Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.969
Filtrar
1.
Fluids Barriers CNS ; 21(1): 36, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632611

RESUMO

BACKGROUND: Using in vivo neuroimaging techniques, growing evidence has demonstrated that the choroid plexus (CP) volume is enlarged in patients with several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. However, although animal and postmortem findings suggest that CP abnormalities are likely important pathological mechanisms underlying amyotrophic lateral sclerosis (ALS), the third most common neurodegenerative disease, no available study has been conducted to thoroughly assess CP abnormalities and their clinical relevance in vivo in ALS patients to date. Thus, we aimed to determine whether in vivo CP enlargement may occur in ALS patients. We also aimed to identify the relationships of CP volume with clinical disabilities and blood-CSF barrier (BCSFB) permeability in ALS patients. METHODS: In this retrospective study, based on structural MRI data, CP volume was assessed using a Gaussian mixture model and underwent further manual correction in 155 ALS patients and 105 age- and sex-matched HCs from October 2021 to April 2023. The ALS Functional Rating Scale-Revised (ALSFRS-R) was used to assess clinical disability. The CSF/serum albumin quotient (Qalb) was used to assess BCSFB permeability. Moreover, all the ALS patients completed genetic testing, and according to genetic testing, the ALS patients were further divided into genetic ALS subgroup and sporadic ALS subgroup. RESULTS: We found that compared with HCs, ALS patients had a significantly higher CP volume (p < 0.001). Moreover, compared with HCs, CP volume was significantly increased in both ALS patients with and without known genetic mutations after family-wise error correction (p = 0.006 and p < 0.001, respectively), while there were no significant differences between the two ALS groups. Furthermore, the CP volume was significantly correlated with the ALSFRS-r score (r = -0.226; p = 0.005) and the Qalb (r = 0.479; p < 0.001) in ALS patients. CONCLUSION: Our study first demonstrates CP enlargement in vivo in ALS patients, and continues to suggest an important pathogenetic role for CP abnormalities in ALS. Moreover, assessing CP volume is likely a noninvasive and easy-to-implement approach for screening BCSFB dysfunction in ALS patients.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Animais , Humanos , Plexo Corióideo , Estudos Retrospectivos , Permeabilidade Capilar
2.
FASEB J ; 38(7): e23602, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581236

RESUMO

Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.


Assuntos
Células Endoteliais , Ovário , Feminino , Animais , Ovário/metabolismo , Células Endoteliais/metabolismo , Neurotensina/metabolismo , Junções Aderentes/metabolismo , Permeabilidade Capilar , Caderinas/genética , Caderinas/metabolismo , Macaca/metabolismo , Permeabilidade , Endotélio Vascular/metabolismo , Mamíferos/metabolismo
3.
Radiology ; 310(3): e230701, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501951

RESUMO

Background Blood-brain barrier (BBB) permeability change is a possible pathologic mechanism of autoimmune encephalitis. Purpose To evaluate the change in BBB permeability in patients with autoimmune encephalitis as compared with healthy controls by using dynamic contrast-enhanced (DCE) MRI and to explore its predictive value for treatment response in patients. Materials and Methods This single-center retrospective study included consecutive patients with probable or possible autoimmune encephalitis and healthy controls who underwent DCE MRI between April 2020 and May 2021. Automatic volumetric segmentation was performed on three-dimensional T1-weighted images, and volume transfer constant (Ktrans) values were calculated at encephalitis-associated brain regions. Ktrans values were compared between the patients and controls, with adjustment for age and sex with use of a nonparametric approach. The Wilcoxon rank sum test was performed to compare Ktrans values of the good (improvement in modified Rankin Scale [mRS] score of at least two points or achievement of an mRS score of ≤2) and poor (improvement in mRS score of less than two points and achievement of an mRS score >2) treatment response groups among the patients. Results Thirty-eight patients with autoimmune encephalitis (median age, 38 years [IQR, 29-59 years]; 20 [53%] female) and 17 controls (median age, 71 years [IQR, 63-77 years]; 12 [71%] female) were included. All brain regions showed higher Ktrans values in patients as compared with controls (P < .001). The median difference in Ktrans between the patients and controls was largest in the right parahippocampal gyrus (25.1 × 10-4 min-1 [95% CI: 17.6, 43.4]). Among patients, the poor treatment response group had higher baseline Ktrans values in both cerebellar cortices (P = .03), the left cerebellar cortex (P = .02), right cerebellar cortex (P = .045), left cerebral cortex (P = .045), and left postcentral gyrus (P = .03) than the good treatment response group. Conclusion DCE MRI demonstrated that BBB permeability was increased in all brain regions in patients with autoimmune encephalitis as compared with controls, and baseline Ktrans values were higher in patients with poor treatment response in the cerebellar cortex, left cerebral cortex, and left postcentral gyrus as compared with the good response group. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Filippi and Rocca in this issue.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalite , Doença de Hashimoto , Humanos , Feminino , Adulto , Idoso , Masculino , Permeabilidade Capilar , Estudos Retrospectivos , Encefalite/diagnóstico por imagem , Imageamento por Ressonância Magnética
4.
Int J Biol Macromol ; 265(Pt 1): 130642, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460644

RESUMO

How selectively increase blood-tumor barrier (BTB) permeability is crucial to enhance the delivery of chemotherapeutic agents to brain tumor tissues. In this study, we established in vitro models of the blood-brain barrier (BBB) and BTB using endothelial cells (ECs) co-cultured with human astrocytes (AECs) and glioma cells (GECs), respectively. The findings revealed high expressions of the RNA-binding protein FXR1 and SNORD63 in GECs, where FXR1 was found to bind and stabilize SNORD63. Knockdown of FXR1 resulted in decreased expression of tight-junction-related proteins and increased BTB permeability by down-regulating SNORD63. SNORD63 played a role in mediating the 2'-O-methylation modification of POU6F1 mRNA, leading to the downregulation of POU6F1 protein expression. POU6F1 showed low expression in GECs and acted as a transcription factor to regulate BTB permeability by binding to the promoter regions of ZO-1, occludin, and claudin-5 mRNAs and negatively regulating their expressions. Finally, the targeted regulation of FXR1, SNORD63, and POU6F1 expressions, individually or in combination, effectively enhanced doxorubicin passage through the BTB and induced apoptosis in glioma cells. This study aims to elucidate the underlying mechanism of the FXR1/SNORD63/POU6F1 axis in regulating BTB permeability, offering a novel strategy to improve the efficacy of glioma chemotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Hematológicas , MicroRNAs , Fatores do Domínio POU , Humanos , MicroRNAs/genética , Células Endoteliais/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Neoplasias Encefálicas/patologia , Glioma/patologia , Barreira Hematoencefálica/metabolismo , Proteínas de Junções Íntimas/metabolismo , Ocludina/genética , Neoplasias Hematológicas/patologia , Permeabilidade , Metilação , Permeabilidade Capilar , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Biol Pharm Bull ; 47(3): 549-555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432910

RESUMO

Severe infection pathogenicity is induced by processes such as pathogen exposure, immune cell activation, inflammatory cytokine production, and vascular hyperpermeability. Highly effective drugs, such as antipathogenic agents, steroids, and antibodies that suppress cytokine function, have been developed to treat the first three processes. However, these drugs cannot completely suppress severe infectious diseases, such as coronavirus disease 2019 (COVID-19). Therefore, developing novel drugs that inhibit vascular hyperpermeability is crucial. This review summarizes the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced vascular hyperpermeability and identifies inhibitors that increase endothelial cell (EC) junction-related proteins and determines their efficacy in COVID-19 and endotoxemia models. Analyzing the effects of SARS-CoV-2 on vascular permeability revealed that SARS-CoV-2 suppresses Claudin-5 (CLDN5) expression, which is responsible for adhesion between ECs, thereby increasing vascular permeability. Inhibiting CLDN5 function in mice induced vascular hyperpermeability and pulmonary edema. In contrast, Enhancing CLDN5 expression suppressed SARS-CoV-2-induced endothelial hyperpermeability, suggesting that SARS-CoV-2-induced vascular hyperpermeability contributes to pathological progression, which can be suppressed by upregulating EC junction proteins. Based on these results, we focused on Roundabout4 (Robo4), another EC-specific protein that stabilizes EC junctions. EC-specific Robo4 overexpression suppressed vascular hyperpermeability and mortality in lipopolysaccharide-treated mice. An ALK1 inhibitor (a molecule that increases Robo4 expression), suppressed vascular hyperpermeability and mortality in lipopolysaccharide- and SARS-CoV-2-treated mice. These results indicate that Robo4 expression-increasing drugs suppress vascular permeability and pathological phenotype in COVID-19 and endotoxemia models.


Assuntos
COVID-19 , Doenças Transmissíveis , Endotoxemia , Animais , Camundongos , Permeabilidade Capilar , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos , SARS-CoV-2 , Claudina-5 , Citocinas , Receptores de Superfície Celular
6.
J Exp Clin Cancer Res ; 43(1): 59, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413999

RESUMO

BACKGROUND: Hematological metastasis has been recognized as a crucial factor contributing to the high rates of metastasis and mortality observed in colorectal cancer (CRC). Notably, exosomes derived from cancer cells participate in the formation of CRC pre-metastatic niches; however, the mechanisms underlying their effects are largely unknown. While our preliminary research revealed the role of exosome-derived disintegrin and metalloproteinase 17 (ADAM17) in the early stages of CRC metastasis, the role of exosomal ADAM17 in CRC hematogenous metastasis remains unclear. METHODS: In the present study, we isolated and purified exosomes using ultracentrifugation and identified exosomal proteins through quantitative mass spectrometry. In vitro, co-culture assays were conducted to evaluate the impact of exosomal ADAM17 on the permeability of the blood vessel endothelium. Vascular endothelial cell resistance, the cell index, membrane protein separation, flow cytometry, and immunofluorescence were employed to investigate the mechanisms underlying exosomal ADAM17-induced vascular permeability. Additionally, a mouse model was established to elucidate the role of exosomal ADAM17 in the modulation of blood vessel permeability and pre-metastatic niche formation in vivo. RESULTS: Our clinical data indicated that ADAM17 derived from the circulating exosomes of patients with CRC could serve as a blood-based biomarker for predicting metastasis. The CRC-derived exosomal ADAM17 targeted vascular endothelial cells, thus enhancing vascular permeability by influencing vascular endothelial cadherin cell membrane localization. Moreover, exosomal ADAM17 mediated the formation of a pre-metastatic niche in nude mice by inducing vascular leakage, thereby promoting CRC metastasis. Nonetheless, ADAM17 selective inhibitors effectively reduced CRC metastasis in vivo. CONCLUSIONS: Our results suggest that exosomal ADAM17 plays a pivotal role in the hematogenous metastasis of CRC. Thus, this protein may serve as a valuable blood-based biomarker and potential drug target for CRC metastasis intervention.


Assuntos
Neoplasias Colorretais , Exossomos , MicroRNAs , Animais , Camundongos , Humanos , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Permeabilidade Capilar , Camundongos Nus , Biomarcadores/metabolismo , Neoplasias Colorretais/patologia , Exossomos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína ADAM17/metabolismo
7.
J Diabetes Complications ; 38(3): 108631, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340519

RESUMO

BACKGROUND: Diabetic retinopathy is a common microvascular complication of diabetes and one of the major causes of blindness in the working-age population. Emerging evidence has elucidated that inflammation drives the key mechanism of diabetes-mediated retinal disturbance. As a new therapeutic drug targeting diabetes, whether dapagliflozin could improve vascular permeability from the perspective of anti-inflammatory effect need to be further explored. METHODS: Type 2 diabetic retinopathy rat model was established and confirmed by fundus fluorescein angiography (FFA). ELISA detected level of plasma inflammatory factors and C-peptide. HE staining, immunohistochemistry and western blot detected histopathology changes of retina, expression of retinal inflammatory factors and tight junction proteins. RESULTS: Dapagliflozin exhibited hypoglycemic effect comparable to insulin, but did not affect body weight. By inhibiting expression of inflammatory factors (NLRP3, Caspase-1, IL-18, NF-κB) in diabetic retina and plasma, dapagliflozin reduced damage of retinal tight junction proteins and improved retinal vascular permeability. The anti-inflammatory effect of dapagliflozin was superior to insulin. CONCLUSIONS: Dapagliflozin improved retinal vascular permeability by reducing diabetic retinal and plasma inflammatory factors. The anti-inflammatory mechanism of dapagliflozin is independent of hypoglycemic effect and superior to insulin.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus , Retinopatia Diabética , Glucosídeos , Animais , Ratos , Retinopatia Diabética/tratamento farmacológico , Permeabilidade Capilar , Retina , Insulina , Insulina Regular Humana , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Anti-Inflamatórios , Proteínas de Junções Íntimas
8.
Sci Rep ; 14(1): 3596, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351286

RESUMO

Abuse of amphetamine-type stimulants is linked to cardiovascular adverse effects like arrhythmias, accelerated atherosclerosis, acute coronary syndromes and sudden cardiac death. Excessive catecholamine release following amphetamine use causes vasoconstriction and vasospasms, over time leading to hypertension, endothelial dysfunction or even cardiotoxicity. However, immediate vascular pathomechanisms related to amphetamine exposure, especially endothelial function, remain incompletely understood and were analyzed in this study. Pharmaco-pathological effects of acute d-amphetamine-sulfate (DAM) were investigated ex vivo using contraction-force measurements of rat carotid artery rings and in vitro using label-free, real-time electrochemical impedance spectroscopy (EIS) on endothelial and smooth muscle cells. Specific receptor and target blocking was used to identify molecular targets and to characterize intracellular signaling. DAM induced vasodilation represented by 29.3±2.5% decrease in vascular tone (p<0.001) involving vascular endothelial growth factor receptor (VEGF-R) and protease activated receptor 1 (PAR-1). EIS revealed that DAM induces endothelial barrier disruption (-75.9±1.1% of initial cellular impedance, p<0.001) also involving VEGF-R and PAR-1. Further, in response to DAM, Rho-associated protein kinase (ROCK) mediated reversible contraction of actin cytoskeleton resulting in endothelial barrier disruption. Dephosphorylation of Serine1177 (-50.8±3.7%, p<0.001) and Threonine495 (-44.8±6.5%, p=0.0103) of the endothelial NO synthase (eNOS) were also observed. Blocking of VEGF-R and PAR-1 restored baseline eNOS Threonine495 phosphorylation. DAM induced vasodilation, enhanced vascular permeability and actin cytoskeleton contraction and induced eNOS hypophosphorylation involving VEGF-R, PAR-1 and ROCK. These results may contribute to a better understanding of severe adverse cardiovascular effects in amphetamine abuse.


Assuntos
Receptor PAR-1 , Doenças Vasculares , Ratos , Animais , Receptor PAR-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Anfetamina/farmacologia , Permeabilidade Capilar , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Quinases Associadas a rho/metabolismo , Doenças Vasculares/metabolismo , Endotélio Vascular/metabolismo , Citoesqueleto de Actina/metabolismo , Células Cultivadas
9.
Biophys J ; 123(3): 334-348, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38169215

RESUMO

The inner lining of blood vessels, the endothelium, is made up of endothelial cells. Vascular endothelial (VE)-cadherin protein forms a bond with VE-cadherin from neighboring cells to determine the size of gaps between the cells and thereby regulate the size of particles that can cross the endothelium. Chemical cues such as thrombin, along with mechanical properties of the cell and extracellular matrix are known to affect the permeability of endothelial cells. Abnormal permeability is found in patients suffering from diseases including cardiovascular diseases, cancer, and COVID-19. Even though some of the regulatory mechanisms affecting endothelial permeability are well studied, details of how several mechanical and chemical stimuli acting simultaneously affect endothelial permeability are not yet understood. In this article, we present a continuum-level mechanical modeling framework to study the highly dynamic nature of the VE-cadherin bonds. Taking inspiration from the catch-slip behavior that VE-cadherin complexes are known to exhibit, we model the VE-cadherin homophilic bond as cohesive contact with damage following a traction-separation law. We explicitly model the actin cytoskeleton and substrate to study their role in permeability. Our studies show that mechanochemical coupling is necessary to simulate the influence of the mechanical properties of the substrate on permeability. Simulations show that shear between cells is responsible for the variation in permeability between bicellular and tricellular junctions, explaining the phenotypic differences observed in experiments. An increase in the magnitude of traction force due to disturbed flow that endothelial cells experience results in increased permeability, and it is found that the effect is higher on stiffer extracellular matrix. Finally, we show that the cylindrical monolayer exhibits higher permeability than the planar monolayer under unconstrained cases. Thus, we present a contact mechanics-based mechanochemical model to investigate the variation in the permeability of endothelial monolayer due to multiple loads acting simultaneously.


Assuntos
Células Endoteliais , Endotélio Vascular , Humanos , Caderinas/metabolismo , Citoesqueleto de Actina/metabolismo , Trombina/metabolismo , Permeabilidade , Permeabilidade Capilar/fisiologia , Células Cultivadas
10.
Biomed Pharmacother ; 171: 116147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237347

RESUMO

Increased vascular permeability is a prevalent feature in a wide spectrum of clinical conditions, but no effective treatments to restore the endothelial barrier are available. Idiopathic systemic capillary leak syndrome (ISCLS) is a life-threatening Paroxysmal Permeability Disorder characterized by abrupt, massive plasma extravasation. This condition serves as a robust model for investigating therapeutic approaches targeting interendothelial junctions. We conducted a single-center, interventional in vitro study at the Referral Center for ISCLS in Italy, involving four diagnosed ISCLS patients, aiming at investigating the effects of FX06, a Bß15-42 fibrin-derived peptide binding to VE-Cadherin, on endothelial barrier exposed to intercritical and acute ISCLS sera. The Transwell Permeability Assay was used to assess the permeability of human umbilical vein endothelial cells (HUVECs) exposed to ISCLS sera with or without FX06 (50 µg/ml). Acute ISCLS serum was also tested in a three-dimensional microfluidic device. Nitric oxide (NO), VE-Cadherin localization, and cytoskeletal organization were also assessed. In two and three-dimensional systems, ISCLS sera increased endothelial permeability, with a more pronounced effect for acute sera. Furthermore, acute sera altered VE-Cadherin localization and cytoskeletal organization. NO levels remained unchanged. FX06 restored the endothelial barrier function by influencing cellular localization rather than VE-Cadherin levels. In conclusion, FX06 prevents and reverts the hyperpermeability induced by ISCLS sera. These preliminary yet promising results provide initial evidence of the in vitro efficacy of a drug targeting the underlying pathophysiological mechanisms of ISCLS. Moreover, this approach may hold potential for addressing hyperpermeability in a spectrum of clinical conditions beyond ISCLS.


Assuntos
Síndrome de Vazamento Capilar , Humanos , Síndrome de Vazamento Capilar/metabolismo , Células Endoteliais , Permeabilidade Capilar , Endotélio Vascular , Caderinas/metabolismo , Itália
11.
J Therm Biol ; 119: 103782, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176292

RESUMO

Enhanced vascular permeability at the site of injury is a prominent feature in acute inflammatory pain models, commonly assessed through the Evans Blue test. However, this invasive test requires euthanasia, thereby precluding further investigations on the same animal. Due to these limitations, the integration of non-invasive tools such as IRT has been sought. Here, we aimed to evaluate the use of thermography in a common orofacial pain model that employs formalin as a chemical irritant to induce local orofacial inflammation. Male Hannover rats (290-300 g, N = 43) were used. In the first approach, radiometric images were taken before and after formalin administration, assessing temperature changes and extravasated Evans Blue. The second approach included capturing pre- and post-formalin test radiometric images, followed by cytokine measurements in excised vibrissae tissue. Rats were anesthetized for vibrissae tissue collection, allowing correlations between thermographic patterns, nocifensive behavior duration, and cytokine levels in this area. Our findings revealed a positive correlation between local temperature, measured via thermography, and vascular permeability in the contralateral (r2 = 0.3483) and ipsilateral (r2 = 0.4502) side, measured using spectrophotometry. The obtained data supports the notion that thermography-based temperature assessment can effectively evaluate vascular permeability in the orofacial region.


Assuntos
Formaldeído , Termografia , Ratos , Masculino , Animais , Formaldeído/efeitos adversos , Termografia/métodos , Permeabilidade Capilar , Azul Evans/efeitos adversos , Dor Facial/induzido quimicamente , Citocinas
12.
Cell Tissue Res ; 395(1): 81-103, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032480

RESUMO

Endothelial cells of mammalian blood vessels have multiple levels of heterogeneity along the vascular tree and among different organs. Further heterogeneity results from blood flow turbulence and variations in shear stress. In the aorta, vascular endothelial protein tyrosine phosphatase (VE-PTP), which dephosphorylates tyrosine kinase receptor Tie2 in the plasma membrane, undergoes downstream polarization and endocytosis in endothelial cells exposed to laminar flow and high shear stress. VE-PTP sequestration promotes Tie2 phosphorylation at tyrosine992 and endothelial barrier tightening. The present study characterized the heterogeneity of VE-PTP polarization, Tie2-pY992 and total Tie2, and claudin-5 in anatomically defined regions of endothelial cells in the mouse descending thoracic aorta, where laminar flow is variable and IgG extravasation is patchy. We discovered that VE-PTP and Tie2-pY992 had mosaic patterns, unlike the uniform distribution of total Tie2. Claudin-5 at tight junctions also had a mosaic pattern, whereas VE-cadherin at adherens junctions bordered all endothelial cells. Importantly, the amounts of Tie2-pY992 and claudin-5 in aortic endothelial cells correlated with downstream polarization of VE-PTP. VE-PTP and Tie2-pY992 also had mosaic patterns in the vena cava, but claudin-5 was nearly absent and extravasated IgG was ubiquitous. Correlation of Tie2-pY992 and claudin-5 with VE-PTP polarization supports their collective interaction in the regulation of endothelial barrier function in the aorta, yet differences between the aorta and vena cava indicate additional flow-related determinants of permeability. Together, the results highlight new levels of endothelial cell functional mosaicism in the aorta and vena cava, where blood flow dynamics are well known to be heterogeneous.


Assuntos
Células Endoteliais , Proteínas Tirosina Fosfatases , Animais , Camundongos , Aorta , Caderinas/metabolismo , Permeabilidade Capilar , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Imunoglobulina G , Mamíferos/metabolismo , Permeabilidade , Proteínas Tirosina Fosfatases/metabolismo
13.
Am J Physiol Cell Physiol ; 326(1): C304-C316, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047305

RESUMO

It is known that pulmonary vascular leakage, a key pathological feature of sepsis-induced lung injury, is largely regulated by perivascular cells. However, the underlying mechanisms have not been fully uncovered. In the present study, we aimed to evaluate the role of isthmin1, a secretory protein originating from alveolar epithelium, in the pulmonary vascular leakage during sepsis and to investigate the regulatory mechanisms of isthmin1 gene transcription. We observed an elevated isthmin1 gene expression in the pulmonary tissue of septic mice induced by cecal ligation and puncture (CLP), as well as in primary murine alveolar type II epithelial cells (ATII) exposed to lipopolysaccharide (LPS). Furthermore, we confirmed that isthmin1 derived from ATII contributes to pulmonary vascular leakage during sepsis. Specifically, adenovirus-mediated isthmin1 disruption in ATII led to a significant attenuation of the increased pulmonary microvascular endothelial cell (PMVEC) hyperpermeability in a PMVEC/ATII coculture system when exposed to LPS. In addition, adeno-associated virus 9 (AAV9)-mediated knockdown of isthmin1 in the alveolar epithelium of septic mice significantly attenuated pulmonary vascular leakage. Finally, mechanistic studies unveiled that nuclear transcription factor CCAAT/enhancer binding protein (C/EBP)ß participates in isthmin1 gene activation by binding directly to the cis-regulatory element of isthmin1 locus and may contribute to isthmin1 upregulation during sepsis. Collectively, the present study highlighted the impact of the paracrine protein isthmin1, derived from ATII, on the exacerbation of pulmonary vascular permeability in sepsis and revealed a new regulatory mechanism for isthmin1 gene transcription.NEW & NOTEWORTHY This article addresses the role of the alveolar epithelial-secreted protein isthmin1 on the exacerbation of pulmonary vascular permeability in sepsis and identified nuclear factor CCAAT/enhancer binding protein (C/EBP)ß as a new regulator of isthmin1 gene transcription. Targeting the C/EBPß-isthmin1 regulatory axis on the alveolar side would be of great value in the treatment of pulmonary vascular leakage and lung injury induced by sepsis.


Assuntos
Lesão Pulmonar , Sepse , Animais , Camundongos , Permeabilidade Capilar/fisiologia , Técnicas de Cocultura , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Lesão Pulmonar/genética , Sepse/patologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
14.
Exp Cell Res ; 434(2): 113873, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38092346

RESUMO

Neurogenic pulmonary edema secondary to acute brain injury (ABI) is a common and fatal disease condition. However, the pathophysiology of brain-lung interactions is incompletely understood. This study aims to investigate whether sympathetic activation-mediated high fluid shear stress after ABI would damage pulmonary endothelial glycocalyx thus leading to increased pulmonary capillary permeability. The tricuspid annular plane systolic excursion (TAPSE) was detected in a rat model of controlled cortical impact (CCI) and CCI + transection of the cervical sympathetic trunk (TCST). Changes in pulmonary capillary permeability were assessed by analyzing the Evans blue, measuring the dry/wet weight ratio of the lungs and altering protein levels in the bronchoalveolar lavage fluid (BALF). The parallel-plate flow chamber system was used to simulate the fluid shear stress in vitro. Western blotting and immunofluorescence staining were used to determine the expression levels of hyaluronan-binding protein (CEMIP), syndecan-1 and tight junction proteins (TJPs, including claudin-5 and occludin). TCST could restrain cardiac overdrive and sympathetic activation in a rat model of CCI. Compared to the CCI group, the CCI + TCST group showed a reduction of CEMPI (which degrades hyaluronic acid), along with an increase of syndecan-1 and TJPs. CCI + TCST group presented decreasing pulmonary capillary permeability. In vitro, high shear stress (HSS) increased the expression of CEMIP and reduced syndecan-1 and TJPs, which was coordinated with the results in vivo. Our findings show that sympathetic activation-mediated high fluid shear stress after ABI would damage pulmonary endothelial glycocalyx thus leading to increased pulmonary capillary permeability.


Assuntos
Lesões Encefálicas , Sindecana-1 , Ratos , Animais , Sindecana-1/metabolismo , Glicocálix/metabolismo , Permeabilidade Capilar , Pulmão/metabolismo , Lesões Encefálicas/metabolismo
15.
J Surg Res ; 293: 639-646, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37837820

RESUMO

INTRODUCTION: Major traumatic injury is associated with early hemorrhage-related and late-stage deaths due to multiple organ failure (MOF). While improvements to hemostatic resuscitation have significantly reduced hemorrhage-related deaths, the incidence of MOF among trauma patients remains high. Dysregulation of vascular endothelial cell (EC) barrier function is a central mechanism in the development of MOF; however, the mechanistic triggers remain unknown. Accelerated fibrinolysis occurs in a majority of trauma patients, resulting in high circulating levels of fibrin(ogen) degradation products, such as fragment X. To date, the relationship between fragment X and EC dysregulation and barrier disruption is unknown. The goal of this study was to determine the effects of fragment X on EC barrier integrity and expression of paracellular junctional proteins that regulate barrier function. METHODS: Human lung microvascular endothelial cells (HLMVECs) were treated with increasing concentrations of fragment X (1, 10, and 100 µg/mL), and barrier function was monitored using the xCELLigence live-cell monitoring system. Quantitative PCR (qPCR) was performed to measure changes in EC expression of 84 genes. Immunofluorescent (IF) cytostaining was performed to validate qPCR findings. RESULTS: Fragment X treatment significantly increased endothelial permeability over time (P < 0.05). There was also a significant reduction in VE-cadherin mRNA expression in fragment X-treated HLMVECs compared to control (P = 0.01), which was confirmed by IF staining. CONCLUSIONS: Fragment X may induce EC hyperpermeability by reducing VE-cadherin expression. This suggests that a targeted approach to disrupting EC-fragment X interactions could mitigate EC barrier disruption, organ edema, and MOF associated with major trauma.


Assuntos
Caderinas , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Caderinas/metabolismo , Endotélio Vascular/metabolismo , Hemorragia/metabolismo , Permeabilidade Capilar , Células Cultivadas
16.
Methods Mol Biol ; 2711: 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37776444

RESUMO

The microvascular endothelium has a critical role in regulating the delivery of oxygen, nutrients, and water to the surrounding tissues. Under inflammatory conditions that accompany acute injury or disease, microvascular permeability becomes elevated. When microvascular hyperpermeability becomes uncontrolled or chronic, the excessive escape of plasma proteins into the surrounding tissue disrupts homeostasis and ultimately leads to organ dysfunction. Much remains to be learned about the mechanisms that control microvascular permeability. In addition to in vivo and isolated microvessel methods, the cultured endothelial cell monolayer protocol is an important tool that allows for understanding the specific, endothelial subcellular mechanisms that determine permeability of the endothelium to plasma proteins. In this chapter, two variations of the popular Transwell culture methodology to determine permeability to using fluorescently labeled tracers are presented. The strengths and weaknesses of this approach are also discussed.


Assuntos
Permeabilidade Capilar , Células Endoteliais , Células Endoteliais/metabolismo , Endotélio/metabolismo , Permeabilidade Capilar/fisiologia , Células Cultivadas , Proteínas Sanguíneas/metabolismo , Permeabilidade , Endotélio Vascular/metabolismo
17.
Semin Cell Dev Biol ; 155(Pt C): 16-22, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37479554

RESUMO

In the human body, the 1013 blood endothelial cells (ECs) which cover a surface of 500-700 m2 (Mai et al., 2013) are key players of tissue homeostasis, remodeling and regeneration. Blood vessel ECs play a major role in the regulation of metabolic and gaz exchanges, cell trafficking, blood coagulation, vascular tone, blood flow and fluid extravasation (also referred to as blood vascular permeability). ECs are heterogeneous in various capillary beds and have the exquisite capacity to cope with environmental changes by regulating their gene expression. Ischemia has major detrimental effects on the endothelium and ischemia-induced regulation of vascular integrity is of paramount importance for human health, as small amounts of fluid accumulation in the interstitium may be responsible for major effects on organ functions and patients outcome. In this review, we will here focus on the stimuli and the molecular mechanisms that control blood endothelium maintenance and phenotypic plasticity/transition involved in controlling blood capillary leakage that might open new avenues for therapeutic applications.


Assuntos
Células Endoteliais , Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Isquemia/metabolismo , Permeabilidade Capilar , Adaptação Fisiológica , Permeabilidade
18.
Nat Commun ; 14(1): 8097, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062045

RESUMO

Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.


Assuntos
Hormônio Liberador de Gonadotropina , Semaforinas , Humanos , Hormônio Liberador de Gonadotropina/metabolismo , Eminência Mediana/metabolismo , Permeabilidade Capilar , Neurônios/metabolismo , Puberdade , Semaforinas/genética , Semaforinas/metabolismo
19.
FASEB J ; 37(12): e23310, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010922

RESUMO

Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.


Assuntos
Actinas , Proteínas rap1 de Ligação ao GTP , Animais , Camundongos , Actinas/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Adesão Celular/fisiologia , Endotélio Vascular/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
20.
Int J Biol Sci ; 19(14): 4571-4587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781039

RESUMO

Tumor-associated angiogenesis positively associates with malignant metastasis of intrahepatic cholangiocarcinoma (ICCA). Cancer cell-derived exosomes carrying microRNAs involves in tumor microenvironment (TME) regulation. We aimed to evaluate exosomal miR-30a-5p in ICCA development. Our data showed that increased miR-30a-5p level was correlated with higher microvascular density (MVD) and worse prognosis. Augmented miR-30a-5p expression was induced by hypoxia induced factor 1α (HIF-1α) in ICCA cell. Further exploration revealed that ICCA-derived miR-30a-5p could be transferred to endothelial and increased endothelial cells recruitment and proliferation, induced angiogenesis and vascular permeability in exosome dependent manner. In addition, circulating exosomal miR-30a-5p was higher in ICCA patients, and correlated with ICCA tissues-expressing miR-30a-5p. Hypoxic stress enhanced the effects of exosomal miR-30a-5p on endothelial-associated phenotypes. Rescued experiments showed that exosomal miR-30a-5p modulated endothelial-associated phenotypes in a way relied on programmed cell death 10 (PDCD10). Moreover, we revealed that the packing of miR-30a-5p into ICCA cells-derived exosomes was mediated by eukaryotic translation initiation factor 4B (EIF4B). More importantly, the combined application of targeting miR-30a-5p and apatinib could synergistically improve antiangiogenic efficacy in ICCA. Combined, ICCA-derived exosomal miR-30a-5p could be an excellent therapeutic and monitoring indicator for ICCA patients.


Assuntos
Colangiocarcinoma , Exossomos , MicroRNAs , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Permeabilidade Capilar , Linhagem Celular Tumoral , Proliferação de Células/genética , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Células Endoteliais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...