Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125.744
Filtrar
1.
Biomed Res Int ; 2024: 1741539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628498

RESUMO

Background: Dental implantation has become a standard procedure with high success rates, relying on achieving osseointegration between the implant surface and surrounding bone tissue. Polyether ether ketone (PEEK) is a promising alternative to traditional dental implant materials like titanium, but its osseointegration capabilities are limited due to its hydrophobic nature and reduced surface roughness. Objective: The aim of the study is to increase the surface roughness and hydrophilicity of PEEK by treating the surface with piranha solution and then coating the surface with epigallocatechin-3-gallate (EGCG) by electrospraying technique. Materials and Methods: The study includes four groups intended to investigate the effect of piranha treatment and EGCG coating: a control group of PEEK discs with no treatment (C), PEEK samples treated with piranha solution (P), a group of PEEK samples coated with EGCG (E), and a group of PEEK samples treated with piranha solution and coated with EGCG (PE). Surface roughness, wettability, and microhardness were assessed through statistical analysis. Results: Piranha treatment increased surface roughness, while EGCG coating moderated it, resulting in an intermediate roughness in the PE group. EGCG significantly improved wettability, as indicated by the reduced contact angle. Microhardness increased by about 20% in EGCG-coated groups compared to noncoated groups. Statistical analysis confirmed significant differences between groups in all tests. Conclusion: This study demonstrates the potential of EGCG coating to enhance the surface properties of PEEK as dental implants. The combined piranha and EGCG modification approach shows promise for improved osseointegration, although further vivo research is necessary. Surface modification techniques hold the key to optimizing biomaterial performance, bridging the gap between laboratory findings and clinical implementation in dental implantology.


Assuntos
Catequina/análogos & derivados , Polietilenoglicóis , Polímeros , Polímeros/química , Polietilenoglicóis/química , Benzofenonas , Cetonas/farmacologia , Cetonas/química , Propriedades de Superfície , Éteres , Titânio/química
2.
Biomed Res Int ; 2024: 6670159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606199

RESUMO

Objective: This research study investigated the effect of new decontamination protocols on the bonding capacity of saliva-contaminated monolithic zirconia (MZ) ceramics cemented with two different monomer-containing self-adhesive resin cements. Materials and Methods: Standardized tooth preparations (4 mm. axial height) were performed for eighty human maxillary premolars under constant water cooling system. Eighty monolithic zirconia crowns (Whitepeaks Supreme Monolith) (n = 8/10 groups) were manufactured by CAD-CAM. Specimens were kept in the artificial saliva at pH = 7.3 for 1 minute at 37°C except control groups. The specimens have not been prealumina blasted and grouped according to cleaning methods and resin cements: control groups (C) (no saliva contamination + GPDM + 4-META (N) (CN) and 10-MDP (M) containing resin cement (CM), alumina blasted (AL) + GPDM + 4-META (ALN) and 10-MDP containing resin cement (ALM), zirconium oxide containing universal cleaning agent (IC) applied + GPDM + 4-META (N) (ICN) and 10-MDP containing resin cement (ICM), pumice (P) applied + GPDM + 4-META (PN) and 10-MDP containing resin cement (PM), and air-water spray (AW) applied + GPDM + 4-META (AWN) and 10-MDP containing resin cement (AWM)). Monobond Plus was applied to all surfaces for 40 seconds before cementation. The thermal cycle was applied at 5,000 cycles after cementation. The crowns were tested in tensile mode at a speed of 1 mm/min. The mode of failure was recorded. SEM examinations were carried out at different magnifications. Data were analyzed using rank-based Kruskal-Wallis and Mann-Whitney tests. Results: No significant differences were found between the surface treatments and between the two types of resin cements. Interaction effects between surface treatments and resin cements were found to be significant by two-way ANOVA analysis. ICM group resulted in significantly better bond strength results compared with CN. ICM was found to result in better bond strength results compared with PM. The combination of universal cleaning agent and 10-MDP containing resin cement had significantly the highest cementation bond strength values. The increasing order of mean tensile bond strength values of decontamination protocols was C < AW < P < AL < IC. The mean tensile bond strength of 10-MDP containing resin cement was slightly higher than GPDM + 4-META containing resin cement. Conclusions: Universal cleaning agents can be preferred as an efficient cleaning method with 10-MDP-containing cement after saliva contamination for better adhesive bond strength of 4 mm crown preparation height of monolithic zirconia ceramics.


Assuntos
Colagem Dentária , Metacrilatos , Cimentos de Resina , Humanos , Cimentos de Resina/química , Saliva , Descontaminação , Teste de Materiais , Zircônio/química , Cerâmica/química , Água/química , Resistência ao Cisalhamento , Propriedades de Superfície , Análise do Estresse Dentário
3.
Database (Oxford) ; 20242024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557634

RESUMO

The rapid growth in the number of experimental and predicted protein structures and more complicated protein structures poses a significant challenge for computational biology in leveraging structural information and accurate representation of protein surface properties. Recently, AlphaFold2 released the comprehensive proteomes of various species, and protein surface property representation plays a crucial role in protein-molecule interaction predictions, including those involving proteins, nucleic acids and compounds. Here, we proposed the first extensive database, namely ProNet DB, that integrates multiple protein surface representations and RNA-binding landscape for 326 175 protein structures. This collection encompasses the 16 model organism proteomes from the AlphaFold Protein Structure Database and experimentally validated structures from the Protein Data Bank. For each protein, ProNet DB provides access to the original protein structures along with the detailed surface property representations encompassing hydrophobicity, charge distribution and hydrogen bonding potential as well as interactive features such as the interacting face and RNA-binding sites and preferences. To facilitate an intuitive interpretation of these properties and the RNA-binding landscape, ProNet DB incorporates visualization tools like Mol* and an Online 3D Viewer, allowing for the direct observation and analysis of these representations on protein surfaces. The availability of pre-computed features enables instantaneous access for users, significantly advancing computational biology research in areas such as molecular mechanism elucidation, geometry-based drug discovery and the development of novel therapeutic approaches. Database URL:  https://proj.cse.cuhk.edu.hk/aihlab/pronet/.


Assuntos
Proteoma , RNA , Sítios de Ligação , Bases de Dados de Proteínas , RNA/química , Proteínas de Membrana , Propriedades de Superfície
4.
Sci Rep ; 14(1): 7624, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561345

RESUMO

It is known that titanium (Ti) implant surfaces exhibit poor antibacterial properties and osteogenesis. In this study, chitosan particles loaded with aspirin, amoxicillin or aspirin + amoxicillin were synthesized and coated onto implant surfaces. In addition to analysing the surface characteristics of the modified Ti surfaces, the effects of the modified Ti surfaces on the adhesion and viability of rat bone marrow-derived stem cells (rBMSCs) were evaluated. The metabolic activities of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilms on the modified Ti surfaces were also measured in vitro. Moreover, S. aureus was tested for its antibacterial effect by coating it in vivo. Using water as the droplet medium, the contact angles of the modified Ti surfaces increased from 44.12 ± 1.75° to 58.37 ± 4.15°. In comparison to those of the other groups tested, significant increases in rBMSC adhesion and proliferation were observed in the presence of aspirin + amoxicillin-loaded microspheres, whereas a significant reduction in the metabolic level of biofilms was observed in the presence of aspirin + amoxicillin-loaded microspheres both in vitro and in vivo. Aspirin and amoxicillin could be used in combination to coat implant surfaces to mitigate bacterial activities and promote osteogenesis.


Assuntos
Amoxicilina , Quitosana , Indóis , Polímeros , Ratos , Animais , Amoxicilina/farmacologia , Aspirina/farmacologia , Titânio/farmacologia , Quitosana/farmacologia , Osteogênese , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia
5.
J Adhes Dent ; 26(1): 93-102, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602286

RESUMO

PURPOSE: To investigate the influence of contamination and different cleaning methods on resin bonding to cobalt-chro- mium (CoCr) alloy disks. MATERIALS AND METHODS: A total of 160 CoCr disks were divided into 3 groups. The first group (N = 64) was air abraded with alumina particles and contaminated with a silicone disclosing agent and saliva; the second group (N = 64) was air abraded but not contaminated; the third group (N = 32) was neither air abraded nor contaminated. The first two groups were di- vided into 4 subgroups (N = 16) according to the cleaning method: ultrasonic bath in 99% isopropanol, use of a cleaning suspension of zirconium oxide particles, use of a cleaning suspension based on 10-MDP salt, and treatment with atmo- spheric plasma. The third group was divided into 2 subgroups (N = 16): treatment with atmospheric plasma and no treat- ment. All CoCr specimens were bonded to plexiglas tubes filled with a bonding resin that contained phosphate monomer. Tensile bond strength (TBS) was examined by tensile testing after 3 and 150 days of water storage plus 37,500 thermal cy- cles (N = 8). RESULTS: After contamination, TBS was significantly reduced after 150 days of water storage. Groups without air abrasion showed initially low TBS and debonded spontaneously after 150 days of water storage. CONCLUSION: None of the cleaning methods was able to remove saliva and silicone disclosing agent on CoCr-alloy sur- faces. Surface activation by plasma treatment has no long-term effect on the bond strength.


Assuntos
Resinas Compostas , Colagem Dentária , Cimentos de Resina , Ligas , Abrasão Dental por Ar , Propriedades de Superfície , Água , Resistência à Tração , Silicones , Teste de Materiais , Zircônio , Análise do Estresse Dentário
6.
Top Curr Chem (Cham) ; 382(2): 11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589726

RESUMO

Silicone surfactants have garnered significant research attention owing to their superior properties, such as wettability, ductility, and permeability. Small-molecular silicone surfactants with simple molecular structures outperform polymeric silicone surfactants in terms of surface activity, emulsification, wetting, foaming, and other areas. Moreover, silicone surfactants with small molecules exhibit a diverse and rich molecular structure. This review discusses various synthetic routes for the synthesis of different classes of surfactants, including single-chain, "umbrella" structure, double chain, bolaform, Gemini, and stimulus-responsive surfactants. The fundamental surface/interface properties of the synthesized surfactants are also highlighted. Additionally, these surfactants have demonstrated enormous potential in agricultural synergism, drug delivery, mineral flotation, enhanced oil recovery, separation, and extraction, and foam fire-fighting.


Assuntos
Silicones , Tensoativos , Tensoativos/química , Propriedades de Superfície , Estrutura Molecular
7.
Artif Cells Nanomed Biotechnol ; 52(1): 229-237, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38590145

RESUMO

The cytological behaviour and functional dynamics (adhesion, spreading, synthesis of proteins) of fibroblasts when interacting with biomedical surfaces are intricately influenced by the inherent nature of surface (nanocrystalline or microcrystalline), where the nanocrystalline (NC) surface is preferred in relation to the microcrystalline (MC) surface. This preference is a direct consequence of the distinct differences in physical and chemical characteristics between NC and MC surfaces, which include crystal boundary bio-physical attributes, electron work function, surface energy, and charge carrier density. The observed variances in cytological behaviour at the interfaces of NC and MC bio-surfaces can be attributed to these fundamental differences, particularly accounting for the percentage and nature of crystal boundaries. Recognising and understanding these physical and chemical characteristics establish the groundwork for formulating precise guidelines crucial in the development of the forthcoming generation of biomedical devices.


The significance of nanoscale surface in favourably modulating the cellular functionality is described with the aim to provide the solution to the current day challenges in the biomedical arena. Furthermore, the perspective presented advances the nano-bio science forward by implying that the nanoscale structure induces chemical and physical changes that can be considered responsible for favourable modulation of cellular activity in the living organism.


Assuntos
Fibroblastos , Propriedades de Superfície
8.
An Acad Bras Cienc ; 96(1): e20230859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597501

RESUMO

This study aims to prepare oil-modified alkyd resins using a linseed oil/canola oil (LO/CO) blend and waste PET depolymerization product, suitable for environmentally friendly coating applications. Waste PET flakes obtained from grinding post-consumer water bottles were depolymerized by the aminoglycolysis reaction at high pressure. Raw depolymerization product (DP) was used in the synthesis of four components, 50% oil alkyd resins by monoglyceride method. DP has partly replaced the dibasic acid component in the PET-based alkyd formulations. Besides PET-based alkyds, reference alkyds without DP were also synthesized for comparison. Then, the surface coating properties and thermal behaviors of alkyd films were determined. The effect of DP usage and the changing ratios of LO/CO blend on coating properties and thermal behaviors of alkyd films were investigated. In addition, the optimum LO/CO blend ratio which is compatible with alkyd formulation was attempted to be determined. At the end of this study, glossy, soft/medium-hard films were obtained with excellent adhesion, impact strength, and chemical resistance. Thermal resistance and final thermal oxidative degradation temperature increased with adding DP to the alkyd formulation. Using LO/CO blend in the formulations affected oxidation rate and ratio, hence, drying time/degree and oxidative stability of alkyd films.


Assuntos
Óleo de Semente do Linho , Resinas Vegetais , Óleo de Brassica napus , Temperatura , Propriedades de Superfície
9.
Braz Oral Res ; 38: e030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597548

RESUMO

This study aimed to evaluate volumetric polymerization shrinkage, degree of conversion and Vickers hardness of four bulk-fill resin composites light-activated with their dedicated light curing units (LCUs). Four groups were evaluated, according to the type of composite and curing mode: Tetric EvoCeram Bulk-fill (TEBO) and Tetric EvoFlow Bulk-fill (TEBF) were light-activated with Bluephase Style 20i (20s, in high-mode), while Tetric Powerfill (TEPO) and Tetric Powerflow (TEPF) were light-activated with Bluephase PowerCure (3s). Volumetric polymerization shrinkage test (n = 6) was performed in standardized box-shaped class-I cavities of extracted third molars (4 x 4 x 4 mm). Teeth were scanned before and after resin composite application by micro-computed tomography, and acquired data were evaluated with Amira software. Degree of conversion (n = 5) was evaluated at the top and bottom surfaces of composite cylindric samples (4 mm diameter, 4 mm thickness) using an FT-IR spectrometer (spectra between 1,500 and 1,800 cm-1, 40 scans at a resolution of 4 cm-1). Three Vickers indentations (50 g / 15 s), spaced 500 µm apart, were performed on the top and bottom composite surfaces and averaged. One-way ANOVA was used for data evaluation. TEPF showed the lowest volumetric polymerization shrinkage (p < 0.05), while the other composites were not significantly different within each other (p > 0.05). All materials presented a significant decrease in degree of conversion and Vickers hardness when compared top to bottom surfaces (p < 0.05). Bottom to top surface ratios for degree of conversion ranged from 0.8 (TEBO and TEPO) to 0.9 (TEBF and TEPF), and from 0.4 (TEPO) to 0.7 (TEBF and TEPF) for hardness. In conclusion, resinous materials present a decrease in hardness and degree of conversion from top to bottom even when a higher power is used, while the flowable material TEPF showed the lowest volumetric shrinkage values compared to the other materials.


Assuntos
Resinas Compostas , Cárie Dentária , Humanos , Dureza , Microtomografia por Raio-X , Espectroscopia de Infravermelho com Transformada de Fourier , Teste de Materiais , Polimerização , Propriedades de Superfície , Materiais Dentários
10.
BMC Oral Health ; 24(1): 471, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637799

RESUMO

OBJECT: This study aimed to investigate the changes in the translucency and color of four different multi-layered zirconia materials when the sintering temperature were inaccurate. MATERIALS AND METHODS: Two hundred zirconia samples (11 × 11 × 1.0 mm) of four multi-layered zirconia, Upcera TT-GT (UG), Upcera TT-ML (UM), Cercon xt ML (CX), and Lava Esthetic (LE), were divided into five subgroups according to the sintering temperature: L1 (5% lower temperature), L2 (2.5% lower temperature), R (recommended sintering temperature), H2 (2.5% higher temperature), H1 (5% higher temperature). After sintering, color coordinates were measured. Then the translucency parameter (TP) values, and the color differences (between the inaccurate sintering temperature and the recommended temperature) of each zirconia specimen were calculated. Statistical analysis was performed by using three-way ANOVA tests, the one-way ANOVA, and Tukey's post hoc test. RESULTS: Three-way ANOVA results showed that material type, sintering temperature, specimen section, and their interactions significantly influenced the TP values (except for the interactions of specimen section and sintering temperature) (P < .05). TP values of zirconia specimens were significantly different in the inaccurate sintering temperatures (P < .05), except for the cervical and body sections of UG group (P > .05). Compared with recommended sintering temperature, higher sintering temperature caused higher TP values for CX, but lower for LE. Three-way ANOVA results showed that material type, sintering temperature, and their interactions significantly influenced the ∆E00 values (P < .05). There were no significant differences in ∆E00 values of UM and CX groups at different inaccurate sintering temperatures, and were clinical imperception (except for UM-L1) (∆E00 < 1.25). ∆E00 values of all zirconia specimens showed clinically acceptable (∆E00 < 2.23). CONCLUSION: The deviations in sintering temperature significantly influenced the translucency and color of tested multi-layered zirconia. The trends of translucency in the multi-layered zirconia depended on material type and the color changes of all zirconia materials were clinically acceptable at inaccurate sintering temperatures.


Assuntos
Cerâmica , Zircônio , Humanos , Temperatura , Teste de Materiais , Propriedades de Superfície , Cor
11.
BMC Oral Health ; 24(1): 472, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641578

RESUMO

PURPOSE: The aim of the current study was to evaluate the effect of simulated gastric acid on the color and translucency of different indirect restorative materials. MATERIALS AND METHODS: A total of 36 disc-shaped samples were cut by using an isomet saw and divided into four equal groups (n = 9) according to the material type: Group Z: translucent zirconia (Ceramill® Zolid ht.+ preshade, Amann Girrbach, Koblach, Austria); Group E: lithium disilicate (IPS e.max CAD, Ivoclar Vivadent AG, Schaan, Liechtenstein); Group C: resin nanoceramic (Cerasmart, GC, Tokyo, Japan); Group P: polyether ether ketone (PEEK) (Bettin Zirconia Dentale Italy) veneered with indirect high impact polymer composite (HIPC) (breCAM HIPC, Bredent GmbH & Co. KG, Germany). The samples were immersed in simulated gastric acid (HCl, pH 1.2) for 96 hours at 37 °C in an incubator. The color change (ΔE00) and translucency (RTP00) were measured every 9.6 hours (one-year clinical simulation) of immersion in simulated gastric acid. RESULTS: For color change (∆E00) and translucency (RTP00) among the tested materials, there was a highly statistically significant difference (P < 0.001) after every year of follow-up. The color change in both Z and G groups was the lowest after 1 year of acid immersion, followed by that in group H, and the highest change in color was recorded in group P. CONCLUSION: High translucent zirconia is recommended in patients who are concerned about esthetic, especially with acidic oral environment.


Assuntos
Cerâmica , Materiais Dentários , Humanos , Teste de Materiais , Zircônio , Propriedades de Superfície , Cor , Desenho Assistido por Computador
12.
ACS Appl Mater Interfaces ; 16(15): 18503-18521, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570902

RESUMO

Biomaterials can induce an inflammatory response in surrounding tissues after implantation, generating and releasing reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). The excessive accumulation of ROS may create a microenvironment with high levels of oxidative stress (OS), which subsequently accelerates the degradation of the passive film on the surface of titanium (Ti) alloys and affects their biological activity. The immunomodulatory role of macrophages in biomaterial osteogenesis under OS is unknown. This study aimed to explore the corrosion behavior and bone formation of Ti implants under an OS microenvironment. In this study, the corrosion resistance and osteoinduction capabilities in normal and OS conditions of the Ti-24Nb-4Zr-8Sn (wt %, Ti2448) were assessed. Electrochemical impedance spectroscopy analysis indicated that the Ti2448 alloy exhibited superior corrosion resistance on exposure to excessive ROS compared to the Ti-6Al-4V (TC4) alloy. This can be attributed to the formation of the TiO2 and Nb2O5 passive films, which mitigated the adverse effects of OS. In vitro MC3T3-E1 cell experiments revealed that the Ti2448 alloy exhibited good biocompatibility in the OS microenvironment, whereas the osteogenic differentiation level was comparable to that of the TC4 alloy. The Ti2448 alloy significantly alleviates intercellular ROS levels, inducing a higher proportion of M2 phenotypes (52.7%) under OS. Ti2448 alloy significantly promoted the expression of the anti-inflammatory cytokine, interleukin 10 (IL-10), and osteoblast-related cytokines, bone morphogenetic protein 2 (BMP-2), which relatively increased by 26.9 and 31.4%, respectively, compared to TC4 alloy. The Ti2448 alloy provides a favorable osteoimmune environment and significantly promotes the proliferation and differentiation of osteoblasts in vitro compared to the TC4 alloy. Ultimately, the Ti2448 alloy demonstrated excellent corrosion resistance and immunomodulatory properties in an OS microenvironment, providing valuable insights into potential clinical applications as implants to repair bone tissue defects.


Assuntos
Osteogênese , Titânio , Corrosão , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Materiais Biocompatíveis , Ligas/química , Estresse Oxidativo , Propriedades de Superfície , Teste de Materiais
13.
J Mech Behav Biomed Mater ; 154: 106536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579394

RESUMO

OBJECTIVE: This study aimed to conduct a comparison of trueness and physical and surface properties among five distinct types of additive manufactured (AM) zirconia crowns and zirconia crowns produced using the subtractive manufacturing (SM). MATERIAL AND METHODS: Zirconia crowns were fabricated using five distinct techniques, each varying in the method of slurry transfer and photocuring source. Each experimental group utilized either one of the four digital light processing (DLP)-based techniques (DLP spreading, DLP spreading gradation, DLP vat and DLP circular spreading) or the stereolithography (SLA)-based technique (SLA spreading). The control (CON) group employed SM. To assess accuracy, trueness was measured between the scan and reference data. To analyze the physical properties, voids were examined using high-energy spiral micro-computed tomography scans, and the crystal structure analysis was performed using X-ray diffraction (XRD). Surface roughness was assessed through laser scanning microscopy. RESULTS: Differences in the trueness of internal surfaces of crowns were found among the groups (P < 0.05). Trueness varied across the measurement surfaces (occlusal, lateral, and marginal) in all the groups except for the DLP spreading gradation group (P < 0.05). Voids were observed in all AM groups. All groups showed similar XRD patterns. All AM groups showed significantly greater surface roughness compared to the CON group (P < 0.001). CONCLUSION: The AM zirconia crowns showed bubbles and a rougher surface compared to the SM crowns. All groups exhibited typical zirconia traits and trueness levels within clinically acceptable limits, suggesting that current zirconia AM techniques could be suitable for dental applications.


Assuntos
Desenho Assistido por Computador , Coroas , Microtomografia por Raio-X , Zircônio , Propriedades de Superfície
14.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 345-351, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38595256

RESUMO

OBJECTIVE: To analyze the influence of forming direction on the surface characteristics, elastic modulus, bending strength and fracture toughness of printed parts and the relationship between forming direction and force direction, and to provide scientific basis and guidance for the clinical application of oral denture base resin materials. METHODS: The 3D printing technology was used to print denture base resin samples. The shape and size of the samples referred to the current standard for testing conventional denture base materials. The samples used for physical performance testing were cylindrical (with a diameter of 15 mm and a thickness of 1 mm) and printed at different angles along the Z axis (0°, 45°, 90°). Scanning electron microscope was used to observe the microscopic topography of the different samples. The color stability of different samples was observed by color stabilizer. The surface roughness of the samples was analyzed by using surface roughness tester. The Vickers hardness was measured to analyze the hardness of the samples. The samples used for mechanical performance testing were rectangular (elastic modulus and bending strength: A length of 64 mm, a width of 10 mm, and a height of 3.3 mm; fracture toughness: A length of 39 mm, a width of 8 mm, and a height of 4 mm), divided into two groups: W group and H group. The W group was printed from the bottom up along the Z axis with the length × width as the bottom surface parallel to the X, Y axis plane, while the H group printed from the bottom up along the Z axis with the length × height as the bottom surface parallel to the X, Y axis plane. The forming angles of both groups were equally divided into 0°, 45°, and 90°. The elastic modulus, bending strength and fracture toughness of different samples were studied through universal mechanical testing machine. SPSS 22.0 software was used for statistical analysis. RESULTS: The microscopic topography and roughness of different samples were closely related to the printing direction, with significant differences between the 0°, 45°, and 90° specimens. The 0° specimens had the smoothest surface (roughness < 1 µm). The surface of the 45° specimen was the roughest (roughness>3 µm). The microhardness of the 0° sample was the best [(196.13±0.20) MPa], with a significant difference compared with the 90° sample [(186.62±4.81) MPa, P < 0.05]. The mechanical properties of different samples were also closely related to the printing direction. The elastic modulus, bending strength, and fracture toughness of the 45° samples in the W group were the highest compared with the other groups. The results of elastic modulus showed that in the H group, the 45° specimens had the highest elastic mo-dulus, which was significantly different from the 0° and 90° specimens (P < 0.05). The elastic modulus of 0° and 45° specimens in the W group were higher than those in 90° specimens (P < 0.05). The bending strength results showed that there was no significant difference between the specimens from dif-ferent angles in the H group. The bending strength of the 90° specimens in the W group was the smallest, and there was a significant difference between 90° and the 0° and 45° specimens (P < 0.05); And the bendind strength of the 0° and 45° specimens in the W group was significantly higher than that of the 0° and 45° specimens in the H group (P < 0.05). The fracture toughness results showed that the fracture toughness of the H group specimens was lower than 1.9 MPa m1/2, which was specified in the denture base standard. The 45° samples in the W group were the highest, with significant differences compared with the 0° and 90° samples (P < 0.05). And the 90° samples of the W group specimens were lower than 1.9 MPa m1/2. And the fracture toughness of the 45° specimen in the W group was significantly higher than that of all the specimens in the H group (P < 0.05). CONCLUSION: The 0° samples had relatively better physical properties. The 45° samples had the best mechanical properties. But the fracture toughness of specimens (H group and 90° samples of W group) did not yet meet clinical requirements. That indicated that the characteristics of the 3D printing denture base resin were affected by the printing direction. Only when the performance of the printed samples in all directions met the minimum requirements of the standard, they could be used in clinical practice.


Assuntos
Impressão Tridimensional , Prostodontia , Teste de Materiais , Propriedades de Superfície , Resistência à Flexão , Bases de Dentadura
15.
J Mech Behav Biomed Mater ; 154: 106533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598918

RESUMO

The present work aims to develop a production method of pre-sintered zirconia-toughened-alumina (ZTA) composite blocks for machining in a computer-aided design and computer-aided manufacturing (CAD-CAM) system. The ZTA composite comprised of 80% Al2O3 and 20% ZrO2 was synthesized, uniaxially and isostatically pressed to generate machinable CAD-CAM blocks. Fourteen green-body blocks were prepared and pre-sintered at 1000 °C. After cooling and holder gluing, a stereolithography (STL) file was designed and uploaded to manufacture disk-shaped specimens projected to comply with ISO 6872:2015. Seventy specimens were produced through machining of the blocks, samples were sintered at 1600 °C and two-sided polished. Half of the samples were subjected to accelerated autoclave hydrothermal aging (20h at 134 °C and 2.2 bar). Immediate and aged samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical and mechanical properties were assessed by reflectance tests and by biaxial flexural strength test, Vickers indentation and fracture toughness, respectively. Samples produced by machining presented high density and smooth surfaces at SEM evaluation with few microstructural defects. XRD evaluation depicted characteristic peaks of alpha alumina and tetragonal zirconia and autoclave aging had no effect on the crystalline spectra of the composite. Optical and mechanical evaluations demonstrated a high masking ability for the composite and a characteristic strength of 464 MPa and Weibull modulus of 17, with no significant alterations after aging. The milled composite exhibited a hardness of 17.61 GPa and fracture toughness of 5.63 MPa m1/2, which remained unaltered after aging. The synthesis of ZTA blocks for CAD-CAM was successful and allowed for the milling of disk-shaped specimens using the grinding method of the CAD-CAM system. ZTA composite properties were unaffected by hydrothermal autoclave aging and present a promising alternative for the manufacture of infrastructures of fixed dental prostheses.


Assuntos
Óxido de Alumínio , Cerâmica , Teste de Materiais , Óxido de Alumínio/química , Cerâmica/química , Propriedades de Superfície , Zircônio/química , Desenho Assistido por Computador , Materiais Dentários
16.
J Agric Food Chem ; 72(15): 8774-8783, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587054

RESUMO

Proteins can be adsorbed on the air-water interface (AWI), and the structural changes in proteins at the AWI are closely related to the foaming properties of foods and beverages. However, how these structural changes in proteins at the AWI occur is not well understood. We developed a method for the structural assessment of proteins in the foam state using hydrogen/deuterium exchange mass spectrometry. Adsorption sites and structural changes in human serum albumin (HSA) were identified in situ at the peptide-level resolution. The N-terminus and the loop (E492-T506), which contains hydrophobic amino acids, were identified as adsorption sites. Both the structural flexibility and hydrophobicity were considered to be critical factors for the adsorption of HSA at the AWI. Structural changes in HSA were observed after more than one minute of foaming and were spread widely throughout the structure. These structural changes at the foam AWI were reversible.


Assuntos
Proteínas , Albumina Sérica Humana , Humanos , Proteínas/química , Interações Hidrofóbicas e Hidrofílicas , Adsorção , Propriedades de Superfície
17.
Shanghai Kou Qiang Yi Xue ; 33(1): 6-12, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583018

RESUMO

PURPOSE: Bioactive magnesium ions were successfully incorporated into the nanoporous titanium base coating by micro-arc oxidation(MAO), and its physical properties and osteogenic effects were explored. METHODS: Non-magnesium-containing and magnesium-containing titanium porous titanium coatings(MAO, MAO-mg) were prepared by changing the composition of MAO electrolyte and controlling the doping of magnesium in porous titanium coatings. The samples were characterized by scanning electron microscope (SEM), roughness, contact angle and energy dispersive X-ray spectrometer (EDS). Mg2+ release ability of magnesium-doped nanoporous titanium coatings was determined by inductively coupled plasma/optical emission spectrometer(ICP-OES). The structure of the cytoskeleton was determined by live/dead double staining, CCK-8 detection of material proliferation-toxicity, and staining of ß-actin using FITC-phalloidin. The effects of the coating on osteogenic differentiation in vitro were determined by alizarin red (ARS), alkaline phosphatase (ALP) staining and real-time polymerase chain reaction (qRT-PCR). SPSS 25.0 software package was used for statistical analysis. RESULTS: The MAO electrolyte with magnesium ions did not change the surface characteristics of the porous titanium coating. Each group prepared by MAO had similar microporous structure(P>0.05). There was no significant difference in surface roughness and contact angle between MAO treatment group (MAO, MAO-mg)(P>0.05), but significantly higher than that of Ti group (P<0.05). With the passage of cell culture time, MAO-mg group promoted cell proliferation (P<0.05). MAO-mg group was significantly higher than other groups in ALP and ARS staining. The expression of Runx2 mRNA (P<0.05), ALP(P<0.05) and osteocalcin OCN(P<0.05) in MAO-mg group was significantly higher than that in Ti and MAO groups. CONCLUSIONS: MAO successfully prepared magnesium-containing nanoporous titanium coating, and showed a significant role in promoting osteogenic differentiation.


Assuntos
Nanoporos , Titânio , Titânio/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/genética , Eletrólitos/farmacologia , Íons/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
18.
Shanghai Kou Qiang Yi Xue ; 33(1): 36-39, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583022

RESUMO

PURPOSE: To study the effect of different cleaning methods on the shear bond strength of self-adhesive resin cement to saliva-contaminated high translucency zirconia and surface wettability. METHODS: Eighty zirconia specimens were randomly divided into 5 groups (n=16), i.e., control group(not contaminated), 75% ethanol group,cleaning paste group,airborne-particle abrasion group, and atmospheric pressure cold plasma group. The contact angles was measured, shear bond strength were examined, and fracture types were determined. SPSS 26.0 software package was used for statistical analysis of the data. RESULTS: The atmospheric pressure cold plasma group produced the lowest contact angle(P<0.05). The shear bond strength of the airborne-particle abrasion group, the cleaning paste group and the atmospheric pressure cold plasma group respectively were similar to the control group without significant difference(P>0.05), while those were significantly higher than 75% ethanol group(P<0.05). The mixed fracture mode of the atmospheric pressure cold plasma group evidently increased. CONCLUSIONS: Airborne-particle abrasion, cleaning paste and atmospheric pressure cold plasma overcome the effects of saliva contamination, producing the shear bond strength to zirconia similar to the control group. The atmospheric pressure cold plasma improves hydrophilicity of high translucency zirconia significantly.


Assuntos
Colagem Dentária , Gases em Plasma , Molhabilidade , Propriedades de Superfície , Cimentos de Resina , Zircônio/química , Etanol , Teste de Materiais , Resistência ao Cisalhamento , Análise do Estresse Dentário
19.
Sci Rep ; 14(1): 7959, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575608

RESUMO

Cranial reconstructions are essential for restoring both function and aesthetics in patients with craniofacial deformities or traumatic injuries. Titanium prostheses have gained popularity due to their biocompatibility, strength, and corrosion resistance. The use of Superplastic Forming (SPF) and Single Point Incremental Forming (SPIF) techniques to create titanium prostheses, specifically designed for cranial reconstructions was investigated in an ovine model through microtomographic and histomorphometric analyses. The results obtained from the explanted specimens revealed significant variations in bone volume, trabecular thickness, spacing, and number across different regions of interest (VOIs or ROIs). Those regions next to the center of the cranial defect exhibited the most immature bone, characterized by higher porosity, decreased trabecular thickness, and wider trabecular spacing. Dynamic histomorphometry demonstrated differences in the mineralizing surface to bone surface ratio (MS/BS) and mineral apposition rate (MAR) depending on the timing of fluorochrome administration. A layer of connective tissue separated the prosthesis and the bone tissue. Overall, the study provided validation for the use of cranial prostheses made using SPF and SPIF techniques, offering insights into the processes of bone formation and remodeling in the implanted ovine model.


Assuntos
Membros Artificiais , Titânio , Ovinos , Animais , Humanos , Próteses e Implantes , Implantação de Prótese , Osteogênese , Carneiro Doméstico , Crânio/diagnóstico por imagem , Ligas , Teste de Materiais , Propriedades de Superfície
20.
Sci Rep ; 14(1): 7940, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575777

RESUMO

Bacterial infections triggered by patient or healthcare worker contact with surfaces are a major cause of medically acquired infections. By controlling the kinetics of tetrabutyl titanate hydrolysis and condensation during the sol-gel process, it is possible to regulate the content of Ti3+ and oxygen vacancies (OVs) in TiO2, and adjust the associated visible light-induced photocatalytic performance and anti-bacterial adhesion properties. The results have shown that the Ti3+ content in TiO2 was 9.87% at the calcination temperature of the reaction system was 300 °C and pH was 1.0, corresponding to optimal photocatalytic and hydrophilic properties. The formation of a hydrated layer on the superhydrophilic surface provided resistance to bacterial adhesion, preventing cross-contamination on high-touch surfaces. The excellent photocatalytic self-cleaning performance and anti-bacterial adhesion properties can be attributed to synergistic effects associated with the high specific surface area of TiO2 nanoparticles, the mesoporous structure, and the presence of Ti3+ and OVs. The formation of superhydrophilic self-cleaning surfaces under visible light can serve as the basis for the development of a new class of anti-bacterial adhesion materials.


Assuntos
Nanopartículas , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Catálise , Propriedades de Superfície , Luz , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...