Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.732
Filtrar
1.
J Environ Sci (China) ; 148: 468-475, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095181

RESUMO

Arsenic (As) methylation in soils affects the environmental behavior of As, excessive accumulation of dimethylarsenate (DMA) in rice plants leads to straighthead disease and a serious drop in crop yield. Understanding the mobility and transformation of methylated arsenic in redox-changing paddy fields is crucial for food security. Here, soils including un-arsenic contaminated (N-As), low-arsenic (L-As), medium-arsenic (M-As), and high-arsenic (H-As) soils were incubated under continuous anoxic, continuous oxic, and consecutive anoxic/oxic treatments respectively, to profile arsenic methylating process and microbial species involved in the As cycle. Under anoxic-oxic (A-O) treatment, methylated arsenic was significantly increased once oxygen was introduced into the incubation system. The methylated arsenic concentrations were up to 2-24 times higher than those in anoxic (A), oxic (O), and oxic-anoxic (O-A) treatments, under which arsenic was methylated slightly and then decreased in all four As concentration soils. In fact, the most plentiful arsenite S-adenosylmethionine methyltransferase genes (arsM) contributed to the increase in As methylation. Proteobacteria (40.8%-62.4%), Firmicutes (3.5%-15.7%), and Desulfobacterota (5.3%-13.3%) were the major microorganisms related to this process. These microbial increased markedly and played more important roles after oxygen was introduced, indicating that they were potential keystone microbial groups for As methylation in the alternating anoxic (flooding) and oxic (drainage) environment. The novel findings provided new insights into the reoxidation-driven arsenic methylation processes and the model could be used for further risk estimation in periodically flooded paddy fields.


Assuntos
Arsênio , Oryza , Microbiologia do Solo , Poluentes do Solo , Solo , Arsênio/análise , Poluentes do Solo/análise , Metilação , Solo/química , Microbiota , Oxirredução , Bactérias/metabolismo
2.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273164

RESUMO

Spermatogonial stem cells (SSCs) possess the characteristics of self-renewal and differentiation, as well as the ability to generate functional sperm. Their unique stemness has broad applications in male infertility treatment and species preservation. In rodents, research on SSCs has been widely reported, but progress is slow in large livestock such as cattle and pigs due to long growth cycles, difficult proliferation in vitro, and significant species differences. Previously, we showed that histone 3 (H3) lysine 9 (K9) trimethylation (H3K9me3) is associated with the proliferation of bovine SSCs. Here, we isolated and purified SSCs from calf testicular tissues and investigated the impact of different H3K9me3 levels on the in vitro proliferation of bovine SSCs. The enriched SSCs eventually formed classical stem cell clones in vitro in our feeder-free culture system. These clones expressed glial cell-derived neurotrophic factor family receptor alpha-1 (GFRα1, specific marker for SSCs), NANOG (pluripotency protein), C-KIT (germ cell marker), and strong alkaline phosphatase (AKP) positivity. qRT-PCR analysis further showed that these clones expressed the pluripotency genes NANOG and SOX2, and the SSC-specific marker gene GFRα1. To investigate the dynamic relationship between H3K9me3 levels and SSC proliferation, H3K9me3 levels in bovine SSCs were first downregulated using the methyltransferase inhibitor, chaetocin, or transfection with the siRNA of H3K9 methyltransferase suppressor of variegation 3-9 homologue 1 (SUV39H1). The EDU (5-Ethynyl-2'-deoxyuridine) assay revealed that SSC proliferation was inhibited. Conversely, when H3K9me3 levels in bovine SSCs were upregulated by transfecting lysine demethylase 4D (KDM4D) siRNA, the EDU assay showed a promotion of cell proliferation. In summary, this study established a feeder-free culture system to obtain bovine SSCs and explored its effects on the proliferation of bovine SSCs by regulating H3K9me3 levels, laying the foundation for elucidating the regulatory mechanism underlying histone methylation modification in the proliferation of bovine SSCs.


Assuntos
Células-Tronco Germinativas Adultas , Proliferação de Células , Histonas , Animais , Bovinos , Masculino , Histonas/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/citologia , Células Cultivadas , Espermatogônias/metabolismo , Espermatogônias/citologia , Metilação , Diferenciação Celular , Testículo/metabolismo , Testículo/citologia
3.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39273695

RESUMO

KLEPTOSE® CRYSMEB methylated cyclodextrin derivative displays less methylated group substitution than randomly methylated cyclodextrin. It has demonstrated an impact on atherosclerosis and neurological diseases, linked in part to cholesterol complexation and immune response, however, its impact on inflammatory cascade pathways is not clear. Thus, the impact of KLEPTOSE® CRYSMEB on various pharmacological targets was assessed using human umbilical vein endothelial cells under physiological and inflammatory conditions, followed by screening against twelve human primary cell-based systems designed to model complex human tissue and disease biology of the vasculature, skin, lung, and inflammatory tissues using the BioMAP® Diversity PLUS® panel. Finally, its anti-inflammatory mechanism was investigated on peripheral blood mononuclear cells to evaluate anti-inflammatory or pro-resolving properties. The results showed that KLEPTOSE® CRYSMEB can modulate the immune system in vitro and potentially manage vascular issues by stimulating the expression of molecules involved in the crosstalk between immune cells and other cell types. It showed anti-inflammatory effects that were driven by the inhibition of pro-inflammatory cytokine secretion and could have different impacts on different tissue types. Moreover, this cyclodextrin showed no clear impact on pro-resolving lipid mediators. Additionally, it appeared that the mechanism of action of KLEPTOSE® CRYSMEB seems to not be shared by other well-known anti-inflammatory molecules. Finally, KLEPTOSE® CRYSMEB may have an anti-inflammatory impact, which could be due to its effect on receptors such as TLR or direct complexation with LPS or PGE2, and conversely, this methylated cyclodextrin could stimulate a pro-inflammatory response involving lipid mediators and on proteins involved in communication with immune cells, probably via interaction with membrane cholesterol.


Assuntos
Anti-Inflamatórios , Ciclodextrinas , Células Endoteliais da Veia Umbilical Humana , Inflamação , Humanos , Inflamação/metabolismo , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Citocinas/metabolismo , Metilação , Células Cultivadas
4.
Cell Mol Life Sci ; 81(1): 387, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249529

RESUMO

BACKGROUND: Dysregulated lipid oxidation occurs in several pathological processes characterized by cell proliferation and migration. Nonetheless, the molecular mechanism of lipid oxidation is not well appreciated in liver fibrosis, which is accompanied by enhanced fibroblast proliferation and migration. METHODS: We investigated the causes and consequences of lipid oxidation in liver fibrosis using cultured cells, animal models, and clinical samples. RESULTS: Increased ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP1) expression caused increased lipid oxidation, resulting in the proliferation and migration of hepatic stellate cells (HSCs) that lead to liver fibrosis, whereas fibroblast-specific ENPP1 knockout reversing these results. Elevated ENPP1 and N6-methyladenosine (m6A) levels were associated with high expression of Wilms tumor 1 associated protein (WTAP). Mechanistically, WTAP-mediated m6A methylation of the 3'UTR of ENPP1 mRNA and induces its translation dependent of YTH domain family proteins 1 (YTHDF1). Additionally, ENPP1 could interact with hypoxia inducible lipid droplet associated (HILPDA) directly; overexpression of ENPP1 further recruits HILPDA-mediated lipid oxidation, thereby promotes HSCs proliferation and migration, while inhibition of ENPP1 expression produced the opposite effect. Clinically, increased expression of WTAP, YTHDF1, ENPP1, and HILPDA, and increased m6A mRNA content, enhanced lipid oxidation, and increased collagen deposition in human liver fibrosis tissues. CONCLUSIONS: We describe a novel mechanism in which WTAP catalyzes m6A methylation of ENPP1 in a YTHDF1-dependent manner to enhance lipid oxidation, promoting HSCs proliferation and migration and liver fibrosis.


Assuntos
Adenosina , Proliferação de Células , Metabolismo dos Lipídeos , Cirrose Hepática , Oxirredução , Diester Fosfórico Hidrolases , Pirofosfatases , RNA Mensageiro , Pirofosfatases/metabolismo , Pirofosfatases/genética , Humanos , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proliferação de Células/genética , Metabolismo dos Lipídeos/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Movimento Celular/genética , Camundongos Endogâmicos C57BL , Masculino , Epigênese Genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Metilação , Fatores de Processamento de RNA , Proteínas de Ciclo Celular
5.
Int J Mol Med ; 54(5)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39301658

RESUMO

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end­stage renal disease, and is characterized by persistent proteinuria and decreased glomerular filtration rate. Despite extensive efforts, the increasing incidence highlights the urgent need for more effective treatments. Histone methylation is a crucial epigenetic modification, and its alteration can destabilize chromatin structure, thereby regulating the transcriptional activity of specific genes. Histone methylation serves a substantial role in the onset and progression of various diseases. In patients with DKD, changes in histone methylation are pivotal in mediating the interactions between genetic and environmental factors. Targeting these modifications shows promise in ameliorating renal histological manifestations, tissue fibrosis and proteinuria, and represents a novel therapeutic frontier with the potential to halt DKD progression. The present review focuses on the alterations in histone methylation during the development of DKD, systematically summarizes its impact on various renal parenchymal cells and underscores the potential of targeted histone methylation modifications in improving DKD outcomes.


Assuntos
Nefropatias Diabéticas , Epigênese Genética , Histonas , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/terapia , Nefropatias Diabéticas/tratamento farmacológico , Histonas/metabolismo , Animais , Metilação , Processamento de Proteína Pós-Traducional , Código das Histonas
6.
J Hazard Mater ; 479: 135627, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217948

RESUMO

Unraveling the geochemical and microbial controls on methylmercury (MeHg) dynamics in mangrove sediments is important, as MeHg can potentially pose risks to marine biota and people that rely on these ecosystems. While the important role of sulfate-reducing bacteria in MeHg formation has been examined in this ecologically important habitat, the contribution of non-Hg methylating communities on MeHg production remains particularly unclear. Here, we collected sediment samples from 13 mangrove forests in south China and examined the geochemical parameters and microbial communities related to the Hg methylation. MeHg concentrations were significantly correlated to the OM-related parameters such as organic carbon content, total nitrogen, and dissolved organic carbon concentrations, suggesting the importance of OM in the MeHg production. Sulfate-reducing bacteria were the major Hg-methylators in mangrove sediments. Desulfobacteraceae and Desulfobulbaceae dominated the Hg-methylating microbes. Classification random forest analysis detected strong co-occurrence between Hg methylators and putative non-Hg methylators, thus suggesting that both types of microorganisms contribute to the MeHg dynamics in the sediments. Our study provides an overview of MeHg contamination in south China and advances our understanding of Hg methylation in mangrove ecosystems.


Assuntos
Sedimentos Geológicos , Compostos de Metilmercúrio , Poluentes Químicos da Água , Áreas Alagadas , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , China , Metilação , Bactérias/metabolismo , Deltaproteobacteria/metabolismo , Monitoramento Ambiental
7.
Appl Microbiol Biotechnol ; 108(1): 467, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292268

RESUMO

Epigenetic regulation plays a central role in the regulation of a number of cellular processes such as proliferation, differentiation, cell cycle, and apoptosis. In particular, small molecule epigenetic modulators are key elements that can effectively influence gene expression by precisely regulating the epigenetic state of cells. To identify useful small-molecule regulators that enhance the expression of recombinant proteins in Chinese hamster ovary (CHO) cells, we examined a novel dual-HDAC/LSD1 inhibitor I-4 as a supplement for recombinant CHO cells. Treatment with 2 µM I-4 was most effective in increasing monoclonal antibody production. Despite cell cycle arrest at the G1/G0 phase, which inhibits cell growth, the addition of the inhibitor at 2 µM to monoclonal antibody-expressing CHO cell cultures resulted in a 1.94-fold increase in the maximal monoclonal antibody titer and a 2.43-fold increase in specific monoclonal antibody production. In addition, I-4 significantly increased the messenger RNA levels of the monoclonal antibody and histone H3 acetylation and methylation levels. We also investigated the effect on HDAC-related isoforms and found that interference with the HDAC5 gene increased the monoclonal antibody titer by 1.64-fold. The results of this work provide an effective method of using epigenetic regulatory strategies to enhance the expression of recombinant proteins in CHO cells. KEY POINTS: • HDAC/LSD1 dual-target small molecule inhibitor can increase the expression level of recombinant monoclonal antibodies in CHO cells. • By affecting the acetylation and methylation levels of histones in CHO cells and downregulating HDAC5, the production of recombinant monoclonal antibodies increased. • It provides an effective pathway for applying epigenetic regulation strategies to enhance the expression of recombinant proteins.


Assuntos
Anticorpos Monoclonais , Cricetulus , Epigênese Genética , Proteínas Recombinantes , Células CHO , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Histonas/genética , Acetilação , Cricetinae , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Metilação
8.
Front Endocrinol (Lausanne) ; 15: 1462146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296713

RESUMO

N6-methyladensine (m6A) has been identified as the best-characterized and the most abundant mRNA modification in eukaryotes. It can be dynamically regulated, removed, and recognized by its specific cellular components (respectively called "writers," "erasers," "readers") and have become a hot research field in a variety of biological processes and diseases. Currently, the underlying molecular mechanisms of m6A epigenetic modification in diabetes mellitus (DM) and diabetic microvascular complications have not been extensively clarified. In this review, we focus on the effects and possible mechanisms of m6A as possible potential biomarkers and therapeutic targets in the treatment of DM and diabetic microvascular complications.


Assuntos
Angiopatias Diabéticas , Epigênese Genética , Humanos , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Animais , Metilação , Adenina/análogos & derivados , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Metilação de RNA
9.
Bull Exp Biol Med ; 177(4): 431-435, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39259464

RESUMO

The effects of HIF1A knockdown by RNA interference on the histone H3K9 methylation in human umbilical cord mesenchymal stromal cells in vitro under conditions of 24-h exposure to hypoxia (1% O2) were studied. Evaluation of transcriptional activity of genes involved in the regulation of H3K9 methylation (KDM3A, KDM4A, and EHMT2) and the cytofluorimetric analysis of the expression of the corresponding antigens and H3K9 methylation level demonstrated a pronounced stimulating effect of hypoxic exposure. Moreover, the expression of KDM4A and EHMT2 was regulated by HIF1A-mediated mechanism, unlike KDM3A; the level of the corresponding proteins depended on HIF1A. In addition, the HIF-1-dependent regulation of KDM3A, KDM4A, and EHMT2/G9a, and directly the H3K9 methylation level in mesenchymal stromal cells also took place under normoxia conditions.


Assuntos
Hipóxia Celular , Histonas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Histona Desmetilases com o Domínio Jumonji , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Humanos , Histonas/metabolismo , Histonas/genética , Metilação , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia Celular/genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Interferência de RNA , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Regulação da Expressão Gênica
10.
Virologie (Montrouge) ; 28(4): 277-293, 2024 Aug 01.
Artigo em Francês | MEDLINE | ID: mdl-39248671

RESUMO

HIV-1 polymerase, commonly known as HIV reverse transcriptase (RT), catalyzes the critical reaction of reverse transcription by synthesizing a double-stranded DNA copy of the viral genomic RNA. During the replication cycle, this synthesized DNA is integrated into the host genome. This entire process is essential for viral replication and is targeted by several antiviral drugs. Numerous studies in biochemistry and structural biology have led to a good understanding of HIV-1 RT functions. However, the discovery of epitranscriptomic marks, such as 2'-O-methylations, on the HIV-1 RNA genome raise the questions about RT's ability to copy RNAs decorated with these biochemical modifications. This review focuses on the importance of RT in the viral cycle, its structure and function and the impact of 2'-O-methylations on its activity and replication regulation, particularly in quiescent cells.


Assuntos
Transcriptase Reversa do HIV , HIV-1 , Replicação Viral , Transcriptase Reversa do HIV/metabolismo , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/química , HIV-1/fisiologia , HIV-1/genética , Humanos , Metilação , RNA Viral/metabolismo , RNA Viral/genética , Transcrição Reversa , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico
11.
Anal Chim Acta ; 1324: 343099, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218580

RESUMO

BACKGROUND: In-cell NMR is a valuable technique for investigating protein structure and function in cellular environments. However, challenges arise due to highly crowded cellular environment, where nonspecific interactions between the target protein and other cellular components can lead to signals broadening or disappearance in NMR spectra. RESULTS: We implemented chemical reduction methylation to selectively modify lysine residues on protein surfaces aiming to weaken charge interactions and recover obscured NMR signals. This method was tested on six proteins varying in molecular size and lysine content. While methylation did not disrupt the protein's native conformation, it successful restored some previously obscured in-cell NMR signals, particularly for proteins with high isoelectric points that decreased post-methylation. SIGNIFICANCE: This study affirms lysine methylation as a feasible approach to enhance the sensitivity of in-cell NMR spectra for protein studies. By mitigating signal loss due to nonspecific interactions, this method expands the utility of in-cell NMR for investigating proteins in their natural cellular environment, potentially leading to more accurate structural and functional insights.


Assuntos
Lisina , Ressonância Magnética Nuclear Biomolecular , Lisina/química , Lisina/análise , Metilação , Proteínas/química , Proteínas/análise , Humanos
12.
BMC Biol ; 22(1): 192, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256796

RESUMO

BACKGROUND: N6-Methyladenosine (m6A) methylation, a common form of RNA modification, play an important role in the pathogenesis of various diseases and in the ontogeny of organisms. Nevertheless, the precise function of m6A methylation in photoaging remains unknown. OBJECTIVES: This study aims to investigate the biological role and underlying mechanism of m6A methylation in photoaging. METHODS: m6A dot blot, Real-time quantitative PCR (RT-qPCR), western blot and immunohistochemical (IHC) assays were employed to detect the m6A level and specific m6A methylase in ultraviolet ray (UVR)-induced photoaging tissue. The profile of m6A-tagged mRNA was identified by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq analysis. Finally, we investigated the regulatory mechanism of KIAA1429 by MeRIP-qPCR, RNA knockdown and immunofluorescence assay. RESULTS: m6A levels were increased in photoaging and were closely associated with the upregulation of KIAA1429 expression. 1331 differentially m6A methylated genes were identified in the UVR group compared with the control group, of which 1192 (90%) were hypermethylated. Gene ontology analysis showed that genes with m6A hypermethylation and mRNA downregulation were mainly involved in extracellular matrix metabolism and collagen metabolism-related processes. Furthermore, KIAA1429 knockdown abolished the downregulation of TGF-bRII and upregulation of MMP1 in UVR-irradiated human dermal fibroblasts (HDFs). Mechanically, we identified MFAP4 as a target of KIAA1429-mediated m6A modification and KIAA1429 might suppress collagen synthesis through an m6A-MFAP4-mediated process. CONCLUSIONS: The increased expression of KIAA1429 hinders collagen synthesis during UVR-induced photoaging, suggesting that KIAA1429 represents a potential candidate for targeted therapy to mitigate UVR-driven photoaging.


Assuntos
Colágeno , Envelhecimento da Pele , Envelhecimento da Pele/efeitos da radiação , Envelhecimento da Pele/genética , Colágeno/metabolismo , Animais , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos , Humanos , Raios Ultravioleta , Metilação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação
13.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273298

RESUMO

Borosins are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) with α-N-methylated backbones. Although the first mature compound of borosin was reported in 1997, the biosynthetic pathway was elucidated 20 years later. Until this work, borosins have been able to be categorized into 11 types based on the features of their protein structure and core peptides. Type III borosins were reported only in fungi initially. In order to explore the sources and potential of type III borosins, a precise genome mining work of type III borosins was conducted in bacteria and KchMA's self-methylation activity was validated by biochemical experiment. Furthermore, a commercial protease and AI-assisted rational design was employed to engineer KchMA for the capacity to produce various N-methylated peptides. Our work demonstrates that type III borosins are abundant not only in eukaryotes but also in bacteria and have immense potential as a tool for synthetic biology.


Assuntos
Genoma Bacteriano , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Processamento de Proteína Pós-Traducional , Bactérias/genética , Bactérias/metabolismo , Peptídeos/metabolismo , Peptídeos/química , Peptídeos/genética , Metilação , Sequência de Aminoácidos
14.
RNA Biol ; 21(1): 1-13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39267376

RESUMO

The m6A epitranscriptomic mark is the most abundant and widespread internal RNA chemical modification, which through the control of RNA acts as an important factor of eukaryote reproduction, growth, morphogenesis and stress response. The main m6A readers constitute a super family of proteins with hundreds of members that share a so-called YTH RNA binding domain. The majority of YTH proteins carry no obvious additional domain except for an Intrinsically Disordered Region (IDR). In Arabidopsis thaliana IDRs are important for the functional specialization among the different YTH proteins, known as Evolutionarily Conserved C-Terminal region, ECT 1 to 12. Here by studying the ECT2 protein and using an in vitro biochemical characterization, we show that full-length ECT2 and its YTH domain alone have a distinct ability to bind m6A, conversely to previously characterized YTH readers. We identify peptide regions outside of ECT2 YTH domain, in the N-terminal IDR, that regulate its binding to m6A-methylated RNA. Furthermore, we show that the selectivity of ECT2 binding for m6A is enhanced by a high uridine content within its neighbouring sequence, where ECT2 N-terminal IDR is believed to contact the target RNA in vivo. Finally, we also identify small structural elements, located next to ECT2 YTH domain and conserved in a large set of YTH proteins, that enhance its binding to m6A-methylated RNA. We propose from these findings that some of these regulatory regions are not limited to ECT2 or YTH readers of flowering plants but may be widespread among eukaryotic YTH readers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ligação Proteica , Proteínas de Ligação a RNA , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Domínios Proteicos , RNA de Plantas/metabolismo , RNA de Plantas/química , RNA de Plantas/genética , Adenosina/metabolismo , Sequência de Aminoácidos , Metilação , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Sítios de Ligação , Peptídeos e Proteínas de Sinalização Intracelular
15.
J Phys Chem B ; 128(37): 8896-8907, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39240243

RESUMO

N6-Methyladenosine (m6A) is a prevalent RNA post-transcriptional modification that plays crucial roles in RNA stability, structural dynamics, and interactions with proteins. The YT521-B (YTH) family of proteins, which are notable m6A readers, functions through its highly conserved YTH domain. Recent structural investigations and molecular dynamics (MD) simulations have shed light on the mechanism of recognition of m6A by the YTHDC1 protein. Despite advancements, using MD to predict the stabilization induced by m6A on the free energy of binding between RNA and YTH proteins remains challenging due to inaccuracy of the employed force field and limited sampling. For instance, simulations often fail to sufficiently capture the hydration dynamics of the binding pocket. This study addresses these challenges through an innovative methodology that integrates metadynamics, alchemical simulations, and force-field refinement. Importantly, our research identifies hydration of the binding pocket as giving only a minor contribution to the binding free energy and emphasizes the critical importance of precisely tuning force-field parameters to experimental data. By employing a fitting strategy built on alchemical calculations, we refine the m6A partial charge parameters, thereby enabling the simultaneous reproduction of N6 methylation on both the protein binding free energy and the thermodynamic stability of nine RNA duplexes. Our findings underscore the sensitivity of binding free energies to partial charges, highlighting the necessity for thorough parametrization and validation against experimental observations across a range of structural contexts.


Assuntos
Adenosina , Simulação de Dinâmica Molecular , RNA , Termodinâmica , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Metilação , RNA/química , RNA/metabolismo , Ligação Proteica , Sítios de Ligação , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
17.
Nat Commun ; 15(1): 7930, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256398

RESUMO

Immune checkpoint blockade (ICB) has emerged as a promising therapeutic option for hepatocellular carcinoma (HCC), but resistance to ICB occurs and patient responses vary. Here, we uncover protein arginine methyltransferase 3 (PRMT3) as a driver for immunotherapy resistance in HCC. We show that PRMT3 expression is induced by ICB-activated T cells via an interferon-gamma (IFNγ)-STAT1 signaling pathway, and higher PRMT3 expression levels correlate with reduced numbers of tumor-infiltrating CD8+ T cells and poorer response to ICB. Genetic depletion or pharmacological inhibition of PRMT3 elicits an influx of T cells into tumors and reduces tumor size in HCC mouse models. Mechanistically, PRMT3 methylates HSP60 at R446 to induce HSP60 oligomerization and maintain mitochondrial homeostasis. Targeting PRMT3-dependent HSP60 methylation disrupts mitochondrial integrity and increases mitochondrial DNA (mtDNA) leakage, which results in cGAS/STING-mediated anti-tumor immunity. Lastly, blocking PRMT3 functions synergize with PD-1 blockade in HCC mouse models. Our study thus identifies PRMT3 as a potential biomarker and therapeutic target to overcome immunotherapy resistance in HCC.


Assuntos
Carcinoma Hepatocelular , Chaperonina 60 , Neoplasias Hepáticas , Proteínas de Membrana , Nucleotidiltransferases , Proteína-Arginina N-Metiltransferases , Transdução de Sinais , Animais , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Camundongos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Chaperonina 60/metabolismo , Chaperonina 60/genética , Linhagem Celular Tumoral , Metilação , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , DNA Mitocondrial/genética , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Masculino
18.
BMC Pediatr ; 24(1): 574, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39251964

RESUMO

PURPOSE: The current study aims to investigate the significance of N6-methyladenosine (m6A) methylationrelated genes in the clinical prognosis of childhood relapsed B-cell acute lymphoblastic leukemia (B-ALLL) patient. METHODS: Transcriptome data and corresponding clinical data on m6A methylation-related genes (including 20 genes) were obtained from the Therapeutically Applicable Research To Generate Effective Treatments (TARGET) database. RESULTS: The bone marrow (BM) samples of 134 newly diagnosed (naive) and 116 relapsed B-ALL from TARGET were enrolled in the current study. Three genes (FTO, HNRNPC, RBM15B) showed significant up-regulation in relapsed B-ALL compared with that in naive B-ALL.The three genes had a significantly worse survival (P < 0.05). The LASSO Cox regression model was used to select the most predictive genes as prognostic indicators, and YTHDC1 and FTO were identified as prognostic factors for relapsed B-ALL. Finally, the results of multivariate regression analysis showed that the risk score of m6A methylation-related genes was an independent prognostic factor in relapsed B-ALL (P < 0.05). CONCLUSION: We found that the expression levels of m6A methylation-related genes were different in naive and relapsed patients with B-ALL and correlated with survival and prognosis.This implies that m6A methylation-related genes may be promising prognostic indicators or therapeutic targets for relapsed B-ALL.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Fatores de Processamento de RNA , Proteínas de Ligação a RNA , Humanos , Prognóstico , Adenosina/análogos & derivados , Adenosina/genética , Criança , Feminino , Masculino , Proteínas de Ligação a RNA/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Fatores de Processamento de RNA/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Metilação , Pré-Escolar , Transcriptoma , Regulação para Cima , Biomarcadores Tumorais/genética , Recidiva , Recidiva Local de Neoplasia/genética , Adolescente , Proteínas do Tecido Nervoso
19.
Cell Signal ; 123: 111375, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39218271

RESUMO

Cancer remains a leading cause of morbidity and mortality worldwide, necessitating the ongoing investigation of molecular targets for improved diagnosis, prognosis, and therapy. Among these targets, RNA modifications, particularly N5-methylcytosine (m5C) in RNA, have emerged as critical regulators of gene expression and cellular functions. NOP2/Sun RNA methyltransferase family member 2 (NSUN2) is a key enzyme in m5C modification, significantly influencing various biological processes and tumorigenesis. NSUN2 methylates multiple RNA species, including transfer RNAs (tRNAs), messenger RNAs (mRNAs), and non-coding RNAs, impacting RNA stability, translation efficiency, and cellular stress responses. These modifications, in turn, affect cell proliferation, differentiation, and survival. In cancer, NSUN2 is frequently upregulated, associated with aggressive tumor phenotypes, poor prognosis, and therapy resistance. Its role in oncogenic signaling pathways further underscores its importance in cancer biology. This review offers a comprehensive overview of NSUN2's role in cancer, focusing on its involvement in RNA methylation and its implications for tumor initiation and progression. Additionally, we explore the potential of NSUN2 as a biomarker for cancer diagnosis and prognosis, and its promise as a therapeutic target.


Assuntos
Metiltransferases , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Metiltransferases/metabolismo , Metilação , RNA/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Relevância Clínica , Metilação de RNA
20.
Sci Rep ; 14(1): 21154, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256490

RESUMO

Skeletal muscle is a highly heterogeneous tissue, and its contractile proteins are composed of different isoforms, forming various types of muscle fiber, each of which has its own metabolic characteristics. It has been demonstrated that endurance exercise induces the transition of muscle fibers from fast-twitch to slow-twitch muscle fiber type. Herein, we discover a novel epigenetic mechanism for muscle contractile property tightly coupled to its metabolic capacity during muscle fiber type transition with exercise training. Our results show that an 8-week endurance exercise induces histone methylation remodeling of PGC-1α and myosin heavy chain (MHC) isoforms in the rat gastrocnemius muscle, accompanied by increased mitochondrial biogenesis and an elevated ratio of slow-twitch to fast-twitch fibers. Furthermore, to verify the roles of reactive oxygen species (ROS) and AMPK in exercise-regulated epigenetic modifications and muscle fiber type transitions, mouse C2C12 myotubes were used. It was shown that rotenone activates ROS/AMPK pathway and histone methylation enzymes, which then promote mitochondrial biogenesis and MHC slow isoform expression. Mitoquinone (MitoQ) partially blocking rotenone-treated model confirms the role of ROS in coupling mitochondrial biogenesis with muscle fiber type. In conclusion, endurance exercise couples mitochondrial biogenesis with MHC slow isoform by remodeling histone methylation, which in turn promotes the transition of fast-twitch to slow-twitch muscle fibers. The ROS/AMPK pathway may be involved in the regulation of histone methylation enzymes by endurance exercise.


Assuntos
Histonas , Cadeias Pesadas de Miosina , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Condicionamento Físico Animal , Espécies Reativas de Oxigênio , Animais , Histonas/metabolismo , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Cadeias Pesadas de Miosina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Metilação , Fibras Musculares Esqueléticas/metabolismo , Epigênese Genética , Fibras Musculares de Contração Lenta/metabolismo , Resistência Física/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Linhagem Celular , Proteínas Quinases Ativadas por AMP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA