Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292.325
Filtrar
1.
Drug Dev Res ; 85(2): e22179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616512

RESUMO

The role of YTHDF2 in gastric cancer (GC) is controversial. Due to the limitations of technical difficulty and experimental period, research on completely knocking out YTHDF2 is rare. Therefore, further investigations are still needed to clarify the YTHDF2's clinical significance and biological function in GC. To carry out the investigation, an analysis was performed on the expression levels of YTHDF2 in both publicly available databases and samples obtained from patients with gastric cancer. Based on the complete knockout of YTHDF2 using the CRISPR-Cas9 system, in vivo and in vitro experiments were conducted to analyze the effects of YTHDF2 on tumor formation, radiotherapy and chemoradiotherapy resistance in GC. Our investigation revealed an increase in YTHDF2 levels in GC tissues, which was found to be associated with a negative prognosis. Under hypoxic conditions, high expression of YTHDF2 enhanced the invasion of gastric cancer cells, and high expression of YTHDF2 was associated with HIF-1a. YTHDF2 facilitated gastric cancer cell growth in vitro and in vivo. Moreover, the results of the present study demonstrated that YTHDF2 mediated the expression of CyclinD1 and stability of CyclinD1 mRNA. CyclinD1 knockdown inhibited YTHDF2-mediated GC cell proliferation whereas CyclinD1 overexpression ameliorated YTHDF2 knockdown-induced inhibition of GC progression. Furthermore, YTHDF2 also promoted resistance to DDP and CTX chemotherapy, along with radiotherapy treatment for GC cells. The findings suggested that YTHDF2 expression accelerated GC progression through a potential mechanism involving CyclinD1 expression, and enhanced chemoradiotherapy resistance. This indicated that YTHDF2 could be a promising prognostic biomarker and therapeutic target for individuals diagnosed with GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Quimiorradioterapia , Proliferação de Células , Proteínas de Ligação a RNA/genética
2.
Sci Rep ; 14(1): 8694, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622149

RESUMO

We aimed to investigate the expression and clinic significance of Rac GTPase Activating Protein 1 (RACGAP1) in human lung adenocarcinoma (LUAD). Online database analysis revealed a significant increase in RACGAP1 mRNA expression among 26 types of tumor tissues, including LUAD tissues. Online database and tissue microarray analyses indicated that RACGAP1 expression was significantly upregulated in LUAD tissues. Genetic variation analysis identified four different genetic variations of RACGAPs in LUAD. Moreover, online database analysis showed that RACGAP1 upregulation was correlated with shorter survival in patients with LUAD. After silencing RACGAP1 expression in A549 cells using siRNA and assessing its protein levels via Western blotting, we found that RACGAP1 knockdown inhibited cell growth and induced apoptosis determined using the Cell Counting Kit-8 assay, colony formation assay, and flow cytometry. Mechanistically, western blot analysis indicated that Bax expression increased, whereas Bcl-2 expression decreased. Moreover, RACGAP1 knockdown attenuated PI3K/AKT pathway activation in lung cancer cells. Taken together, our findings showed that RACGAP1 was overexpressed in LUAD tissues and played an important role in lung cancer by increasing cell growth through the PI3K/AKT signaling pathway. This study suggests recommends evaluating RACGAP1 in clinical settings as a novel biomarker and potential therapeutic target for lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Adenocarcinoma de Pulmão/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular/genética
3.
Sci Rep ; 14(1): 8670, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622371

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Artéria Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Autofagia/genética , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular
4.
Anticancer Agents Med Chem ; 24(3): 185-192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629154

RESUMO

BACKGROUND: In a previous work from the author of this study, the compound of 9IV-c, ((E)-2-(3,4- dimethoxystyryl)-6,7,8-trimethoxy-N-(3,4,5-trimethoxyphenyl)quinoline-4-amine) was synthesized, and the effects of potent activity on the multiple human tumor cell lines were evaluated considering the spindle formation together with the microtubule network. METHODS: Accordingly, cytotoxic activity, apoptotic effects, and the therapeutic efficiency of compound 9IV-c on A549 and C26 cell lines were investigated in this study. RESULTS: The compound 9IV-c demonstrated high cytotoxicity against A549 and C26 cell lines with IC50 = 1.66 and 1.21 µM, respectively. The flow cytometric analysis of the A549 cancer cell line treated with compound 9IVc showed that This compound induced cell cycle arrest at the G2/M phase and apoptosis. Western blotting analysis displayed that compound 9IV-c also elevated the Bax/Bcl-2 ratio and increased the activation of caspase-9 and -3 but not caspase-8. CONCLUSION: These data presented that the intrinsic pathway was responsible for 9IV-c -induced cell apoptosis. In vivo studies demonstrated that treatment with the compound of 9IV-c at 10 mg/kg dose led to a decrease in tumor growth compared to the control group. It was found that there was not any apparent body weight loss in the period of treatment. Also, in the vital organs of the BALB/c mice, observable pathologic changes were not detected.


Assuntos
Apoptose , Quinolinas , Animais , Camundongos , Humanos , Células A549 , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Quinolinas/farmacologia , Proliferação de Células
5.
Cell Transplant ; 33: 9636897241241992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602231

RESUMO

There is a huge unmet need for new treatment modalities for ocular surface inflammatory disorders (OSIDs) such as dry eye disease and meibomian gland dysfunction. Mesenchymal stem cell therapies may hold the answer due to their potent immunomodulatory properties, low immunogenicity, and ability to modulate both the innate and adaptive immune response. MSC-like cells that can be isolated from the corneal stroma (C-MSCs) offer a potential new treatment strategy; however, an optimized culture medium needs to be developed to produce the ideal phenotype for use in a cell therapy to treat OSIDs. The effects of in vitro expansion of human C-MSC in a medium of M199 containing fetal bovine serum (FBS) was compared to a stem cell medium (SCM) containing knockout serum replacement (KSR) with basic fibroblast growth factor (bFGF) and human leukemia inhibitory factor (LIF), investigating viability, protein, and gene expression. Isolating populations expressing CD34 or using siRNA knockdown of CD34 were investigated. Finally, the potential of C-MSC as a cell therapy was assessed using co-culture with an in vitro corneal epithelial cell injury model and the angiogenic effects of C-MSC conditioned medium were evaluated with blood and lymph endothelial cells. Both media supported proliferation of C-MSC, with SCM increasing expression of CD34, ABCG2, PAX6, NANOG, REX1, SOX2, and THY1, supported by increased associated protein expression. Isolating cell populations expressing CD34 protein made little difference to gene expression, however, knockdown of the CD34 gene led to decreased expression of progenitor genes. C-MSC increased viability of injured corneal epithelial cells whilst decreasing levels of cytotoxicity and interleukins-6 and -8. No pro-angiogenic effect of C-MSC was seen. Culture medium can significantly influence C-MSC phenotype and culture in SCM produced a cell phenotype more suitable for further consideration as an anti-inflammatory cell therapy. C-MSC show considerable potential for development as therapies for OSIDs, acting through anti-inflammatory action.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Humanos , Células Endoteliais/metabolismo , Córnea/metabolismo , Técnicas de Cocultura , Fenótipo , Antígenos CD34/metabolismo , Células Cultivadas , Proliferação de Células , Diferenciação Celular
6.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612601

RESUMO

Cutaneous wound healing is a complex biological process involving a series of well-coordinated events aimed at restoring skin integrity and function. Various experimental models have been developed to study the mechanisms underlying skin wound repair and to evaluate potential therapeutic interventions. This review explores the diverse array of skin wound healing models utilized in research, ranging from rodent excisional wounds to advanced tissue engineering constructs and microfluidic platforms. More importantly, the influence of lipids on the wound healing process is examined, emphasizing their role in enhancing barrier function restoration, modulating inflammation, promoting cell proliferation, and promoting remodeling. Lipids, such as phospholipids, sphingolipids, and ceramides, play crucial roles in membrane structure, cell signaling, and tissue repair. Understanding the interplay between lipids and the wound microenvironment provides valuable insights into the development of novel therapeutic strategies for promoting efficient wound healing and tissue regeneration. This review highlights the significance of investigating skin wound healing models and elucidating the intricate involvement of lipids in the healing process, offering potential avenues for improving clinical outcomes in wound management.


Assuntos
Ceramidas , Inflamação , Humanos , Proliferação de Células , Microfluídica , Fosfolipídeos
7.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612685

RESUMO

Endometriosis is a complex gynecological disease that affects more than 10% of women in their reproductive years. While surgery can provide temporary relief from women's pain, symptoms often return in as many as 75% of cases within two years. Previous literature has contributed to theories about the development of endometriosis; however, the exact pathogenesis and etiology remain elusive. We conducted a preliminary investigation into the influence of primary endometrial cells (ECs) on the development and progression of endometriosis. In vitro studies, they were involved in inducing Lipopolysaccharide (LPS) in rat-isolated primary endometrial cells, which resulted in increased nuclear factor-kappa B (NF-κB) and vascular endothelial growth factor (VEGF) mRNA gene expression (quantitative polymerase chain reaction analysis, qPCR) and protein expression (western blot analysis). Additionally, in vivo studies utilized autogenic and allogeneic transplantations (rat to rat) to investigate endometriosis-like lesion cyst size, body weight, protein levels (immunohistochemistry), and mRNA gene expression. These studies demonstrated that estrogen upregulates the gene and protein regulation of cytoskeletal (CK)-18, transforming growth factor-ß (TGF-ß), VEGF, and tumor necrosis factor (TNF)-α, particularly in the peritoneum. These findings may influence cell proliferation, angiogenesis, fibrosis, and inflammation markers. Consequently, this could exacerbate the occurrence and progression of endometriosis.


Assuntos
Endometriose , Feminino , Humanos , Animais , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Proliferação de Células , Citoesqueleto , RNA Mensageiro
8.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612887

RESUMO

Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.


Assuntos
Cálcio , Células-Tronco Neurais , Cálcio da Dieta , Diferenciação Celular , Proliferação de Células
9.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612893

RESUMO

Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proliferação de Células , Quimioterapia Adjuvante , Hiperplasia , Neoplasias/tratamento farmacológico
10.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612895

RESUMO

Expression of miR-21 has been found to be altered in almost all types of cancers, and it has been classified as an oncogenic microRNA. In addition, the expression of tumor suppressor gene RECK is associated with miR-21 overexpression in high-grade cervical lesions. In the present study, we analyze the role of miR-21 in RECK gene regulation in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression using siRNAs. We analyzed the expression of miR-21 and RECK, as well as functional effects on cell proliferation and migration. We found that in cervical cancer cells, there was an inverse correlation between miR-21 expression and RECK mRNA and protein expression. SiRNAs to miR-21 increased luciferase reporter activity in construct plasmids containing the RECK-3'-UTR microRNA response elements MRE21-1, MRE21-2, and MRE21-3. The role of miR-21 in cell proliferation was also analyzed, and cancer cells transfected with siRNAs exhibited a markedly reduced cell proliferation and migration. Our findings indicate that miR-21 post-transcriptionally down-regulates the expression of RECK to promote cell proliferation and cell migration inhibition in cervical cancer cell survival. Therefore, miR-21 and RECK may be potential therapeutic targets in gene therapy for cervical cancer.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Transdução de Sinais , Proliferação de Células/genética , Movimento Celular/genética , RNA Interferente Pequeno , MicroRNAs/genética , Agitação Psicomotora , RNA de Cadeia Dupla , Proteínas Ligadas por GPI/genética
11.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612910

RESUMO

Glioblastoma is the most common malignant primary tumor of the CNS. The prognosis is dismal, with a median survival of 15 months. Surgical treatment followed by adjuvant therapies such as radiotherapy and chemotherapy characterize the classical strategy. The WNT pathway plays a key role in cellular proliferation, differentiation, and invasion. The DKK3 protein, capable of acting as a tumor suppressor, also appears to be able to modulate the WNT pathway. We performed, in a series of 40 patients, immunohistochemical and Western blot evaluations of DKK3 to better understand how the expression of this protein can influence clinical behavior. We used a statistical analysis, with correlations between the expression of DKK3 and overall survival, age, sex, Ki-67, p53, and MGMT and IDH status. We also correlated our data with information included in the cBioPortal database. In our analyses, DKK3 expression, in both immunohistochemistry and Western blot analyses, was reduced or absent in many cases, showing downregulation. To date, no clinical study exists in the literature that reports a potential correlation between IDH and MGMT status and the WNT pathway through the expression of DKK3. Modulation of this pathway through the expression of DKK3 could represent a new tailored therapeutic strategy in the treatment of glioblastoma.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Western Blotting , Proliferação de Células , Terapia Combinada , Bases de Dados Factuais , Proteínas Adaptadoras de Transdução de Sinal
12.
Sci Rep ; 14(1): 8457, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605072

RESUMO

A new series of imidazothiazole derivatives bearing thiazolidinone moiety (4a-g and 5a-d) were designed, synthesized and evaluated for potential epidermal growth factor receptor (EGFR) kinase inhibition, anticancer and anti-inflammatory activity, cardiomyopathy toxicity and hepatotoxicity. Compound 4c inhibited EGFR kinase at a concentration of 18.35 ± 1.25 µM, whereas standard drug erlotinib showed IC50 value of 06.12 ± 0.92 µM. The molecular docking, dynamics simulation and MM-GBSA binding energy calculations revealed strong interaction of compound 4c with binding site of EGFR. The synthesized compounds were evaluated for their anticancer activity by MTT assay against three human cancer cell lines A549 (Lung), MCF-7 (Breast), HCT116 (Colon), one normal human embryonic kidney cell line HEK293 and also for their EGFR kinase inhibitory activity. Few compounds of the series (4a, 4b, 4c) showed promising growth inhibition against all the tested cancer cell lines and against EGFR kinase. Among these, compound 4c was found to be most active and displayed IC50 value of 10.74 ± 0.40, 18.73 ± 0.88 against cancer cell lines A549 and MCF7 respectively whereas it showed an IC50 value of 96.38 ± 1.79 against HEK293 cell line indicating lesser cytotoxicity for healthy cell. Compounds 4a, 4b and 4c were also examined for their apoptosis inducing potential through AO/EB dual staining assay and it was observed that their antiproliferative activity against A549 cells is mediated via induction of apoptosis. Cardiomyopathy studies showed normal cardiomyocytes with no marked sign of pyknotic nucleus of compounds 4b and 4c. Hepatotoxicity studies of compounds 4b and 4c also showed normal architecture of hepatocytes. Compounds 4a-g and 5a-d were also evaluated for their in-vitro anti-inflammatory activity by protein albumin denaturation assay. Among the tested compounds 4a-d and 5a-b showed promising activity and were selected for in-vivo inflammatory activity against carrageenan rat paw edema test. Among these compounds, 4b was found to be most active in the series showing 84.94% inhibition, whereas the standard drug diclofenac sodium showed 84.57% inhibition. Compound 4b also showed low ulcerogenic potential and lipid peroxidation. Thus, compounds 4c and 4b could be a promising lead compounds for developing anticancer and anti-inflammatory agents with low toxicity and selectivity.


Assuntos
Antineoplásicos , Cardiomiopatias , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Ratos , Animais , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Células HEK293 , Antineoplásicos/química , Anti-Inflamatórios/farmacologia , Receptores ErbB/metabolismo , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Inibidores de Proteínas Quinases/química
13.
Cell Commun Signal ; 22(1): 226, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605321

RESUMO

Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quinases Ciclina-Dependentes/metabolismo , Linhagem Celular Tumoral , Ciclo Celular , Proliferação de Células
14.
BMC Genomics ; 25(1): 358, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605318

RESUMO

BACKGROUND: Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT: It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION: Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.


Assuntos
Adipócitos , Genes Homeobox , Animais , Bovinos , Adipócitos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Fatores de Transcrição/metabolismo , Apoptose/genética , RNA Mensageiro/metabolismo , Adipogenia/genética
15.
J Transl Med ; 22(1): 347, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605354

RESUMO

BACKGROUND: THOC7-AS1 and FSTL1 expression are frequently upregulated in cutaneous squamous cell carcinoma (cSCC). However, their molecular biological mechanisms remain elusive and their potential as therapeutic targets needs urgent exploration. METHODS: Human tissue samples were used to evaluate clinical parameters. In vitro and in vivo experiments assessed biological functions. Quantitative PCR, western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, RNA fluorescence in situ hybridization, RNA pull-down, RNA immunoprecipitation, silver staining, chromatin immunoprecipitation, dual luciferase reporter assays etc. were utilized to explore the molecular biological mechanisms. RESULTS: We found FSTL1 is an oncogene in cSCC, with high expression in tumor tissues and cells. Its elevated expression closely associates with tumor size and local tissue infiltration. In vitro and in vivo, high FSTL1 expression promotes cSCC proliferation, migration and invasion, facilitating malignant behaviors. Mechanistically, FSTL1 interacts with ZEB1 to promote epithelial-to-mesenchymal transition (EMT) in cSCC cells. Exploring upstream regulation, we found THOC7-AS1 can interact with OCT1, which binds the FSTL1 promoter region and promotes FSTL1 expression, facilitating cSCC progression. Finally, treating tumors with THOC7-AS1 antisense oligonucleotides inhibited cSCC proliferative and migratory abilities, delaying tumor progression. CONCLUSIONS: The THOC7-AS1/OCT1/FSTL1 axis regulates EMT and promotes tumor progression in cSCC. This study provides clues and ideas for cSCC targeted therapy.


Assuntos
Carcinoma de Células Escamosas , Proteínas Relacionadas à Folistatina , MicroRNAs , RNA Longo não Codificante , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Hibridização in Situ Fluorescente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Proliferação de Células/genética , RNA , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Movimento Celular/genética
16.
J Exp Clin Cancer Res ; 43(1): 110, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605423

RESUMO

BACKGROUND: Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS: We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS: Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS: Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Peixe-Zebra , Regulação para Baixo , Camundongos Nus , Proteômica , Metabolismo Energético , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
17.
CNS Neurosci Ther ; 30(4): e14709, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605477

RESUMO

AIMS: Although radiotherapy is a core treatment modality for various human cancers, including glioblastoma multiforme (GBM), its clinical effects are often limited by radioresistance. The specific molecular mechanisms underlying radioresistance are largely unknown, and the reduction of radioresistance is an unresolved challenge in GBM research. METHODS: We analyzed and verified the expression of nuclear autoantigenic sperm protein (NASP) in gliomas and its relationship with patient prognosis. We also explored the function of NASP in GBM cell lines. We performed further mechanistic experiments to investigate the mechanisms by which NASP facilitates GBM progression and radioresistance. An intracranial mouse model was used to verify the effectiveness of combination therapy. RESULTS: NASP was highly expressed in gliomas, and its expression was negatively correlated with the prognosis of glioma. Functionally, NASP facilitated GBM cell proliferation, migration, invasion, and radioresistance. Mechanistically, NASP interacted directly with annexin A2 (ANXA2) and promoted its nuclear localization, which may have been mediated by phospho-annexin A2 (Tyr23). The NASP/ANXA2 axis was involved in DNA damage repair after radiotherapy, which explains the radioresistance of GBM cells that highly express NASP. NASP overexpression significantly activated the signal transducer and activator of transcription 3 (STAT3) signaling pathway. The combination of WP1066 (a STAT3 pathway inhibitor) and radiotherapy significantly inhibited GBM growth in vitro and in vivo. CONCLUSION: Our findings indicate that NASP may serve as a potential biomarker of GBM radioresistance and has important implications for improving clinical radiotherapy.


Assuntos
Anexina A2 , Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Camundongos , Humanos , Masculino , Glioblastoma/genética , Fator de Transcrição STAT3/genética , Anexina A2/genética , Anexina A2/metabolismo , Anexina A2/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sêmen/metabolismo , Proliferação de Células/genética , Espermatozoides/metabolismo
18.
Cells ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607079

RESUMO

Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.


Assuntos
Mecanotransdução Celular , Transdução de Sinais , Transdução de Sinais/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proliferação de Células , Fosforilação
19.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607083

RESUMO

The neuro-immune axis has a crucial function both during physiological and pathological conditions. Among the immune cells, myeloid-derived suppressor cells (MDSCs) exert a pivotal role in regulating the immune response in many pathological conditions, influencing neuroinflammation and neurodegenerative disease progression. In chronic neuroinflammation, MDSCs could lead to exacerbation of the inflammatory state and eventually participate in the impairment of cognitive functions. To have a complete overview of the role of MDSCs in neurodegenerative diseases, research on PubMed for articles using a combination of terms made with Boolean operators was performed. According to the search strategy, 80 papers were retrieved. Among these, 44 papers met the eligibility criteria. The two subtypes of MDSCs, monocytic and polymorphonuclear MDSCs, behave differently in these diseases. The initial MDSC proliferation is fundamental for attenuating inflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), but not in amyotrophic lateral sclerosis (ALS), where MDSC expansion leads to exacerbation of the disease. Moreover, the accumulation of MDSC subtypes in distinct organs changes during the disease. The proliferation of MDSC subtypes occurs at different disease stages and can influence the progression of each neurodegenerative disorder differently.


Assuntos
Células Supressoras Mieloides , Doenças Neurodegenerativas , Humanos , Células Supressoras Mieloides/patologia , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/patologia , Inflamação/patologia , Proliferação de Células
20.
Anal Chim Acta ; 1303: 342505, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609273

RESUMO

The development of sensitive and efficient cell sensing strategies to detect circulating tumor cells (CTCs) in peripheral blood is crucial for the early diagnosis and prognostic assessment of cancer clinical treatment. Herein, an array of hierarchical flower-like gold microstructures (HFGMs) with anisotropic nanotips was synthesized by a simple electrodeposition method and used as a capture substrate to construct an ECL cytosensor based on the specific recognition of target cells by aptamers. The complex topography of the HFGMs array not only catalyzed the enhancement of ECL signals, but also induced the cells to generate more filopodia, improving the capture efficiency and shortening the capture time. The effect of topographic roughness on cell growth and adhesion propensity was also investigated, while the cell capture efficiency was proposed to be an important indicator affecting the accuracy of the ECL cytosensor. In addition, the capture of cells on the electrode surface increased the steric hindrance, which caused ECL signal changes in the Ru(bpy)32+ and TPrA system, realizing the quantitative detection of MCF-7 cells. The detection range of the sensor was from 102 to 106 cells mL-1 and the detection limit was 18 cells mL-1. The proposed detection method avoids the process of separation, labeling and counting, which has great potential for sensitive detection in clinical applications.


Assuntos
Células Neoplásicas Circulantes , Humanos , Anisotropia , Ciclo Celular , Proliferação de Células , Ouro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...