Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.871
Filtrar
1.
Molecules ; 29(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398651

RESUMO

The development of selective extraction protocols for Cannabis-inflorescence constituents is still a significant challenge. The characteristic Cannabis fragrance can be mainly ascribed to monoterpenes, sesquiterpenes and oxygenated terpenoids. This work investigates the entrapment of Cannabis terpenes in olive oil from inflorescences via stripping under mild vacuum during the rapid microwave-assisted decarboxylation of cannabinoids (MW, 120 °C, 30 min) and after subsequent extraction of cannabinoids (60 and 100 °C). The profiles of the volatiles collected in the oil samples before and after the extraction step were evaluated using static headspace solid-phase microextraction (HS-SPME), followed by gas chromatography coupled to mass spectrometry (GC-MS). Between the three fractions obtained, the first shows the highest volatile content (~37,400 mg/kg oil), with α-pinene, ß-pinene, ß-myrcene, limonene and trans-ß-caryophyllene as the main components. The MW-assisted extraction at 60 and 100 °C of inflorescences using the collected oil fractions allowed an increase of 70% and 86% of total terpene content, respectively. Considering the initial terpene amount of 91,324.7 ± 2774.4 mg/kg dry inflorescences, the percentage of recovery after decarboxylation was close to 58% (mainly monoterpenes), while it reached nearly 100% (including sesquiterpenes) after extraction. The selective and efficient extraction of volatile compounds, while avoiding direct contact between the matrix and extraction solvents, paves the way for specific applications in various aromatic plants. In this context, aromatized extracts can be employed to create innovative Cannabis-based products within the hemp processing industry, as well as in perfumery, cosmetics, dietary supplements, food, and the pharmaceutical industry.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Sesquiterpenos Policíclicos , Sesquiterpenos , Terpenos/química , Canabinoides/química , Cannabis/química , Azeite de Oliva , Descarboxilação , Micro-Ondas , Monoterpenos/química , Sesquiterpenos/química , Agonistas de Receptores de Canabinoides
2.
Mol Cell ; 84(5): 981-989.e7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38295803

RESUMO

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role but also via the oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis and shed light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.


Assuntos
Células Eucarióticas , Ubiquinona , Humanos , Descarboxilação , Células Eucarióticas/metabolismo , Oxirredução , Escherichia coli/genética , Escherichia coli/metabolismo , Estresse Oxidativo , Proteínas Mitocondriais/metabolismo
3.
ChemSusChem ; 17(3): e202301326, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37985235

RESUMO

The realm of photobiocatalytic alkane biofuel synthesis has burgeoned recently; however, the current dearth of well-established and scalable production methodologies in this domain remains conspicuous. In this investigation, we engineered a modified form of membrane-associated fatty acid photodecarboxylase sourced from Micractinium conductrix (McFAP). This endeavour resulted in creating an innovative assembled photoenzyme-membrane (protein load 5 mg cm-2 ), subsequently integrated into an illuminated flow apparatus to achieve uninterrupted generation of alkane biofuels. Through batch experiments, the photoenzyme-membrane exhibited its prowess in converting fatty acids spanning varying chain lengths (C6-C18). Following this, the membrane-flow mesoscale reactor attained a maximum space-time yield of 1.2 mmol L-1 h-1 (C8) and demonstrated commendable catalytic proficiency across eight consecutive cycles, culminating in a cumulative runtime of eight hours. These findings collectively underscored the photoenzyme-membrane's capability to facilitate the biotransformation of diverse fatty acids, furnishing valuable benchmarks for the conversion of biomass via photobiocatalysis.


Assuntos
Alcanos , Ácidos Graxos , Descarboxilação , Catálise , Alcanos/metabolismo , Biocombustíveis
4.
Nat Chem ; 15(12): 1672-1682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973941

RESUMO

Stereoselective protonation is a challenge in asymmetric catalysis. The small size and high rate of transfer of protons mean that face-selective delivery to planar intermediates is hard to control, but it can unlock previously obscure asymmetric transformations. Particularly, when coupled with a preceding decarboxylation, enantioselective protonation can convert the abundant acid feedstocks into structurally diverse chiral molecules. Here an anchoring group strategy is demonstrated as a potential alternative and supplement to the conventional structural modification of catalysts by creating additional catalyst-substrate interactions. We show that a tailored benzamide group in aminomalonic acids can help build a coordinated network of non-covalent interactions, including hydrogen bonds, π-π interactions and dispersion forces, with a chiral acid catalyst. This allows enantioselective decarboxylative protonation to give α-amino acids. The malonate-based synthesis introduces side chains via a facile substitution of aminomalonic esters and thus can access structurally and functionally diverse amino acids.


Assuntos
Aminas , Aminoácidos , Aminoácidos/química , Ésteres , Descarboxilação , Malonatos , Catálise
5.
Nature ; 623(7988): 745-751, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788684

RESUMO

Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2-4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.


Assuntos
Produtos Biológicos , Técnicas de Química Sintética , Descarboxilação , Eletroquímica , Eletrodos , Preparações Farmacêuticas , Ácidos Carboxílicos/química , Nanopartículas Metálicas/química , Oxirredução , Prata/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Níquel/química , Ligantes , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química , Eletroquímica/métodos , Técnicas de Química Sintética/métodos
6.
Org Lett ; 25(44): 7958-7962, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37758233

RESUMO

Broad application of α,α-disubstituted cyclic amino acid derivatives in medicinal chemistry urges for analogue design with improved pharmacokinetic properties. Herein, we disclose an electrochemical approach toward unnatural THF- and THP-containing amino acid derivatives that relies on anodic decarboxylation-intramolecular etherification of inexpensive and readily available N-acetylamino malonic acid monoesters under Hofer-Moest reaction conditions. The decarboxylative cyclization proceeds under constant current conditions in an undivided cell in an aqueous medium without any added base. A successful bioisosteric replacement of the 1-aminocyclohexane-1-carboxylic acid subunit by the THP-containing amino acid scaffold in cathepsin K inhibitor balicatib helped to reduce lipophilicity while retaining low nanomolar enzyme inhibitory potency and comparable microsomal stability.


Assuntos
Aminoácidos , Aminoácidos/química , Descarboxilação , Ciclização
7.
Org Lett ; 25(27): 5123-5127, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37382582

RESUMO

A protocol for a copper-catalyzed intermolecular cross-coupling cascade between 2-(2-bromoaryl)-1H-benzo[d]imidazole analogues and proline or pipecolic acid has been developed. The developed protocol allows access to a variety of synthetically useful N-fused pyrrolo or pyrido[1,2-a]imidazo[1,2-c]quinazoline scaffolds with high efficiency and good functional group compatibility. Proline or pipecolic acid plays a dual role in the reaction: as ligand and reactants. A mechanistically consecutive approach for the Ullmann coupling, decarboxylation, oxidation, and dehydration reaction process was presented.


Assuntos
Cobre , Quinazolinas , Humanos , Descarboxilação , Desidratação , Prolina , Catálise
8.
Org Lett ; 25(27): 5006-5010, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37384561

RESUMO

Chiral propargylic cyanides are often used as small-molecule feedstocks for the introduction of chiral centers into various valuable products and complex molecules. Here, we have developed a highly atom-economical strategy for the chiral copper complex-catalyzed synthesis of chiral propargylic cyanides. Propargylic radicals can be smoothly obtained by direct decarboxylation of the propargylic carboxylic acids without preactivation. The reactions show excellent selectivity and functional group compatibility. Gram-scale reaction and several conversion reactions from chiral propargylic cyanide have demonstrated the synthetic value of this strategy.


Assuntos
Ácidos Carboxílicos , Cobre , Descarboxilação , Catálise , Estereoisomerismo , Cianetos
9.
J Org Chem ; 88(13): 9372-9380, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343224

RESUMO

Visible-light-induced decarboxylative trifluoromethylselenolation of (hetero)aromatic carboxylic acids with [Me4N][SeCF3], oxidant, and catalysts afforded a variety of (hetero)aryl trifluoromethyl selenoethers in good yields. The reaction might involve a radical process, which generated (hetero)aryl radicals from the stable (hetero)aromatic carboxylic acids via oxidative decarboxylation with NFSI as the oxidant, [di-tBu-Mes-Acr-Ph][BF4] as the photocatalyst, and 1,1'-biphenyl as the cocatalyst. Both catalysts had a decisive influence on the reaction. The trifluoromethylselenolation was further promoted by the copper salts probably via Cu-mediated cross-coupling of the sensitive SeCF3 species with the in situ formed (hetero)aryl radicals. Advantages of the method include visible light irradiation, mild reaction conditions at ambient temperature, good functional group tolerance, no pre-functionalization/activation of the starting carboxylic acids, and applicability to drug molecules. This protocol is promising and synthetically useful, which overcame the limitations of the known trifluoromethylselenolation methods and represented the first decarboxylative trifluoromethylselenolation of (hetero)aromatic carboxylic acids.


Assuntos
Ácidos Carboxílicos , Cobre , Cobre/química , Descarboxilação , Ácidos Carbocíclicos , Ácidos Carboxílicos/química , Oxidantes
10.
J Biol Chem ; 299(7): 104904, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302552

RESUMO

Nitrosuccinate is a biosynthetic building block in many microbial pathways. The metabolite is produced by dedicated L-aspartate hydroxylases that use NADPH and molecular oxygen as co-substrates. Here, we investigate the mechanism underlying the unusual ability of these enzymes to perform successive rounds of oxidative modifications. The crystal structure of Streptomyces sp. V2 L-aspartate N-hydroxylase outlines a characteristic helical domain wedged between two dinucleotide-binding domains. Together with NADPH and FAD, a cluster of conserved arginine residues forms the catalytic core at the domain interface. Aspartate is found to bind in an entry chamber that is close to but not in direct contact with the flavin. It is recognized by an extensive H-bond network that explains the enzyme's strict substrate-selectivity. A mutant designed to create steric and electrostatic hindrance to substrate binding disables hydroxylation without perturbing the NADPH oxidase side-activity. Critically, the distance between the FAD and the substrate is far too long to afford N-hydroxylation by the C4a-hydroperoxyflavin intermediate whose formation is confirmed by our work. We conclude that the enzyme functions through a catch-and-release mechanism. L-aspartate slides into the catalytic center only when the hydroxylating apparatus is formed. It is then re-captured by the entry chamber where it waits for the next round of hydroxylation. By iterating these steps, the enzyme minimizes the leakage of incompletely oxygenated products and ensures that the reaction carries on until nitrosuccinate is formed. This unstable product can then be engaged by a successive biosynthetic enzyme or undergoes spontaneous decarboxylation to produce 3-nitropropionate, a mycotoxin.


Assuntos
Ácido Aspártico , Biocatálise , Oxigenases de Função Mista , Streptomyces , Ácido Aspártico/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , Oxigenases de Função Mista/metabolismo , NADP/metabolismo , Oxirredução , Streptomyces/enzimologia , Domínios Proteicos , Arginina/metabolismo , Especificidade por Substrato , Hidroxilação , Ligação de Hidrogênio , Eletricidade Estática , Descarboxilação , Domínio Catalítico
11.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216508

RESUMO

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Assuntos
Alcenos , Ácidos Graxos , Ácidos Graxos/metabolismo , Alcenos/química , Descarboxilação , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
12.
Methods Enzymol ; 685: 241-277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245904

RESUMO

Salicylate hydroxylase (NahG) is a FAD-dependent monooxygenase in which the reduced flavin activates O2 coupled to the oxidative decarboxylation of salicylate to catechol or uncoupled from substrate oxidation to afford H2O2. This chapter presents different methodologies in equilibrium studies, steady-state kinetics, and identification of reaction products, which were important to understand the SEAr mechanism of catalysis in NahG, the role of the different FAD parts for ligand binding, the extent of uncoupled reaction, and the catalysis of salicylate's oxidative decarboxylation. These features are likely familiar to many other FAD-dependent monooxygenases and offer a potential asset for developing new tools and strategies in catalysis.


Assuntos
Peróxido de Hidrogênio , Oxigenases de Função Mista , Descarboxilação , Oxigenases de Função Mista/metabolismo , Oxirredução , Flavinas/metabolismo , Catálise , Salicilatos , Estresse Oxidativo , Cinética , Flavina-Adenina Dinucleotídeo/metabolismo
13.
Biochemistry ; 62(9): 1443-1451, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37042731

RESUMO

Green photosynthetic bacteria, one of the phototrophs, have the largest and most efficient light-harvesting antenna systems, called chlorosomes. The core part of chlorosomes consists of unique bacteriochlorophyll c/d/e molecules. In the biosynthetic pathway of these molecules, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. Two sequential reactions have been proposed for the BciC enzymatic demethoxycarbonylation: the BciC enzyme would catalyze the hydrolysis of the C132-methoxycarbonyl group, and the resulting carboxylic acid would be rapidly decarboxylated to generate pyrochlorophyllide a. In this study, we computationally predicted the three-dimensional structure of the BciC protein. Its active site was proposed based on structural analysis using docking simulation. In vitro enzymatic reaction assays of mutated BciC supported the prediction. The BciC enzymatic hydrolysis would be an aspartic/glutamic acid hydrolase, which involves the amino residues E85 and D180. Furthermore, Y58 and H126 might depend on stabilization and/or recognition with the substrate. Most importantly, H137 would protonate 13-C═O or deprotonate C132-COOH in the hydrolyzed product to promote decarboxylation. In conclusion, the BciC enzyme has the dual functions of hydrolysis and decarboxylation.


Assuntos
Bacterioclorofilas , Clorofilídeos , Hidrólise , Domínio Catalítico , Descarboxilação , Bacterioclorofilas/química , Clorofila , Proteínas de Bactérias/metabolismo
14.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108586

RESUMO

The deprotonation of an organic substrate is a common preactivation step for the enzymatic cofactorless addition of O2 to this substrate, as it promotes charge-transfer between the two partners, inducing intersystem crossing between the triplet and singlet states involved in the process. Nevertheless, the spin-forbidden addition of O2 to uncharged ligands has also been observed in the laboratory, and the detailed mechanism of how the system circumvents the spin-forbiddenness of the reaction is still unknown. One of these examples is the cofactorless peroxidation of 2-methyl-3,4-dihydro-1-naphthol, which will be studied computationally using single and multi-reference electronic structure calculations. Our results show that the preferred mechanism is that in which O2 picks a proton from the substrate in the triplet state, and subsequently hops to the singlet state in which the product is stable. For this reaction, the formation of the radical pair is associated with a higher barrier than that associated with the intersystem crossing, even though the absence of the negative charge leads to relatively small values of the spin-orbit coupling.


Assuntos
Tetralonas , Descarboxilação , Oxigênio/química
15.
J Phys Chem B ; 127(13): 2927-2933, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36959730

RESUMO

Cytochrome P450OleT (CYP450OleT), a member of CYP450 peroxygenases, catalyzes unusual decarboxylation activity. Unlike other members of the peroxygenases family, CYP450OleT possesses a histidine at the 85th position, which was supposed to be the root cause of the decarboxylation activity in CYP450OleT. This work addresses the His85 → Gln mutant paradox, where mutation of His → Gln still shows efficient decarboxylation activity in CYP450OleT. The MD simulation of the H85Q mutant of CYP450OleT shows that in the absence of the histidine at the 85th position, an Asp239 plays a similar role via a well-organized water channel. Our simulation shows that such a water channel is vital for the optimal substrate positioning needed for the decarboxylation activity and is gated by the Q85-N242 residue pair. Interestingly, the MD simulation of the WT CYP450BSß shows a closed channel that blocks access to the Glu236 (analogous residue to Asp239 in CYP450OleT), and therefore, CYP450BSß shows low decarboxylation activity.


Assuntos
Sistema Enzimático do Citocromo P-450 , Histidina , Histidina/genética , Descarboxilação , Mutação
16.
Chemistry ; 29(35): e202300265, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36972020

RESUMO

Herein we report on the decarboxylative alkenylation between alkyl carboxylic acids and enol triflates. The reaction is mediated by a dual catalytic nickel and iridium system, operating under visible light irradiation. Two competing catalytic pathways, from the excited state iridium photocatalyst, are identified. One is energy transfer from the excited state, resulting in formation of an undesired enol ester. The desired pathway involves electron transfer, resulting in decarboxylation to ultimately give the target product. The use of a highly oxidizing iridium photocatalyst is essential to control the reactivity. A diverse array of enol triflates and alkyl carboxylic acids are investigated, providing both scope and limitations of the presented methodology.


Assuntos
Ácidos Carboxílicos , Irídio , Estrutura Molecular , Descarboxilação , Catálise , Transferência de Energia
17.
Forensic Toxicol ; 41(1): 105-113, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652066

RESUMO

PURPOSE: Decarboxylation of Δ9-tetrahydrocannabinolic acid (Δ9-THCA) to Δ9-tetrahydrocannabinol (Δ9-THC) by heating is a common method for determining total Δ9-THC. In the manual for cannabis identification and analysis, the United Nations Office on Drugs and Crime (UNODC) proposed decarboxylation conditions. Although the manual's primary analytical target is Δ9-THC, some reports also quantified cannabidiol (CBD). The authors assessed the efficiency of decarboxylation of Δ9-THCA and cannabidiolic acid (CBDA), a carboxylated form of CBD, under four decarboxylation conditions, including the UNODC condition. METHODS: Δ9-THCA and CBDA were heated in 2-mL glass vials at 150 °C for 12 min after the following treatment: condition A involves the addition of ethanol without capping, condition B involves non addition of solvent without capping, condition C involves non addition of solvent with capping, and condition D (UNODC condition) involves the addition of 0.5 mg/mL tribenzylamine (TBA) in ethanol without capping. The residue after heating was dissolved in methanol and then analyzed by high-performance liquid chromatography. RESULTS: The production of Δ9-THC and CBD was low (≤ 10.1%) under conditions A and B. Under condition C, Δ9-THC production was increased (53.4%), but CBD production was hardly improved (11.7%). Under condition D, Δ9-THC and CBD production dramatically increased to 83.2 and 71.0%, respectively. CONCLUSIONS: These findings indicated that TBA improved the production of Δ9-THC and CBD from their carboxylated forms; however, even in the presence of TBA, their production did not reach 100%. Forensic toxicologists should understand the effectiveness and limitations of decarboxylation under the UNODC condition.


Assuntos
Canabidiol , Dronabinol , Dronabinol/análise , Descarboxilação , Solventes , Etanol
18.
Angew Chem Int Ed Engl ; 62(4): e202211937, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36308301

RESUMO

UDP-glucuronic acid (UDP-GlcA) 4-epimerase illustrates an important problem regarding enzyme catalysis: balancing conformational flexibility with precise positioning. The enzyme coordinates the C4-oxidation of the substrate by NAD+ and rotation of a decarboxylation-prone ß-keto acid intermediate in the active site, enabling stereoinverting reduction of the keto group by NADH. We reveal the elusive rotational landscape of the 4-keto intermediate. Distortion of the sugar ring into boat conformations induces torsional mobility in the enzyme's binding pocket. The rotational endpoints show that the 4-keto sugar has an undistorted 4 C1 chair conformation. The equatorially placed carboxylate group disfavors decarboxylation of the 4-keto sugar. Epimerase variants lead to decarboxylation upon removal of the binding interactions with the carboxylate group in the opposite rotational isomer of the substrate. Substitutions R185A/D convert the epimerase into UDP-xylose synthases that decarboxylate UDP-GlcA in stereospecific, configuration-retaining reactions.


Assuntos
Racemases e Epimerases , Uridina Difosfato Ácido Glucurônico , Uridina Difosfato Ácido Glucurônico/metabolismo , Descarboxilação , Rotação , Ácido Glucurônico , Racemases e Epimerases/metabolismo , Cetoses , NAD/química
19.
Biochemistry ; 62(1): 53-61, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36521056

RESUMO

Ferulic acid decarboxylase (FDC) catalyzes the reversible carboxylation of various substituted phenylacrylic acids to produce the correspondingly substituted styrenes and CO2. FDC is a member of the UbiD family of enzymes that use prenylated-FMN (prFMN) to catalyze decarboxylation reactions on aromatic rings and C-C double bonds. Although a growing number of prFMN-dependent enzymes have been identified, the mechanism of the reaction remains poorly understood. Here, we present a detailed pre-steady-state kinetic analysis of the FDC-catalyzed reaction of prFMN with both styrene and phenylacrylic acid. Based on the pattern of reactivity observed, we propose a "two-stroke" kinetic model in which negative cooperativity between the two subunits of the FDC homodimer plays an important and previously unrecognized role in catalysis. In this model, catalysis is initiated at the high-affinity active site, which reacts with phenylacrylate to yield, after decarboxylation, the covalently bound styrene-prFMN cycloadduct. In the second stage of the catalytic cycle, binding of the second substrate molecule to the low-affinity active site drives a conformational switch that interconverts the high-affinity and low-affinity active sites. This switching of affinity couples the energetically unfavorable cycloelimination of styrene from the first site with the energetically favorable cycloaddition and decarboxylation of phenylacrylate at the second site. We note as a caveat that, at this point, the complexity of the FDC kinetics leaves open other mechanistic interpretations and that further experiments will be needed to more firmly establish or refute our proposal.


Assuntos
Carboxiliases , Descarboxilação , Cinética , Domínio Catalítico , Carboxiliases/química , Compostos Orgânicos , Flavinas/metabolismo
20.
Artif Organs ; 47(5): 854-863, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36433665

RESUMO

BACKGROUND: The aim of this study was to assess the interdependence of extracorporeal blood flow (Qec) and gas flow (GF) in predicting CO2 removal and reduction of minute mechanical ventilation under extracorporeal respiratory support. METHODS: All patients who benefited from V-V ECMO and high-flow ECCO2 R in our intensive care unit over a period of 18 months were included. CO2 removal was calculated from inlet/outlet blood port gases during the first 7 days of oxygenator use. The relationship between the Qec × GF product (named decarboxylation index and expressed in L2 /min2 ) and CO2 removal or expired minute mechanical ventilation reduction (EC MV ratio) was studied using linear regression models. RESULTS: Eighteen patients were analyzed, corresponding to 24 oxygenators and 261 datasets. CO2 removal was 393 ml/min (IQR, 310-526) for 1.8 m2 oxygenators and 179 ml/min (IQR, 165-235) for 1.3 m2 oxygenators. The decarboxylation index was associated linearly with CO2 removal (R2  = 0.62 and R2  = 0.77 for the two oxygenators, respectively) and EC MV ratio (R2  = 0.72 and R2  = 0.62, respectively). The 20L2 /min2 value (considering Qec = 2 L/min and GF = 10 L/min) was associated with an EC MV ratio between 61% and 29% for 1.8 m2 oxygenators, and between 62% and 38% for 1.3 m2 oxygenators. CONCLUSION: The decarboxylation index is a simple parameter to predict CO2 removal and EC MV ratio under extracorporeal respiratory support.


Assuntos
Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Humanos , Dióxido de Carbono , Descarboxilação , Síndrome do Desconforto Respiratório/complicações , Respiração Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...