Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.091
Filtrar
1.
PLoS Pathog ; 20(3): e1011998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530845

RESUMO

Epstein-Barr virus (EBV) contributes to ~1% of all human cancers including several B-cell neoplasms. A characteristic feature of EBV life cycle is its ability to transform metabolically quiescent B-lymphocytes into hyperproliferating B-cell blasts with the establishment of viral latency, while intermittent lytic cycle induction is necessary for the production of progeny virus. Our RNA-Seq analyses of both latently infected naïve B-lymphocytes and transformed B-lymphocytes upon lytic cycle replication indicate a contrasting expression pattern of a membrane-associated carbonic anhydrase isoform CA9, an essential component for maintaining cell acid-base homeostasis. We show that while CA9 expression is transcriptionally activated during latent infection model, lytic cycle replication restrains its expression. Pharmacological inhibition of CA-activity using specific inhibitors retards EBV induced B-cell transformation, inhibits B-cells outgrowth and colony formation ability of transformed B-lymphocytes through lowering the intracellular pH, induction of cell apoptosis and facilitating degradation of CA9 transcripts. Reanalyses of ChIP-Seq data along with utilization of EBNA2 knockout virus, ectopic expression of EBNA2 and sh-RNA mediated knockdown of CA9 expression we further demonstrate that EBNA2 mediated CA9 transcriptional activation is essential for EBV latently infected B-cell survival. In contrast, during lytic cycle reactivation CA9 expression is transcriptionally suppressed by the key EBV lytic cycle transactivator, BZLF1 through its transactivation domain. Overall, our study highlights the dynamic alterations of CA9 expression and its activity in regulating pH homeostasis act as one of the major drivers for EBV induced B-cell transformation and subsequent B-cell lymphomagenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/fisiologia , Infecções por Vírus Epstein-Barr/genética , Linfócitos B , Latência Viral , Transativadores/genética , Ativação Viral , Regulação Viral da Expressão Gênica
2.
Proc Natl Acad Sci U S A ; 121(10): e2315860121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408244

RESUMO

Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes life-long latent infection in hematopoietic cells. While this infection is usually asymptomatic, immune dysregulation leads to viral reactivation, which can cause significant morbidity and mortality. However, the mechanisms underpinning reactivation remain incompletely understood. The HCMV major immediate early promoter (MIEP)/enhancer is a key factor in this process, as its transactivation from a repressed to active state helps drive viral gene transcription necessary for reactivation from latency. Numerous host transcription factors bind the MIE locus and recruit repressive chromatin modifiers, thus impeding virus reactivation. One such factor is CCCTC-binding protein (CTCF), a highly conserved host zinc finger protein that mediates chromatin conformation and nuclear architecture. However, the mechanisms by which CTCF contributes to HCMV latency were previously unexplored. Here, we confirm that CTCF binds two convergent sites within the MIE locus during latency in primary CD14+ monocytes, and following cellular differentiation, CTCF association is lost as the virus reactivates. While mutation of the MIE enhancer CTCF binding site does not impact viral lytic growth in fibroblasts, this mutant virus fails to maintain latency in myeloid cells. Furthermore, we show the two convergent CTCF binding sites allow looping to occur across the MIEP, supporting transcriptional repression during latency. Indeed, looping between the two sites diminishes during virus reactivation, concurrent with activation of MIE transcription. Taken together, our data reveal that three-dimensional chromatin looping aids in the regulation of HCMV latency and provides insight into promoter/enhancer regulation that may prove broadly applicable across biological systems.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Cromatina/genética , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Regulação Viral da Expressão Gênica , Regiões Promotoras Genéticas , Ativação Viral/genética , Latência Viral/genética
3.
mBio ; 15(3): e0347923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349188

RESUMO

Productive replication of herpes simplex virus (HSV) relies upon a well-ordered transcriptional cascade flowing from immediate-early (IE) to early (E) to late (L) gene products. While several virus-encoded transcriptional activators are involved in this process, IE and E gene promoters also contain multiple binding sites for the ubiquitously expressed cellular transcription factor Sp1. Sp1 has been previously implicated in activating HSV-1 gene transcription downstream of these sites, but why Sp1-binding sites are maintained in the promoters of genes activated by virus-encoded activators remains unclear. We hypothesized that Sp1 enables continued HSV-1 transcription and replication when viral transactivators are limited. We used a depletion-based approach in human foreskin fibroblasts to investigate the specific contribution of Sp1 to the initiation and progression of the HSV-1 lytic gene cascade. We found that Sp1 increased viral transcript levels, protein expression, and replication following infection with VP16- or ICP0-deficient viruses but had little to no effect on rescued viruses or during wild-type (WT) HSV-1 infection. Moreover, Sp1 promoted WT virus transcription and replication following interferon treatment of fibroblasts and thus may contribute to viral immune evasion. Interestingly, we observed reduced expression of Sp1 and Sp1-family transcription factors in differentiated sensory neurons compared to undifferentiated cells, suggesting that reduced Sp1 levels may also contribute to HSV-1 latent infection. Overall, these findings indicate that Sp1 can promote HSV-1 gene expression in the absence of key viral transactivators; thus, HSV-1 may use Sp1 to maintain its gene expression and replication under adverse conditions.IMPORTANCEHerpes simplex virus (HSV) is a common human pathogen that actively replicates in the epithelia but can persist for the lifetime of the infected host via a stable, latent infection in neurons. A key feature of the HSV replication cycle is a complex transcriptional program in which virus and host-cell factors coordinate to regulate expression of the viral gene products necessary for continued viral replication. Multiple binding sites for the cellular transcription factor Sp1 are located in the promoters of HSV-1 genes, but how Sp1 binding contributes to transcription and replication of wild-type virus is not fully understood. In this study, we identified a specific role for Sp1 in maintaining HSV-1 gene transcription under adverse conditions, as when virus-encoded transcriptional activators were absent or limited. Preservation of Sp1-binding sites in HSV-1 gene promoters may thus benefit the virus as it navigates diverse cell types and host-cell conditions during infection.


Assuntos
Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Infecção Latente , Humanos , Herpesvirus Humano 1/fisiologia , Transativadores/genética , Proteínas Imediatamente Precoces/genética , Fatores de Transcrição/metabolismo , Replicação Viral , Expressão Gênica , Regulação Viral da Expressão Gênica
4.
J Virol ; 98(3): e0151523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323812

RESUMO

Adeno-associated virus (AAV) requires co-infection with helper virus for efficient replication. We previously reported that Human Bocavirus 1 (HBoV1) genes, including NP1, NS2, and BocaSR, were critical for AAV2 replication. Here, we first demonstrate the essential roles of the NP1 protein in AAV2 DNA replication and protein expression. We show that NP1 binds to single-strand DNA (ssDNA) at least 30 nucleotides (nt) in length in a sequence-independent manner. Furthermore, NP1 colocalized with the BrdU-labeled AAV2 DNA replication center, and the loss of the ssDNA-binding ability of NP1 by site-directed mutation completely abolished AAV2 DNA replication. We used affinity-tagged NP1 protein to identify host cellular proteins associated with NP1 in cells cotransfected with the HBoV1 helper genes and AAV2 duplex genome. Of the identified proteins, we demonstrate that NP1 directly binds to the DBD-F domain of the RPA70 subunit with a high affinity through the residues 101-121. By reconstituting the heterotrimer protein RPA in vitro using gel filtration, we demonstrate that NP1 physically associates with RPA to form a heterologous complex characterized by typical fast-on/fast-off kinetics. Following a dominant-negative strategy, we found that NP1-RPA complex mainly plays a role in expressing AAV2 capsid protein by enhancing the transcriptional activity of the p40 promoter. Our study revealed a novel mechanism by which HBoV1 NP1 protein supports AAV2 DNA replication and capsid protein expression through its ssDNA-binding ability and direct interaction with RPA, respectively.IMPORTANCERecombinant adeno-associated virus (rAAV) vectors have been extensively used in clinical gene therapy strategies. However, a limitation of these gene therapy strategies is the efficient production of the required vectors, as AAV alone is replication-deficient in the host cells. HBoV1 provides the simplest AAV2 helper genes consisting of NP1, NS2, and BocaSR. An important question regarding the helper function of HBoV1 is whether it provides any direct function that supports AAV2 DNA replication and protein expression. Also of interest is how HBoV1 interplays with potential host factors to constitute a permissive environment for AAV2 replication. Our studies revealed that the multifunctional protein NP1 plays important roles in AAV2 DNA replication via its sequence-independent ssDNA-binding ability and in regulating AAV2 capsid protein expression by physically interacting with host protein RPA. Our findings present theoretical guidance for the future application of the HBoV1 helper genes in the rAAV vector production.


Assuntos
Proteínas do Capsídeo , Capsídeo , DNA de Cadeia Simples , DNA Viral , Proteínas de Ligação a DNA , Dependovirus , Bocavirus Humano , Proteínas Virais , Humanos , Capsídeo/metabolismo , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/crescimento & desenvolvimento , Dependovirus/metabolismo , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/metabolismo , DNA Viral/biossíntese , DNA Viral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Bocavirus Humano/genética , Bocavirus Humano/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
5.
J Virol ; 98(3): e0150223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315015

RESUMO

Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE: Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.


Assuntos
Antivirais , Apoptose , Regulação Viral da Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B , Hepatócitos , Biossíntese de Proteínas , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , Capsídeo/química , Capsídeo/classificação , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/metabolismo , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/biossíntese , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Camundongos Endogâmicos C57BL , Camundongos SCID , Replicação Viral , Linhagem Celular , Linfócitos T CD8-Positivos/imunologia , Apresentação de Antígeno
6.
Microbiol Immunol ; 68(3): 90-99, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244193

RESUMO

Despite the effectiveness of combination antiretroviral therapy, human immunodeficiency virus (HIV) infection remains incurable. To seek new strategies to overcome HIV type 1 (HIV-1) latency, one of the major barriers to HIV elimination, it is crucial to better understand how this state is maintained. Here, by means of an RNA interference screen employing an HIV-1 latency model using monocytic cell lines, we identified solute carrier family 25 member 42 (SLC25A42) as a potential host factor not previously known to affect HIV-1 latency. SLC25A42 knockdown resulted in increased HIV-1 expression, whereas forced expression of exogenous SLC25A42 suppressed it in SLC25A42-depleted cells. SLC25A42 depletion increased HIV-1 proviral transcriptional elongation but did not cause HIV-1 activation in an HIV-1 Tat-depleted latency model. This suggests that the role of SLC25A42 in HIV-1 transcription depends on HIV-1 Tat. Chromatin immunoprecipitation-qPCR analysis further revealed that SLC25A42 accumulated on or near the HIV-1 5' long terminal repeat promoter region of the HIV-1 provirus, suggesting a possible role in regulating HIV-1 Tat near this promoter region. These results indicate that SLC25A42 plays a novel role in HIV-1 latency maintenance in monocytic HIV-1 reservoirs.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Provírus/genética , Latência Viral/genética , Células Jurkat , Regulação Viral da Expressão Gênica
7.
PLoS Pathog ; 20(1): e1011943, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215174

RESUMO

Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Sarcoma de Kaposi , Humanos , Proteínas Imediatamente Precoces/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Transativadores/genética , Herpesvirus Humano 8/genética , Replicação Viral , Regulação Viral da Expressão Gênica , Ativação Viral , Proteases Específicas de Ubiquitina/metabolismo
8.
J Virol ; 98(2): e0156723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38197631

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core , Herpesvirus Humano 8 , Infecção Latente , Humanos , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Humano 8/fisiologia , NF-kappa B/metabolismo , Ativação Viral , Latência Viral , Replicação Viral , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo
9.
J Virol ; 98(2): e0138623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240593

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Histonas/genética , Histonas/metabolismo , Nucleossomos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Latência Viral/genética , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sequências Repetidas Terminais/genética , Regulação Viral da Expressão Gênica
10.
PLoS Pathog ; 20(1): e1011907, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232124

RESUMO

Kaposi's sarcoma herpesvirus (KSHV) is a leading cause of malignancy in AIDS and current therapies are limited. Like all herpesviruses, KSHV infection can be latent or lytic. KSHV latency-associated nuclear antigen (LANA) is essential for viral genome persistence during latent infection. LANA also maintains latency by antagonizing expression and function of the KSHV lytic switch protein, RTA. Here, we find LANA null KSHV is not capable of lytic replication, indicating a requirement for LANA. While LANA promoted both lytic and latent gene expression in cells partially permissive for lytic infection, it repressed expression in non-permissive cells. Importantly, forced RTA expression in non-permissive cells led to induction of lytic infection and LANA switched to promote, rather than repress, most lytic viral gene expression. When basal viral gene expression levels were high, LANA promoted expression, but repressed expression at low basal levels unless RTA expression was forcibly induced. LANA's effects were broad, but virus gene specific, extending to an engineered, recombinant viral GFP under control of host EF1α promoter, but not to host EF1α. Together, these results demonstrate that, in addition to its essential role in genome maintenance, LANA broadly regulates viral gene expression, and is required for high levels of lytic gene expression during lytic infection. Strategies that target LANA are expected to abolish KSHV infection.


Assuntos
Herpesvirus Humano 8 , Proteínas Nucleares , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Latência Viral/genética , Antígenos Virais/genética , Antígenos Virais/metabolismo , Expressão Gênica , Regulação Viral da Expressão Gênica , Replicação Viral
11.
J Mol Biol ; 436(2): 168359, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952768

RESUMO

Nucleic acid sequences containing guanine tracts are able to form non-canonical DNA or RNA structures known as G-quadruplexes (or G4s). These structures, based on the stacking of G-tetrads, are involved in various biological processes such as gene expression regulation. Here, we investigated a G4 forming sequence, HIVpro2, derived from the HIV-1 promoter. This motif is located 60 nucleotides upstream of the proviral Transcription Starting Site (TSS) and overlaps with two SP1 transcription factor binding sites. Using NMR spectroscopy, we determined that HIVpro2 forms a hybrid type G4 structure with a core that is interrupted by a single nucleotide bulge. An additional reverse-Hoogsteen AT base pair is stacked on top of the tetrad. SP1 transcription factor is known to regulate transcription activity of many genes through the recognition of Guanine-rich duplex motifs. Here, the formation of HIVpro2 G4 may modulate SP1 binding sites architecture by competing with the formation of the canonical duplex structure. Such DNA structural switch potentially participates to the regulation of viral transcription and may also interfere with HIV-1 reactivation or viral latency.


Assuntos
Quadruplex G , HIV-1 , Fator de Transcrição Sp1 , Sítios de Ligação , DNA/química , Guanina/química , HIV-1/genética , HIV-1/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Humanos , Regulação Viral da Expressão Gênica
12.
PLoS Pathog ; 19(12): e1011873, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38113273

RESUMO

As a human tumor virus, EBV is present as a latent infection in its associated malignancies where genetic and epigenetic changes have been shown to impede cellular differentiation and viral reactivation. We reported previously that levels of the Wnt signaling effector, lymphoid enhancer binding factor 1 (LEF1) increased following EBV epithelial infection and an epigenetic reprogramming event was maintained even after loss of the viral genome. Elevated LEF1 levels are also observed in nasopharyngeal carcinoma and Burkitt lymphoma. To determine the role played by LEF1 in the EBV life cycle, we used in silico analysis of EBV type 1 and 2 genomes to identify over 20 Wnt-response elements, which suggests that LEF1 may bind directly to the EBV genome and regulate the viral life cycle. Using CUT&RUN-seq, LEF1 was shown to bind the latent EBV genome at various sites encoding viral lytic products that included the immediate early transactivator BZLF1 and viral primase BSLF1 genes. The LEF1 gene encodes various long and short protein isoforms. siRNA depletion of specific LEF1 isoforms revealed that the alternative-promoter derived isoform with an N-terminal truncation (ΔN LEF1) transcriptionally repressed lytic genes associated with LEF1 binding. In addition, forced expression of the ΔN LEF1 isoform antagonized EBV reactivation. As LEF1 repression requires histone deacetylase activity through either recruitment of or direct intrinsic histone deacetylase activity, siRNA depletion of LEF1 resulted in increased histone 3 lysine 9 and lysine 27 acetylation at LEF1 binding sites and across the EBV genome. Taken together, these results indicate a novel role for LEF1 in maintaining EBV latency and restriction viral reactivation via repressive chromatin remodeling of critical lytic cycle factors.


Assuntos
Infecções por Vírus Epstein-Barr , Latência Viral , Humanos , Latência Viral/genética , Herpesvirus Humano 4/genética , Ativação Viral/genética , Lisina/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Infecções por Vírus Epstein-Barr/genética , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , Histona Desacetilases/genética , Regulação Viral da Expressão Gênica
13.
J Virol ; 97(11): e0097223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37909728

RESUMO

IMPORTANCE: The current view is that the default pathway of Kaposi's sarcoma-associated herpesvirus (KSHV) infection is the establishment of latency, which is a prerequisite for lifelong infection and viral oncogenesis. This view about KSHV infection is supported by the observations that KSHV latently infects most of the cell lines cultured in vitro in the absence of any environmental stresses that may occur in vivo. The goal of this study was to determine the effect of hypoxia, a natural stress stimulus, on primary KSHV infection. Our data indicate that hypoxia promotes euchromatin formation on the KSHV genome following infection and supports lytic de novo KSHV infection. We also discovered that hypoxia-inducible factor-1α is required and sufficient for allowing lytic KSHV infection. Based on our results, we propose that hypoxia promotes lytic de novo infection in cells that otherwise support latent infection under normoxia; that is, the environmental conditions can determine the outcome of KSHV primary infection.


Assuntos
Infecções por Herpesviridae , Subunidade alfa do Fator 1 Induzível por Hipóxia , Hipóxia , Humanos , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8 , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sarcoma de Kaposi , Latência Viral
14.
J Med Virol ; 95(11): e29227, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009611

RESUMO

Human cytomegalovirus (HCMV) can undergo either a latent or a lytic infection in cells of the myeloid lineage. Whilst the molecular mechanisms which determine the outcome of infection are far from clear, it is well established that a key factor is the differential regulation of the major immediate early promoter (MIEP) responsible for driving lytic immediate early gene expression. Using a myelomonocytic cell line stably transduced with a GFP reporter under the control of the MIEP, which recapitulates MIEP regulation in the context of virus infection, we have used an unbiased CRISPR-Cas9 sub-genomic, epigenetic library screen to identify novel cellular factors involved in MIEP repression during establishment and maintenance of latency in myeloid cells. One such cellular factor identified was MORC3. Consistent with MORC3 being a robust repressor of the MIEP, we show that THP1 cells devoid of MORC3 fail to establish latency. We also show that MORC3 is induced during latent infection, recruited to the MIEP and forms MORC3 nuclear bodies (MORC3-NBs) which, interestingly, co-localize with viral genomes. Finally, we show that the latency-associated functions of MORC3 are regulated by the deSUMOylase activity of the viral latency-associated LUNA protein likely to prevent untimely HCMV reactivation.


Assuntos
Adenosina Trifosfatases , Infecções por Citomegalovirus , Proteínas de Ligação a DNA , Corpos Nucleares da Leucemia Promielocítica , Humanos , Adenosina Trifosfatases/genética , Citomegalovirus/genética , Proteínas de Ligação a DNA/genética , Regulação Viral da Expressão Gênica , Células Mieloides , Latência Viral/genética
15.
J Virol ; 97(12): e0187022, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991365

RESUMO

IMPORTANCE: Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.


Assuntos
Coinfecção , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV , HIV-1 , HIV-2 , Interferons , RNA Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Coinfecção/imunologia , Coinfecção/virologia , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/imunologia , HIV-2/genética , HIV-2/imunologia , HIV-2/metabolismo , RNA Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Interferons/imunologia , Regiões Promotoras Genéticas/genética , Ligação Competitiva , RNA Polimerase II/metabolismo , Transcrição Gênica
16.
Nature ; 623(7987): 608-615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938768

RESUMO

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Assuntos
Linfócitos T CD4-Positivos , Herpesvirus Humano 6 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Ativação Viral , Latência Viral , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Ensaios Clínicos como Assunto , Regulação Viral da Expressão Gênica , Genômica , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/isolamento & purificação , Herpesvirus Humano 6/fisiologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Encefalite Infecciosa/complicações , Encefalite Infecciosa/virologia , Receptores de Antígenos Quiméricos/imunologia , Infecções por Roseolovirus/complicações , Infecções por Roseolovirus/virologia , Análise da Expressão Gênica de Célula Única , Carga Viral
17.
Nucleic Acids Res ; 51(22): 12092-12110, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37889078

RESUMO

Epstein-Barr virus (EBV) establishes lifelong asymptomatic infection by replication of its chromatinized episomes with the host genome. EBV exhibits different latency-associated transcriptional repertoires, each with distinct three-dimensional structures. CTCF, Cohesin and PARP1 are involved in maintaining viral latency and establishing episome architecture. Epstein-Barr virus-associated gastric cancer (EBVaGC) represents 1.3-30.9% of all gastric cancers globally. EBV-positive gastric cancers exhibit an intermediate viral transcription profile known as 'Latency II', expressing specific viral genes and noncoding RNAs. In this study, we investigated the impact of PARP1 inhibition on CTCF/Cohesin binding in Type II latency. We observed destabilization of the binding of both factors, leading to a disrupted three-dimensional architecture of the episomes and an altered viral gene expression. Despite sharing the same CTCF binding profile, Type I, II and III latencies exhibit different 3D structures that correlate with variations in viral gene expression. Additionally, our analysis of H3K27ac-enriched interactions revealed differences between Type II latency episomes and a link to cellular transformation through docking of the EBV genome at specific sites of the Human genome, thus promoting oncogene expression. Overall, this work provides insights into the role of PARP1 in maintaining active latency and novel mechanisms of EBV-induced cellular transformation.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Neoplasias Gástricas , Humanos , Infecções por Vírus Epstein-Barr/virologia , Expressão Gênica , Genoma Viral , Herpesvirus Humano 4/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/virologia , Latência Viral/genética , Regulação Viral da Expressão Gênica
18.
J Virol ; 97(11): e0122523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877718

RESUMO

IMPORTANCE: Alphavirus replicons are being developed as self-amplifying RNAs aimed at improving the efficacy of mRNA vaccines. These replicons are convenient for genetic manipulations and can express heterologous genetic information more efficiently and for a longer time than standard mRNAs. However, replicons mimic many aspects of viral replication in terms of induction of innate immune response, modification of cellular transcription and translation, and expression of nonstructural viral genes. Moreover, all replicons used in this study demonstrated expression of heterologous genes in cell- and replicon's origin-specific modes. Thus, many aspects of the interactions between replicons and the host remain insufficiently investigated, and further studies are needed to understand the biology of the replicons and their applicability for designing a new generation of mRNA vaccines. On the other hand, our data show that replicons are very flexible expression systems, and additional modifications may have strong positive impacts on protein expression.


Assuntos
Alphavirus , Regulação Viral da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Replicon , Proteínas Virais , Alphavirus/genética , Alphavirus/metabolismo , Vacinas de mRNA/genética , Replicon/genética , Replicação Viral/genética , RNA Viral/biossíntese , RNA Viral/genética , Interações entre Hospedeiro e Microrganismos/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética
19.
Microbiol Spectr ; 11(6): e0531622, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800915

RESUMO

IMPORTANCE: Biological processes originating from the DNA and RNA can be regulated by the secondary structures present in the stretch of nucleic acids, and the G-quadruplexes are shown to regulate transcription, translation, and replication. In this study, we identified the presence of multiple G-quadruplex sites in the region (oriLyt) of Kaposi's sarcoma-associated herpesvirus (KSHV) DNA, which is essential for DNA replication during the lytic cycle. We demonstrated the roles of these G-quadruplexes through multiple biochemical and biophysical assays in controlling replication and efficient virus production. We demonstrated that KSHV achieves this by recruiting RecQ1 (helicase) at those G-quadruplex sites for efficient viral DNA replication. Analysis of the replicated DNA through nucleoside labeling and immunostaining showed a reduced initiation of DNA replication in cells with a pharmacologic stabilizer of G-quadruplexes. Overall, this study confirmed the role of the G-quadruplex in regulating viral DNA replication, which can be exploited for controlling viral DNA replication.


Assuntos
Quadruplex G , Herpesvirus Humano 8 , Herpesvirus Humano 8/genética , Replicação Viral/genética , Replicação do DNA , DNA Viral/genética , Regulação Viral da Expressão Gênica
20.
Nat Commun ; 14(1): 6327, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816771

RESUMO

N-acetyltransferase 10 (NAT10) is an N4-acetylcytidine (ac4C) writer that catalyzes RNA acetylation at cytidine N4 position on tRNAs, rRNAs and mRNAs. Recently, NAT10 and the associated ac4C have been reported to increase the stability of HIV-1 transcripts. Here, we show that NAT10 catalyzes ac4C addition to the polyadenylated nuclear RNA (PAN), a long non-coding RNA encoded by the oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), triggering viral lytic reactivation from latency. Mutagenesis of ac4C sites in PAN RNA in the context of KSHV infection abolishes PAN ac4C modifications, downregulates the expression of viral lytic genes and reduces virion production. NAT10 knockdown or mutagenesis erases ac4C modifications of PAN RNA and increases its instability, and prevents KSHV reactivation. Furthermore, PAN ac4C modification promotes NAT10 recruitment of IFN-γ-inducible protein-16 (IFI16) mRNA, resulting in its ac4C acetylation, mRNA stability and translation, and eventual inflammasome activation. These results reveal a novel mechanism of viral and host ac4C modifications and the associated complexes as a critical switch of KSHV replication and antiviral immunity.


Assuntos
Herpesvirus Humano 8 , Herpesvirus Humano 8/metabolismo , Inflamassomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear , Citidina/metabolismo , Estabilidade de RNA , Replicação Viral , Regulação Viral da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...