated by comparing it with deterministic and robust models.


Assuntos
Energia Solar , Vento , Algoritmos , Incerteza , Fenômenos Físicos
6.
Environ Sci Pollut Res Int ; 31(17): 25356-25372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472576

RESUMO

Currently, the majority of the country has moved to renewable energy sources for electricity generation, and power companies are concentrating their efforts on renewable resources. Solar, wind, hydropower, and biomass are examples of renewable resources; of these, due to a lack of non-renewable resources, the solar industry is expanding. All year long, solar electricity is available, and it creates a calm, quiet atmosphere. The majority of large and small companies, as well as individual consumers, have shifted to PV solar cells for electricity generation. A trustworthy and precise simulation design of a photovoltaic system prior to installation is required to predict a photovoltaic system's performance. The current research aims to build models for solar PV systems with one, two, and three diodes and determine which model is most appropriate for each environmental circumstance to forecast performance accurately. By contrasting the experimental data of solar panel with simulated results of single-, double-, and triple-diode models, this study examines the accuracy of each model. These models' comparative performance study has been done using the MATLAB/Simulink, taking into account the influence of changing model parameters and the performance of the models under varying climatic circumstances. These models, despite their simplicity, are quite sensitive and react to even a little change in temperature and irradiance. Under conditions of low solar irradiance or shading conditions, three-diode photovoltaic models are shown to be more accurate. We can forecast the power output of solar photovoltaic systems under changeable input circumstances by understanding the I-V curves with the help of the performance assessment of the models used in this work.


Assuntos
Energia Solar , Luz Solar , Simulação por Computador , Vento , Temperatura , Eletricidade
7.
Environ Sci Technol ; 58(14): 6158-6169, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38546376

RESUMO

Coastal regions, home to more than half of the global population and contributing over 50% to the global economy, possess vast renewable resources, such as seawater and solar energy. The effective utilization of these resources, through the seawater-cooled district cooling system (SWDCS), seawater toilet flushing (SWTF), and rooftop solar photovoltaic system (RTPV), has the potential to significantly reduce carbon emissions. However, implementing these technologies in different geographic contexts to achieve the desired carbon and economic outcomes at the city level lacks a clear roadmap. To address this challenge, we comprehensively analyzed 12 coastal megacities worldwide by integrating geospatial building data. Our study evaluated the potential energy savings, carbon mitigation, and levelized carbon abatement costs (LCACs) from a life cycle perspective. The results revealed that using seawater and solar energy within urban boundaries can reduce electricity consumption from 1 to 24% across these cities. The spatial distribution of the LCAC for seawater-based systems exhibited more variation compared to the RTPV. By applying specific LCAC thresholds ranging from 0 to 225 USD/tCO2e, all cities could achieve both carbon reductions and economic benefits. These thresholds resulted in up to 80 million tonnes of carbon emission reductions and 5 billion USD of economic benefits, respectively. Our study provides valuable insights into integrating renewable resource systems, enabling coastal cities to achieve carbon and economic advantages at the city scale simultaneously.


Assuntos
Aparelho Sanitário , Energia Solar , Cidades , Carbono , Água do Mar
8.
Chemosphere ; 353: 141491, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395365

RESUMO

Photocatalysis has emerged as a promising approach for generating solar chemical and organic transformations under the solar light spectrum, employing polymer photocatalysts. In this study, our aim is to achieve the regeneration of NADH and fixation of nitroarene compounds, which hold significant importance in various fields such as pharmaceuticals, biology, and chemistry. The development of an in-situ nature-inspired artificial photosynthetic pathway represents a challenging task, as it involves harnessing solar energy for efficient solar chemical production and organic transformation. In this work, we have successfully synthesized a novel artificial photosynthetic polymer, named TFc photocatalyst, through the Friedel-Crafts alkylation reaction between triptycene (T) and a ferrocene motif (Fc). The TFC photocatalyst is a promising material with excellent optical properties, an appropriate band gap, and the ability to facilitate the regeneration of NADH and the fixation of nitroarene compounds through photocatalysis. These characteristics are necessary for several applications, including organic synthesis and environmental remediation. Our research provides a significant step forward in establishing a reliable pathway for the regeneration and fixation of solar chemicals and organic compounds under the solar light spectrum.


Assuntos
NAD , Energia Solar , Fotossíntese , Luz , Luz Solar , Compostos Orgânicos/química
9.
Environ Sci Pollut Res Int ; 31(12): 18672-18682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349494

RESUMO

Decoupling cooling and ventilation tasks with an existing air conditioning methodology are a promising performance-enhancement technology. In this direction, different configurations of a desiccant-integrated independent ventilation element attached to a conventional cooling system are proposed in this study. This work establishes a quantitative comparative performance analysis among the different process air cooling (obtained through desiccant dehumidification) techniques for three different climates, namely, hot-dry, tropical, and Mediterranean. EnergyPlus simulations have been executed on a small-scale office building of 400-m2 area. The building constructional details and other required simulation input parameters follow benchmark standards. As the chemical dehumidification increases, the process air, i.e., supply air temperature that cannot be sent directly to the room, needs to be cooled. Three approaches for process air cooling have been considered: direct expansion (DX) cooling coil, indirect evaporative cooling (IEC), and sensible heat recovery wheel (SHRW). A solar collector assembly with a supporting heating arrangement is coupled with desiccant unit for regeneration. Outdoor air is used for regeneration in the case of the DX cooling coil and IEC, whereas return air is used in the heat recovery wheel case. Annual simulation results reveal that the SHRW-aided case performs superior than DX coil case for the pertinent climatic conditions, with 9.6 to 45.01% of annual energy savings. For the IEC, energy consumption was 1.8 to 18.38% less than that of DX coil. Also, using return air in this best-suited case reduces the net thermal energy requirement for regeneration by 14.63 to 71.65% with respect to DX coil.


Assuntos
Ar Condicionado , Energia Solar , Higroscópicos , Temperatura , Temperatura Alta
10.
Environ Sci Pollut Res Int ; 31(13): 19244-19256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355862

RESUMO

Solar water heaters are a type of renewable energy technology that converts solar energy into heat to warm water. Solar water heaters are becoming increasingly popular due to their eco-friendliness, cost-effectiveness, and low maintenance requirements. In this study, low-cost solar collectors were developed using date palm waste (dried leaves) as thermal insulation. Date palm waste is a readily available and abundant resource in many regions, and using it in solar collectors can help reduce waste and promote sustainability. Two solar collectors were fabricated using crushed date palm waste, with one collector using the waste alone and the other mixed with starch. Tests were conducted in accordance with the European standard EN 12975-2-2006 and modeled the thermal behavior of the collectors. The results obtained showed that the prototypes of solar collectors performed well and exhibited behavior comparable to that of a commercial solar collector, with a production cost up to three times less. The use of date palm waste as thermal insulation in solar collectors is an innovative approach that aligns with the principles of sustainability and environmental friendliness. Furthermore, it was found that the leveled heating cost (LCOH) and the simple payback period (SPP) were 0.952 US$ kWh-1 and 2.472 years for the prototype without starch and 0.926 US$ kWh-1 and 2.397 years for the prototype with starch.


Assuntos
Phoeniceae , Energia Solar , Água , Amido , Luz Solar
11.
Int J Biol Macromol ; 263(Pt 1): 130285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373571

RESUMO

Phase change microcapsules are known for their latent heat storage capability. However, the efficient absorption and utilization of solar energy by these microcapsules remains a significant challenge. In this study, we successfully prepared composite phase change microcapsules containing ZnO-Ag nanospheres, chitosan, and paraffin. These microcapsules demonstrated remarkable photothermal conversion efficiency. ZnO was found to effectively absorb ultraviolet light, while the plasmonic resonance of Ag was utilized to absorb and make use of light energy in the visible region. Moreover, due to the synergistic absorption and reflection of electromagnetic waves by ZnO-Ag nanoparticles and graphene, the well-dispersed chitosan/ZnO-Ag composite microcapsules and graphene in the fabric coating demonstrated exceptional electromagnetic shielding performance. In addition, the coated fabric based on composite microcapsules exhibited excellent antibacterial properties, effectively inhibiting the growth of bacteria such as S. aureus and E. coli. This antibacterial performance adds to their potential applications in various fields. These multifunctional phase change microcapsules offer vast potential for the effective utilization of solar energy, serving as efficient photothermal conversion and energy storage materials.


Assuntos
Quitosana , Grafite , Energia Solar , Óxido de Zinco , Óxido de Zinco/farmacologia , Escherichia coli , Staphylococcus aureus , Cápsulas , Antibacterianos/farmacologia
12.
Environ Sci Process Impacts ; 26(3): 540-554, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299676

RESUMO

III-V/Silicon tandem solar cells offer one of the most promising avenues for high-efficiency, high-stability photovoltaics. However, a key concern is the potential environmental release of group III-V elements, especially arsenic. To inform long-term policies on the energy transition and energy security, we develop and implement a framework that fully integrates future PV demand scenarios with dynamic stock, emission, and fate models in a probabilistic ecological risk assessment. We examine three geographical scales: local (including a floating utility-scale PV and waste treatment), regional (city-wide), and continental (Europe). Our probabilistic assessment considers a wide range of possible values for over one hundred uncertain technical, environmental, and regulatory parameters. We find that III-V/silicon PV integration in energy grids at all scales presents low-to-negligible risks to soil and freshwater organisms. Risks are further abated if recycling of III-V materials is considered at the panels' end-of-life.


Assuntos
Silício , Energia Solar , Estudos Prospectivos , Reciclagem , Solo , Medição de Risco
13.
PLoS One ; 19(2): e0297376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422065

RESUMO

Developing novel EV chargers is crucial for accelerating Electric Vehicle (EV) adoption, mitigating range anxiety, and fostering technological advancements that enhance charging efficiency and grid integration. These advancements address current challenges and contribute to a more sustainable and convenient future of electric mobility. This paper explores the performance dynamics of a solar-integrated charging system. It outlines a simulation study on harnessing solar energy as the primary Direct Current (DC) EV charging source. The approach incorporates an Energy Storage System (ESS) to address solar intermittencies and mitigate photovoltaic (PV) mismatch losses. Executed through MATLAB, the system integrates key components, including solar PV panels, the ESS, a DC charger, and an EV battery. The study finds that a change in solar irradiance from 400 W/m2 to 1000 W/m2 resulted in a substantial 47% increase in the output power of the solar PV system. Simultaneously, the ESS shows a 38% boost in output power under similar conditions, with the assessments conducted at a room temperature of 25°C. The results emphasize that optimal solar panel placement with higher irradiance levels is essential to leverage integrated solar energy EV chargers. The research also illuminates the positive correlation between elevated irradiance levels and the EV battery's State of Charge (SOC). This correlation underscores the efficiency gains achievable through enhanced solar power absorption, facilitating more effective and expedited EV charging.


Assuntos
Energia Solar , Humanos , Ansiedade , Transtornos de Ansiedade , Simulação por Computador , Sistemas Computacionais
14.
PLoS One ; 19(2): e0292892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330055

RESUMO

Where local resources for renewable electricity are scarce or insufficient, long-distance electricity imports will be required in the future. Even across long distances, the variable availability of renewable energy sources needs to be managed for which dedicated storage options are usually considered. Other alternatives could be demand-side flexibility and concentrated solar power with integrated thermal energy storage. Here their influence on the cost of imported electricity is explored. Using a techno-economic linear capacity optimization, exports of renewable electricity from Morocco and Tunisia to CERN in Geneva, Switzerland in the context of large research facilities are modeled. Two different energy supply chains are considered, direct imports of electricity by HVDC transmission lines, and indirect imports using H2 pipelines subsequent electricity generation. The results show that direct electricity exports ranging from 58 EUR/MWh to 106 EUR/MWh are the more economical option compared to indirect H2-based exports ranging from 157 EUR/MWh to 201 EUR/MWh. Both demand-side flexibility and CSP with TES offer significant opportunities to reduce the costs of imports, with demand-side flexibility able to reduce costs for imported electricity by up to 45%. Research institutions in Central Europe could initiate and strengthen electricity export-import partnerships with North Africa to take on a leading role in Europe's energy transition and to secure for themselves a long-term, sustainable electricity supply at plannable costs.


Assuntos
Energia Renovável , Energia Solar , Europa (Continente) , Eletricidade , Tunísia
15.
J Environ Sci (China) ; 140: 165-182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331498

RESUMO

Solar-driven carbon dioxide (CO2) conversion including photocatalytic (PC), photoelectrochemical (PEC), photovoltaic plus electrochemical (PV/EC) systems, offers a renewable and scalable way to produce fuels and high-value chemicals for environment and energy sustainability. This review summarizes the basic fundament and the recent advances in the field of solar-driven CO2 conversion. Expanding the visible-light absorption is an important strategy to improve solar energy conversion efficiency. The separation and migration of photogenerated charges carriers to surface sites and the surface catalytic processes also determine the photocatalytic performance. Surface engineering including co-catalyst loading, defect engineering, morphology control, surface modification, surface phase junction, and Z-scheme photocatalytic system construction, have become fundamental strategies to obtain high-efficiency photocatalysts. Similar to photocatalysis, these strategies have been applied to improve the conversion efficiency and Faradaic efficiency of typical PEC systems. In PV/EC systems, the electrode surface structure and morphology, electrolyte effects, and mass transport conditions affect the activity and selectivity of electrochemical CO2 reduction. Finally, the challenges and prospects are addressed for the development of solar-driven CO2 conversion system with high energy conversion efficiency, high product selectivity and stability.


Assuntos
Dióxido de Carbono , Energia Solar , Catálise , Luz , Eletrodos
17.
Lancet ; 403(10428): 703-705, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38367640
18.
Photochem Photobiol Sci ; 23(3): 493-502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351275

RESUMO

It is well known that skin color varies by body site and with season. However, little quantitative data on the topography of skin color and pigmentation are available. Therefore, exploratory cutaneous colorimetric measurements in 20 in central European Caucasian women aged 20 to 60 years have been made at 18 body sites. Tri-stimulus L*a*b*-values, hue, and chroma are considered to describe skin color. Based on the "Individual Typology Angle", the "Degree of Tan" was introduced to quantify the difference between constitutive and facultative pigmentation. Measurements were done in late winter and early summer to estimate potential changes by solar ultraviolet radiation. These measurements made evident that skin color obviously differs across the body in late winter. Even nearby body sites can be recognized as differently colored. A remaining degree of tan was found at permanent and intermittent exposed body sites. The remaining tan was not most pronounced at the permanently exposed sites but on the intermediate ones like the shoulder. In early summer, the degree of tan has most developed at the hands, arms, and instep, followed by the face. This study showed that besides basic differences between body sites in winter, accumulation, and degradation of tan also vary between body sites.


Assuntos
Pigmentação da Pele , Energia Solar , Humanos , Feminino , Raios Ultravioleta , Pele , Colorimetria
19.
Environ Sci Pollut Res Int ; 31(10): 15503-15524, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38296924

RESUMO

In recent years, high energy costs, increases in carbon emissions, and concerns about energy supply security have led countries to prioritize renewable energy sources in their sustainable energy policies. The selection and ranking of alternative renewable energy sources is a critical issue in establishing an effective energy policy and ensuring environmental improvement at the national and global levels. This study evaluates Turkey's best renewable energy options using the institutional fuzzy assessment based on distance to mean solution (IF-EDAS) method and aims to find Turkey's best renewable energy alternative. The decision model alternatively uses wind, solar, geothermal, biomass, wave, hydroelectric, and hydrogen energy options. According to the study's empirical findings, while the best alternative renewable energy source for Turkey is solar energy, the best criterion in terms of criteria evaluation is "Technology Maturity". The study also carried out sensitivity analysis, and the results were shared.


Assuntos
Energia Renovável , Energia Solar , Turquia , Vento , Política Pública
20.
Int J Biol Macromol ; 261(Pt 2): 129808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296123

RESUMO

Phase change materials (PCMs) have attracted considerable attention as a thermal energy management technology for thermal storage. However, achieving high energy-storing abilities, low leakage rates, and solar absorption abilities simultaneously in PCMs remains greatly challenging. This research proposed a green strategy for preparing sorghum straw-based PCMs. By facile delignification and solvothermal process, delignified sorghum straw (DSS) and carbon quantum dots (CQDs) derived from removal lignin are prepared. The obtained PEG@CQDs/DSS possessed considerable reusable stabilities, excellent photo-thermal conversion properties, and thermal energy management capacities due to the delicate micropores and intrinsic noncovalent interactions among components. Especially, the PEG@CQDs-7.5/DSS exhibited superior solar-thermal conversion capabilities (with conducive photo-thermal conversion efficiency ~90.84%), and kept stable after 100 cycles of heating and cooling, in which the melting enthalpy value is ~168.1 J/g (enthalpy efficiency of ~91.11%). In conclusion, the synthesized PCMs showed potential for application in energy-saving and building thermal management.


Assuntos
Energia Solar , Sorghum , Polietilenoglicóis , Carbono , Temperatura Baixa , Grão Comestível
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...