Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109.279
Filtrar
1.
Anal Chim Acta ; 1317: 342894, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39030021

RESUMO

BACKGROUND: The formation of amyloid-ß (Aß) plaques is one of the key neuropathological hallmarks of Alzheimer's disease (AD). Near-infrared (NIR) probes show great potential for imaging of Aß plaques in vivo and in vitro. Dicyanoisophorone (DCIP) based Aß probes have attracted considerable attention due to their exceptional properties. However, DCIP probes still has some drawbacks, such as short emission wavelength (<650 nm) and low fluorescence intensity after binding to Aß. It is clear that further modification is needed to improve their luminescence efficiency and sensitivity. RESULTS: We designed and synthesize four novel pyrrolidine-alkylamino-substituted DCIP derivatives (6a-d) as imaging agents for ß-amyloid (Aß) aggregates. Compound 6c responds better to Aß aggregates than the other three compounds (6a, 6b and 6d) and its precursor DCIP. The calculated detection limit is to be as low as 0.23 µM. Compound 6c shows no cytotoxicity in the tested concentration for SH-SY5Y and HL-7702 cells. Additionally, compound 6c is successfully applied to monitor Aß aggregates in live SH-SY5Y cells and APP/PS1 transgenic mice. The retention time in the transgenic mice brain is much longer than that of age-matched wild-type mice. SIGNIFICANCE: The results indicates that compound 6c had an excellent ability to penetrate the blood-brain barrier and it could effectively distinguish APP/PS1 transgenic mice and wide-type mice. This represents its promising applications for Aß detection in basic and biomedical research.


Assuntos
Cicloexanonas , Humanos , Linhagem Celular , Precursor de Proteína beta-Amiloide/análise , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Pirrolidinas/química , Cicloexanonas/síntese química , Cicloexanonas/química , Cicloexanonas/farmacologia , Espectroscopia de Luz Próxima ao Infravermelho , Estrutura Molecular , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Espectrometria de Fluorescência , Modelos Moleculares , Estrutura Terciária de Proteína , Simulação de Acoplamento Molecular , Sobrevivência Celular/efeitos dos fármacos , Animais , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Aminação , Alquilação
2.
Cell ; 187(13): 3357-3372.e19, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866018

RESUMO

Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.


Assuntos
Archaea , Hidrogênio , Hidrogenase , Filogenia , Archaea/genética , Archaea/enzimologia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Genoma Arqueal , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Hidrogenase/genética , Hidrogenase/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Estrutura Terciária de Proteína
3.
Cell ; 187(13): 3284-3302.e23, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38843832

RESUMO

The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.


Assuntos
Diferenciação Celular , Spliceossomos , Animais , Humanos , Camundongos , Blastocisto/metabolismo , Blastocisto/citologia , Blastômeros/metabolismo , Blastômeros/citologia , Reprogramação Celular , Desenvolvimento Embrionário/genética , Camadas Germinativas/metabolismo , Camadas Germinativas/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Splicing de RNA , Spliceossomos/metabolismo , Células-Tronco Totipotentes/metabolismo , Células-Tronco Totipotentes/citologia , Zigoto/metabolismo , Células Cultivadas , Modelos Moleculares , Estrutura Terciária de Proteína , Genoma Humano , Análise de Célula Única , Fator 15 de Diferenciação de Crescimento/química , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Epigenômica , Linhagem da Célula
4.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 535-550, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935342

RESUMO

The formation of a vitrified thin film embedded with randomly oriented macromolecules is an essential prerequisite for cryogenic sample electron microscopy. Most commonly, this is achieved using the plunge-freeze method first described nearly 40 years ago. Although this is a robust method, the behaviour of different macromolecules shows great variation upon freezing and often needs to be optimized to obtain an isotropic, high-resolution reconstruction. For a macromolecule in such a film, the probability of encountering the air-water interface in the time between blotting and freezing and adopting preferred orientations is very high. 3D reconstruction using preferentially oriented particles often leads to anisotropic and uninterpretable maps. Currently, there are no general solutions to this prevalent issue, but several approaches largely focusing on sample preparation with the use of additives and novel grid modifications have been attempted. In this study, the effect of physical and chemical factors on the orientations of macromolecules was investigated through an analysis of selected well studied macromolecules, and important parameters that determine the behaviour of proteins on cryo-EM grids were revealed. These insights highlight the nature of the interactions that cause preferred orientations and can be utilized to systematically address orientation bias for any given macromolecule and to provide a framework to design small-molecule additives to enhance sample stability and behaviour.


Assuntos
Microscopia Crioeletrônica , Humanos , Proteínas/química , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Estrutura Terciária de Proteína , SARS-CoV-2/química , Tensoativos/química , Estrutura Quaternária de Proteína , Escherichia coli/química , Temperatura
5.
J Virol ; 98(7): e0066724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38829140

RESUMO

We report the discovery of a satellite-helper phage system with a novel type of dependence on a tail donor. The Acinetobacter baumannii satellite podovirus Aci01-2-Phanie (short name Phanie) uses a phage phi29-like DNA replication and packaging mode. Its linear 11,885 bp dsDNA genome bears 171 bp inverted terminal repeats (ITR). Phanie is related to phage DU-PP-III from Pectobacterium and to members of the Astrithrvirus from Salmonella enterica. Together, they form a new clade of phages with 27% to 30% identity over the whole genome. Detailed 3D protein structure prediction and mass spectrometry analyses demonstrate that Phanie encodes its capsid structural genes and genes necessary to form a short tail. However, our study reveals that Phanie virions are non-infectious unless they associate with the contractile tail of an unrelated phage, Aci01-1, to produce chimeric myoviruses. Following the coinfection of Phanie with myovirus Aci01-1, hybrid viral particles composed of Phanie capsids and Aci01-1 contractile tails are assembled together with Phanie and Aci01-1 particles.IMPORTANCEThere are few reported cases of satellite-helper phage interactions but many more may be yet undiscovered. Here we describe a new mode of satellite phage dependence on a helper phage. Phanie, like phage phi29, replicates its linear dsDNA by a protein primed-mechanism and protects it inside podovirus-like particles. However, these particles are defective, requiring the acquisition of the tail from a myovirus helper for production of infectious virions. The formation of chimeras between a phi29-like podovirus and a helper contractile tail reveals an unexpected association between very different bacterial viruses.


Assuntos
Bacteriófagos , Myoviridae , Podoviridae , Replicação Viral , Acinetobacter/virologia , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Replicação Viral/fisiologia , Podoviridae/classificação , Podoviridae/fisiologia , Podoviridae/ultraestrutura , Myoviridae/fisiologia , Myoviridae/ultraestrutura , Proteínas Virais/química , Estrutura Terciária de Proteína , Modelos Moleculares
6.
J Am Chem Soc ; 146(19): 13588-13597, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695646

RESUMO

Membrane channel proteins (MCPs) play key roles in matter transport through cell membranes and act as major targets for vaccines and drugs. For emerging ionic liquid (IL) drugs, a rational understanding of how ILs affect the structure and transport function of MCP is crucial to their design. In this work, GPU-accelerated microsecond-long molecular dynamics simulations were employed to investigate the modulating mechanism of ILs on MCP. Interestingly, ILs prefer to insert into the lipid bilayer and channel of aquaporin-2 (AQP2) but adsorb on the entrance of voltage-gated sodium channels (Nav). Molecular trajectory and free energy analysis reflect that ILs have a minimal impact on the structure of MCPs but significantly influence MCP functions. It demonstrates that ILs can decrease the overall energy barrier for water through AQP2 by 1.88 kcal/mol, whereas that for Na+ through Nav is increased by 1.70 kcal/mol. Consequently, the permeation rates of water and Na+ can be enhanced and reduced by at least 1 order of magnitude, respectively. Furthermore, an abnormal IL gating mechanism was proposed by combining the hydrophobic nature of MCP and confined water/ion coordination effects. More importantly, we performed experiments to confirm the influence of ILs on AQP2 in human cells and found that treatment with ILs significantly accelerated the changes in cell volume in response to altered external osmotic pressure. Overall, these quantitative results will not only deepen the understanding of IL-cell interactions but may also shed light on the rational design of drugs and disease diagnosis.


Assuntos
Permeabilidade da Membrana Celular , Ativação do Canal Iônico , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Líquidos Iônicos/química , Líquidos Iônicos/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Água/química , Linhagem Celular
7.
Cell ; 187(13): 3249-3261.e14, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38781968

RESUMO

Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , DNA , Edição de Genes , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , DNA/metabolismo , DNA/genética , Edição de Genes/métodos , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Células HEK293 , Domínios Proteicos , Genoma Humano , Modelos Moleculares , Estrutura Terciária de Proteína , Conformação de Ácido Nucleico , Biocatálise , Magnésio/química , Magnésio/metabolismo
8.
J Chem Inf Model ; 64(10): 4149-4157, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38713459

RESUMO

A substantial portion of various organisms' proteomes comprises intrinsically disordered proteins (IDPs) that lack a defined three-dimensional structure. These IDPs exhibit a diverse array of conformations, displaying remarkable spatiotemporal heterogeneity and exceptional conformational flexibility. Characterizing the structure or structural ensemble of IDPs presents significant conceptual and methodological challenges owing to the absence of a well-defined native structure. While databases such as the Protein Ensemble Database (PED) provide IDP ensembles obtained through a combination of experimental data and molecular modeling, the absence of reaction coordinates poses challenges in comprehensively understanding pertinent aspects of the system. In this study, we leverage the energy landscape visualization method (JCTC, 6482, 2019) to scrutinize four IDP ensembles sourced from PED. ELViM, a methodology that circumvents the need for a priori reaction coordinates, aids in analyzing the ensembles. The specific IDP ensembles investigated are as follows: two fragments of nucleoporin (NUL: 884-993 and NUS: 1313-1390), yeast sic 1 N-terminal (1-90), and the N-terminal SH3 domain of Drk (1-59). Utilizing ELViM enables the comprehensive validation of ensembles, facilitating the detection of potential inconsistencies in the sampling process. Additionally, it allows for identifying and characterizing the most prevalent conformations within an ensemble. Moreover, ELViM facilitates the comparative analysis of ensembles obtained under diverse conditions, thereby providing a powerful tool for investigating the functional mechanisms of IDPs.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Modelos Moleculares , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Desdobramento de Proteína
9.
Chemistry ; 30(45): e202401890, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38753977

RESUMO

Targeted protein backbone modification can recreate tertiary structures reminiscent of folds found in nature on artificial scaffolds with improved biostability. Incorporation of altered monomers in such entities is typically limited to sites distant from the hydrophobic core to avoid potential disruptions to folding. This is limiting, as it is advantageous in some applications to incorporate artificial connectivity at buried sites. Here, we report an examination of protein backbone modification targeted specifically to hydrophobic core positions and its impacts on tertiary folded structure and fold stability. Different artificial monomer types are placed at core, core-flanking, or solvent-exposed positions in a compact three-helix protein. Effects on structure and folding energetics are assessed by NMR spectroscopy and biophysical methods. Results show that artificial residues can be well accommodated in the hydrophobic core of a defined tertiary fold, with effects on stability only modestly larger than identical changes at solvent-exposed sites. Collectively, these results provide new insights into folding behavior of protein-like artificial chains as well as strategies for the design of such molecules.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Dobramento de Proteína , Proteínas , Proteínas/química , Ressonância Magnética Nuclear Biomolecular , Modelos Moleculares , Solventes/química , Termodinâmica , Estabilidade Proteica , Estrutura Terciária de Proteína
10.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593609

RESUMO

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Assuntos
Azurina , Modelos Moleculares , Cinética , Eletroquímica , Azurina/química , Azurina/genética , Azurina/metabolismo , Actinobacteria/química , Thermoplasmales/química , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Terciária de Proteína , Ferro/metabolismo , Oxirredução , Biotecnologia , Estabilidade Proteica , Sequência Conservada/genética
11.
J Biol Chem ; 300(5): 107250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569935

RESUMO

The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O2-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control. When used as a regulator, heme binds more weakly, with different heme ligations and without the need for a discrete heme pocket. This makes the characterization of heme regulatory proteins difficult, and new approaches are needed to predict and understand the heme-protein interactions. We apply a modified version of the ProFunc bioinformatics tool to identify heme-binding sites in a test set of heme-dependent regulatory proteins taken from the Protein Data Bank and AlphaFold models. The potential heme binding sites identified can be easily visualized in PyMol and, if necessary, optimized with RosettaDOCK. We demonstrate that the methodology can be used to identify heme-binding sites in proteins, including in cases where there is no crystal structure available, but the methodology is more accurate when the quality of the structural information is high. The ProFunc tool, with the modification used in this work, is publicly available at https://www.ebi.ac.uk/thornton-srv/databases/profunc and can be readily adopted for the examination of new heme binding targets.


Assuntos
Heme , Ligação Proteica , Humanos , Sítios de Ligação , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Proteínas , Heme/metabolismo , Heme/química , Hemeproteínas/metabolismo , Hemeproteínas/química , Hemeproteínas/genética , Modelos Moleculares , Estrutura Terciária de Proteína
12.
J Biol Chem ; 300(5): 107267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583863

RESUMO

Phospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca2+ sensitivity of active SERCA, increasing the Ca2+ concentration required for pump cycling. However, PLB does not decrease Ca2+ binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca2+ affinity. The prevailing explanation for these seemingly conflicting results is that PLB slows transitions in the SERCA enzymatic cycle associated with Ca2+ binding, altering transport Ca2+ dependence without actually affecting the equilibrium binding affinity of the Ca2+-coordinating sites. Here, we consider another hypothesis, that measurements of Ca2+ binding in the absence of ATP overlook important allosteric effects of nucleotide binding that increase SERCA Ca2+ binding affinity. We speculated that PLB inhibits SERCA by reversing this allostery. To test this, we used a fluorescent SERCA biosensor to quantify the Ca2+ affinity of non-cycling SERCA in the presence and absence of a non-hydrolyzable ATP-analog, AMPPCP. Nucleotide activation increased SERCA Ca2+ affinity, and this effect was reversed by co-expression of PLB. Interestingly, PLB had no effect on Ca2+ affinity in the absence of nucleotide. These results reconcile the previous conflicting observations from ATPase assays versus Ca2+ binding assays. Moreover, structural analysis of SERCA revealed a novel allosteric pathway connecting the ATP- and Ca2+-binding sites. We propose this pathway is disrupted by PLB binding. Thus, PLB reduces the equilibrium Ca2+ affinity of SERCA by interrupting allosteric activation of the pump by ATP.


Assuntos
Proteínas de Ligação ao Cálcio , Cálcio , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Miocárdio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Cães , Células HEK293 , Modelos Moleculares , Estrutura Terciária de Proteína
13.
J Biol Chem ; 300(5): 107280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588810

RESUMO

Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily. Our investigation unveils functional, structural, and dynamical behaviors that differentiate the evolved ancestral ribonuclease (AncRNase) from its contemporary eosinophil RNase orthologs. Leveraging the potential of ancestral reconstruction for protein engineering, we used AncRNase predictions to design a minimal 4-residue variant that transforms human RNase 2 into a chimeric enzyme endowed with the antimicrobial and cytotoxic activities of RNase 3 members. This work provides unique insights into mutational and evolutionary pathways governing structure, function, and conformational states within the eosinophil RNase subfamily, offering potential for targeted modulation of RNase-associated functions.


Assuntos
Eosinófilos , Humanos , Sequência de Aminoácidos , Eosinófilos/metabolismo , Eosinófilos/enzimologia , Evolução Molecular , Ribonucleases/metabolismo , Ribonucleases/química , Ribonucleases/genética , Animais , Macaca fascicularis , Filogenia , Modelos Moleculares , Estrutura Terciária de Proteína
14.
J Biol Chem ; 300(5): 107251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569939

RESUMO

Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling ß-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.


Assuntos
Fator Neurotrófico Ciliar , Receptor gp130 de Citocina , Interleucina-6 , Transdução de Sinais , Animais , Humanos , Camundongos , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/genética , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Modelos Moleculares , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores de OSM-LIF/metabolismo , Receptores de OSM-LIF/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Camundongos Endogâmicos C57BL
15.
J Biol Chem ; 300(5): 107261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582450

RESUMO

Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.


Assuntos
Antiporters , Transportadores de Sulfato , Animais , Humanos , Antiporters/metabolismo , Antiporters/genética , Antiporters/química , Sítios de Ligação , Células HEK293 , Ligação de Hidrogênio , Modelos Moleculares , Mutação de Sentido Incorreto , Domínios Proteicos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/química , Multimerização Proteica , Estrutura Secundária de Proteína
16.
J Biol Chem ; 300(4): 107129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432639

RESUMO

The adaptor protein Grb2, or growth factor receptor-bound protein 2, possesses a pivotal role in the transmission of fundamental molecular signals in the cell. Despite lacking enzymatic activity, Grb2 functions as a dynamic assembly platform, orchestrating intracellular signals through its modular structure. This study delves into the energetic communication of Grb2 domains, focusing on the folding and binding properties of the C-SH3 domain linked to its neighboring SH2 domain. Surprisingly, while the folding and stability of C-SH3 remain robust and unaffected by SH2 presence, significant differences emerge in the binding properties when considered within the tandem context compared with isolated C-SH3. Through a double mutant cycle analysis, we highlighted a subset of residues, located at the interface with the SH2 domain and far from the binding site, finely regulating the binding of a peptide mimicking a physiological ligand of the C-SH3 domain. Our results have mechanistic implications about the mechanisms of specificity of the C-SH3 domain, indicating that the presence of the SH2 domain optimizes binding to its physiological target, and emphasizing the general importance of considering supramodular multidomain protein structures to understand the functional intricacies of protein-protein interaction domains.


Assuntos
Proteína Adaptadora GRB2 , Ligação Proteica , Dobramento de Proteína , Domínios de Homologia de src , Humanos , Sítios de Ligação , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/genética , Modelos Moleculares , Estrutura Terciária de Proteína
17.
J Biol Chem ; 300(4): 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432637

RESUMO

Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.


Assuntos
Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Proteínas rab de Ligação ao GTP , Feminino , Humanos , Masculino , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Linhagem Celular , Cílios/metabolismo , Cílios/genética , Cílios/patologia , Citocinese/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
18.
J Biol Chem ; 300(4): 107146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460939

RESUMO

The polybromo, brahma-related gene 1-associated factors (PBAF) chromatin remodeling complex subunit polybromo-1 (PBRM1) contains six bromodomains that recognize and bind acetylated lysine residues on histone tails and other nuclear proteins. PBRM1 bromodomains thus provide a link between epigenetic posttranslational modifications and PBAF modulation of chromatin accessibility and transcription. As a putative tumor suppressor in several cancers, PBRM1 protein expression is often abrogated by truncations and deletions. However, ∼33% of PBRM1 mutations in cancer are missense and cluster within its bromodomains. Such mutations may generate full-length PBRM1 variant proteins with undetermined structural and functional characteristics. Here, we employed computational, biophysical, and cellular assays to interrogate the effects of PBRM1 bromodomain missense variants on bromodomain stability and function. Since mutations in the fourth bromodomain of PBRM1 (PBRM1-BD4) comprise nearly 20% of all cancer-associated PBRM1 missense mutations, we focused our analysis on PBRM1-BD4 missense protein variants. Selecting 16 potentially deleterious PBRM1-BD4 missense protein variants for further study based on high residue mutational frequency and/or conservation, we show that cancer-associated PBRM1-BD4 missense variants exhibit varied bromodomain stability and ability to bind acetylated histones. Our results demonstrate the effectiveness of identifying the unique impacts of individual PBRM1-BD4 missense variants on protein structure and function, based on affected residue location within the bromodomain. This knowledge provides a foundation for drawing correlations between specific cancer-associated PBRM1 missense variants and distinct alterations in PBRM1 function, informing future cancer personalized medicine approaches.


Assuntos
Proteínas de Ligação a DNA , Mutação de Sentido Incorreto , Neoplasias , Domínios Proteicos , Fatores de Transcrição , Humanos , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Ligantes , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Modelos Moleculares , Estrutura Terciária de Proteína
19.
J Biol Chem ; 300(5): 107218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522515

RESUMO

Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.


Assuntos
Tombusvirus , Evolução Molecular , Fases de Leitura Aberta , Dobramento de Proteína , Estrutura Secundária de Proteína , Tombusvirus/genética , Tombusvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Homologia de Sequência de Aminoácidos , Modelos Psicológicos , Estrutura Terciária de Proteína
20.
Nucleic Acids Res ; 52(10): 5975-5986, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38442273

RESUMO

Coronaviruses are a diverse subfamily of viruses containing pathogens of humans and animals. This subfamily of viruses replicates their RNA genomes using a core polymerase complex composed of viral non-structural proteins: nsp7, nsp8 and nsp12. Most of our understanding of coronavirus molecular biology comes from betacoronaviruses like SARS-CoV and SARS-CoV-2, the latter of which is the causative agent of COVID-19. In contrast, members of the alphacoronavirus genus are relatively understudied despite their importance in human and animal health. Here we have used cryo-electron microscopy to determine structures of the alphacoronavirus porcine epidemic diarrhea virus (PEDV) core polymerase complex bound to RNA. One structure shows an unexpected nsp8 stoichiometry despite remaining bound to RNA. Biochemical analysis shows that the N-terminal extension of one nsp8 is not required for in vitro RNA synthesis for alpha- and betacoronaviruses. Our work demonstrates the importance of studying diverse coronaviruses in revealing aspects of coronavirus replication and identifying areas of conservation to be targeted by antiviral drugs.


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Modelos Moleculares , Vírus da Diarreia Epidêmica Suína , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Microscopia Crioeletrônica , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/enzimologia , Estrutura Terciária de Proteína , RNA Viral/metabolismo , RNA Viral/genética , RNA Viral/química , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Replicação Viral/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA