Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.475
Filtrar
1.
BMC Genomics ; 25(1): 852, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261785

RESUMO

BACKGROUND: Low levels of the essential amino acid lysine in maize endosperm is considered to be a major problem regarding the nutritional quality of food and feed. Increasing the lysine content of maize is important to improve the quality of food and feed nutrition. Although the genetic basis of quality protein maize (QPM) has been studied, the further exploration of the quantitative trait loci (QTL) underlying lysine content variation still needs more attention. RESULTS: Eight maize inbred lines with increased lysine content were used to construct four double haploid (DH) populations for identification of QTLs related to lysine content. The lysine content in the four DH populations exhibited continuous and normal distribution. A total of 12 QTLs were identified in a range of 4.42-12.66% in term of individual phenotypic variation explained (PVE) which suggested the quantitative control of lysine content in maize. Five main genes involved in maize lysine biosynthesis pathways in the QTL regions were identified in this study. CONCLUSIONS: The information presented will allow the exploration of candidate genes regulating lysine biosynthesis pathways and be useful for marker-assisted selection and gene pyramiding in high-lysine maize breeding programs.


Assuntos
Lisina , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Lisina/metabolismo , Fenótipo , Haploidia , Mapeamento Cromossômico
2.
Genes Chromosomes Cancer ; 63(8): e23255, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39149945

RESUMO

Near-haploidization, that is, loss of one copy of most chromosomes, is a relatively rare phenomenon in most tumors, but is enriched among certain soft tissue sarcomas, including undifferentiated pleomorphic sarcoma (UPS). Presumably, near-haploidization can arise through many mechanisms. This study aimed to identify gene rearrangements that could cause near-haploidization. We here present two UPS in which near-haploidization was an early event, identified through single nucleotide polymorphism (SNP) array analysis. One of the cases was studied further using whole genome and transcriptome sequencing, as well as cytogenetic and molecular cytogenetic methods. Both tumors had chromosomal rearrangements in the form of copy number shifts/structural variants affecting the SMC1A gene. These findings suggest that cohesin defects could contribute to mitotic errors resulting in massive loss of chromosomes. SMC1A encodes one of the components of the cohesin multiprotein complex, which is critical for proper alignment of the sister chromatids during S-phase and separation to opposite spindle poles. Further studies should explore the role of cohesin defects in near-haploidization in other sarcomas and to clarify its role in tumor development.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Sarcoma , Humanos , Proteínas Cromossômicas não Histona/genética , Proteínas de Ciclo Celular/genética , Sarcoma/genética , Sarcoma/patologia , Haploidia , Polimorfismo de Nucleotídeo Único , Masculino , Feminino , Coesinas , Adulto , Pessoa de Meia-Idade
3.
Int J Food Microbiol ; 425: 110894, 2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39216361

RESUMO

The life cycle of most non-conventional yeasts, such as Torulaspora delbrueckii (Td), is not as well-understood as that of Saccharomyces cerevisiae (Sc). Td is generally assumed to be haploid, which detracts from some biotechnological properties compared to diploid Sc strains. We analyzed the life cycle of several Td wine strains and found that they were mainly diploid during exponential growth in rich medium. However, most cells became haploid in stationary phase, as observed for Sc haploid heterothallic strains. When transferred and incubated in nutrient-deficient media, these haploid cells became polymorphic, enlarged, and transitioned to diploid or polyploid states. The increased ploidy, that mainly results from supernumerary mitosis without cytokinesis, was followed by sporulation. A similar response was observed in yeasts that remained alive during the second fermentation of base wine for sparkling wine making, or during growth in ethanol-supplemented medium. This response was not observed in the Sc yeast populations under any of the experimental conditions assayed, which suggests that it is a specific adaptation of Td to the stressful fermentation conditions. This response allows Td yeasts to remain alive and metabolically active longer during wine fermentation. Consequently, we designed procedures to increase the cell size and ploidy of haploid Td strains. Td inocula with increased ploidy showed enhanced fermentation efficiency compared to haploid inocula of the same strains.


Assuntos
Fermentação , Ploidias , Torulaspora , Vinho , Vinho/microbiologia , Torulaspora/genética , Torulaspora/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Haploidia , Microbiologia de Alimentos , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
4.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39120426

RESUMO

Whole genome duplications are implicated in genome instability and tumorigenesis. Human and yeast polyploids exhibit increased replication stress and chromosomal instability, both hallmarks of cancer. In this study, we investigate the transcriptional response of Schizosaccharomyces pombe to increased ploidy generally, and in response to treatment with the genotoxin methyl methanesulfonate (MMS). We find that treatment of MMS induces upregulation of genes involved in general response to genotoxins, in addition to cell cycle regulatory genes. Downregulated genes are enriched in transport and sexual reproductive pathways. We find that the diploid response to MMS is muted compared to the haploid response, although the enriched pathways remain largely the same. Overall, our data suggests that the global S. pombe transcriptome doubles in response to increased ploidy but undergoes modest transcriptional changes in both unperturbed and genotoxic stress conditions.


Assuntos
Dano ao DNA , Diploide , Regulação Fúngica da Expressão Gênica , Haploidia , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/efeitos dos fármacos , Metanossulfonato de Metila/farmacologia , Transcriptoma , Transcrição Gênica , Perfilação da Expressão Gênica , Mutagênicos/toxicidade , Mutagênicos/farmacologia
5.
Plant Physiol Biochem ; 214: 108941, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029307

RESUMO

Arsenic, a hazardous heavy metal with potent carcinogenic properties, significantly affects key rice-producing regions worldwide. In this study, we present a quantitative trait locus (QTL) mapping investigation designed to identify candidate genes responsible for conferring tolerance to arsenic toxicity in rice (Oryza sativa L.) during the seedling stage. This study identified 17 QTLs on different chromosomes, including qCHC-1 and qCHC-3 on chromosome 1 and 3 related to chlorophyll content and qRFW-12 on chromosome 12 related to root fresh weight. Gene expression analysis revealed eight candidate genes exhibited significant upregulation in the resistant lines, OsGRL1, OsDjB1, OsZIP2, OsMATE12, OsTRX29, OsMADS33, OsABCG29, and OsENODL24. These genes display sequence alignment and phylogenetic tree similarities with other species and engaging in protein-protein interactions with significant proteins. Advanced gene-editing techniques such as CRISPR-Cas9 to precisely target and modify the candidate genes responsible for arsenic tolerance will be explore. This approach may expedite the development of arsenic-resistant rice cultivars, which are essential for ensuring food security in regions affected by arsenic-contaminated soil and water.


Assuntos
Arsênio , Oryza , Locos de Características Quantitativas , Estresse Fisiológico , Oryza/genética , Oryza/efeitos dos fármacos , Oryza/metabolismo , Arsênio/toxicidade , Locos de Características Quantitativas/genética , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Haploidia , Mapeamento Cromossômico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cromossomos de Plantas/genética
6.
Chromosome Res ; 32(3): 10, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034331

RESUMO

The number of chromosomes varies tremendously across species. It is not clear whether having more or fewer chromosomes could be advantageous. The probability of non-disjunction should theoretically decrease with smaller karyotypes, but too long chromosomes should enforce spatial constraint for their segregation during the mitotic anaphase. Here, we propose a new experimental cell system to acquire novel insights into the mechanisms underlying chromosome segregation. We collected the endemic Australian ant Myrmecia croslandi, the only known species with the simplest possible karyotype of a single chromosome in the haploid males (and one pair of chromosomes in the diploid females), since males are typically haploid in hymenopteran insects. Five colonies, each with a queen and a few hundreds of workers, were collected in the Canberra district (Australia), underwent karyotype analysis to confirm the presence of a single pair of chromosomes in worker pupae, and were subsequently maintained in the laboratory in Paris (France). Starting from dissociated male embryos, we successfully conducted primary cell cultures comprised of single-chromosome cells. This could be developed into a unique model that will be of great interest for future genomic and cell biology studies related to mitosis.


Assuntos
Formigas , Cromossomos de Insetos , Animais , Formigas/genética , Masculino , Feminino , Cultura Primária de Células , Cariotipagem , Cariótipo , Haploidia , Segregação de Cromossomos
7.
Braz J Biol ; 84: e284946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985062

RESUMO

In vitro androgenesis is a unique model for producing homozygous doubled haploid plants. The use of haploid biotechnology accelerates to obtain of doubled haploid plants, which is very important in rice breeding. The purpose of this work is to improve the production of doubled haploids in rice anther culture in vitro and selection of doubled haploid plants with valuable traits. The study the influence of nutrient media on the production of calli and plant regeneration processes in anther culture of 35 rice genotypes was revealed a significant influence of nutrient media on callus production. It was shown that the addition to culture medium phytohormones ratio with high level of cytokinin (5.0 mg/L BAP) and a low level of auxin (0.5 mg/L NAA), supplemented with amino acid composition promotes high production of green regenerated plants (68.75%) compared to albino plants (31.25%). As a result, doubled haploid lines of the glutinous variety Violetta were selected, which characterized by a low amylose content variation (from 1.86 to 2.80%). These doubled haploids are superior to the original variety in some yield traits and represent valuable breeding material.


Assuntos
Amilose , Haploidia , Oryza , Oryza/genética , Oryza/crescimento & desenvolvimento , Amilose/análise , Amilose/metabolismo , Meios de Cultura , Genótipo , Reguladores de Crescimento de Plantas , Flores/genética , Flores/química , Melhoramento Vegetal
8.
Methods Mol Biol ; 2827: 243-266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985275

RESUMO

Doubled haploid (DH) techniques remain valuable tools for wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) genetic improvement, and DH populations are used extensively in breeding and research endeavors. Several techniques are available for DH production in wheat and barley. Here, we describe two simple, robust anther culture methods used to produce more than 15,000 DH wheat and barley lines annually in Australia.


Assuntos
Flores , Haploidia , Hordeum , Melhoramento Vegetal , Triticum , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/genética , Melhoramento Vegetal/métodos , Flores/crescimento & desenvolvimento , Flores/genética , Técnicas de Cultura de Tecidos/métodos
9.
Genes (Basel) ; 15(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39062634

RESUMO

The cytoplasm of Aegilops kotschyi is known for the induction of male sterility and haploidy in wheat. Both systems originally appeared rather simple, but manipulation of the standard chromosome constitution of the nuclear genome revealed additional interactions. This study shows that while there is little or no allelic variation at the main fertility restorer locus Rfmulti on chromosome arm 1BS, additional genes may also be involved in the nuclear-mitochondrial genome interactions, affecting not only male fertility but also the growth rate, from pollen competition for fertilization and early endosperm divisions all the way to seed size and plant maturity. Some of these effects appear to be of a sporophytic nature; others are gametophytic. Induction of parthenogenesis by a rye inducer in conjunction with the Ae. kotschyi cytoplasm is well known. However, here we show that the cytoplasmic-nuclear interactions affect all aspects of double fertilization: producing maternal haploids from unfertilized eggs, diploids from fertilized eggs or synergids, embryo-less kernels, and fertilized eggs without fertilization of the double nucleus in the embryo sack. It is unclear how frequent the inducers of parthenogenesis are, as variation, if any, is obscured by suppressors present in the wheat genome. Genetic dissection of a single wheat accession revealed five distinct loci affecting the rate of maternal haploid production: four acting as suppressors and one as an enhancer. Only when the suppressing haplotypes are confirmed may it be possible to the identify genetic variation of haploidy inducers, map their position(s), and determine their nature and the mode of action.


Assuntos
Aegilops , Citoplasma , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Citoplasma/genética , Aegilops/genética , Cromossomos de Plantas/genética , Haploidia , Pólen/genética , Pólen/crescimento & desenvolvimento , Partenogênese/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Infertilidade das Plantas/genética , Núcleo Celular/genética
10.
Theor Appl Genet ; 137(8): 183, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002016

RESUMO

KEY MESSAGE: The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.


Assuntos
Cercospora , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Cercospora/genética , Melhoramento Vegetal , Fenótipo , Haploidia , Genótipo , Genes de Plantas
11.
Sci Rep ; 14(1): 13989, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886371

RESUMO

In vitro evolution and whole genome analysis has proven to be a powerful method for studying the mechanism of action of small molecules in many haploid microbes but has generally not been applied to human cell lines in part because their diploid state complicates the identification of variants that confer drug resistance. To determine if haploid human cells could be used in MOA studies, we evolved resistance to five different anticancer drugs (doxorubicin, gemcitabine, etoposide, topotecan, and paclitaxel) using a near-haploid cell line (HAP1) and then analyzed the genomes of the drug resistant clones, developing a bioinformatic pipeline that involved filtering for high frequency alleles predicted to change protein sequence, or alleles which appeared in the same gene for multiple independent selections with the same compound. Applying the filter to sequences from 28 drug resistant clones identified a set of 21 genes which was strongly enriched for known resistance genes or known drug targets (TOP1, TOP2A, DCK, WDR33, SLCO3A1). In addition, some lines carried structural variants that encompassed additional known resistance genes (ABCB1, WWOX and RRM1). Gene expression knockdown and knockout experiments of 10 validation targets showed a high degree of specificity and accuracy in our calls and demonstrates that the same drug resistance mechanisms found in diverse clinical samples can be evolved, discovered and studied in an isogenic background.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Haploidia , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Genoma Humano , Sequenciamento Completo do Genoma/métodos , Linhagem Celular
12.
Sci Rep ; 14(1): 14481, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914600

RESUMO

Haploid induction (HI) holds great promise in expediting the breeding process in onion, a biennial cross-pollinated crop. We used the CENH3-based genome elimination technique in producing a HI line in onion. Here, we downregulated AcCENH3 using the RNAi approach without complementation in five independent lines. Out of five events, only three could produce seeds upon selfing. The progenies showed poor seed set and segregation distortion, and we were unable to recover homozygous knockdown lines. The knockdown lines showed a decrease in accumulation of AcCENH3 transcript and protein in leaf tissue. The decrease in protein content in transgenic plants was correlated with poor seed set. When the heterozygous knockdown lines were crossed with wild-type plants, progenies showed HI by genome elimination of the parental chromosomes from AcCENH3 knockdown lines. The HI efficiency observed was between 0 and 4.63% in the three events, and it was the highest (4.63%) when E1 line was crossed with wildtype. Given the importance of doubled haploids in breeding programmes, the findings from our study are poised to significantly impact onion breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Haploidia , Cebolas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Interferência de RNA , Cebolas/genética , Cebolas/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação para Baixo , Melhoramento Vegetal/métodos , Técnicas de Silenciamento de Genes
13.
Mar Environ Res ; 199: 106612, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924833

RESUMO

Spores have crucial importance in the establishment and development of seaweed populations. When the spore release matches with the low tidal period, they experience an extreme variation in the environmental conditions including the temperature. In this study, we assess the photosynthetic responses and growth of haploid (tetraspores) and diploid (carpospores) spores of two Gigartinales species (Mazzaella laminarioides and Iridaea cordata) from sub-Antarctic populations when exposed to an increasing temperature. In the laboratory, freshly released spores were exposed to a temperature gradient (7 [control], 10, 15, and 20 °C) recreating the temperature increase experienced by these spores during typical spring tides. Germination and further growth of spores previously exposed to temperature treatments were assessed. Carpospores and tetraspores exhibited variation in their photosynthetic response (measured as effective quantum yield; ΦPSII) to temperature increase. In Mazzaella laminarioides, only carpospores exhibited a reduction in ΦPSII (by 7-24% at 15-20 °C), while both types of spores of Iridaea cordata were sensitive to temperature increase (12-24% of ΦPSII reduction at 10-20 °C). Spores previously exposed to temperature treatments and maintained at 7 °C and low PAR germinated and developed in germlings. In general, germlings originated from carpospores pre-treated at high temperatures showed higher growth rates. The different responses to temperature increase exhibited by haploid and diploid propagules of both species highlight their ecophysiological capacity to face high-temperature variation ensuring successful recruitment survival.


Assuntos
Diploide , Haploidia , Rodófitas , Esporos , Temperatura , Rodófitas/fisiologia , Rodófitas/genética , Esporos/fisiologia , Fotossíntese , Regiões Antárticas
14.
Mol Plant ; 17(7): 1005-1018, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38877700

RESUMO

Doubled haploid (DH) technology and synthetic apomixis approaches can considerably shorten breeding cycles and enhance breeding efficiency. Compared with traditional breeding methods, DH technology offers the advantage of rapidly generating inbred lines, while synthetic apomixis can effectively fix hybrid vigor. In this review, we focus on (i) recent advances in identifying and characterizing genes responsible for haploid induction (HI), (ii) the molecular mechanisms of HI, (iii) spontaneous haploid genome doubling, and (iv) crop synthetic apomixis. We also discuss the challenges and potential solutions for future crop breeding programs utilizing DH technology and synthetic apomixis. Finally, we provide our perspectives about how to integrate DH and synthetic apomixis for precision breeding and de novo domestication.


Assuntos
Produtos Agrícolas , Haploidia , Melhoramento Vegetal , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Apomixia/genética
15.
Theor Popul Biol ; 158: 121-138, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844263

RESUMO

Muller's ratchet, in its prototype version, models a haploid, asexual population whose size N is constant over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate, and individuals carrying less mutations have a selective advantage. The classical variant considers fitness proportional selection, but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et al. (2009) we propose a parameter scaling which fits well to the "near-critical" regime that was in the focus of Etheridge et al. (2009) (and in which the mutation-selection ratio diverges logarithmically as N→∞). Using a Moran model, we investigate the"rule of thumb" given in Etheridge et al. (2009) for the click rate of the "classical ratchet" by putting it into the context of new results on the long-time evolution of the size of the best class of the ratchet with (binary) tournament selection. This variant of Muller's ratchet was introduced in González Casanova et al. (2023), and was analysed there in a subcritical parameter regime. Other than that of the classical ratchet, the size of the best class of the tournament ratchet follows an autonomous dynamics up to the time of its extinction. It turns out that, under a suitable correspondence of the model parameters, this dynamics coincides with the so called Poisson profile approximation of the dynamics of the best class of the classical ratchet.


Assuntos
Seleção Genética , Mutação , Aptidão Genética , Modelos Genéticos , Haploidia , Evolução Biológica
16.
Can J Microbiol ; 70(9): 394-404, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38875715

RESUMO

The number of copies of each chromosome, or ploidy, of an organism is a major genomic factor affecting adaptation. We set out to determine how ploidy can impact the outcome of evolution, as well as the likelihood of evolutionary rescue, using short-term experiments with yeast (Saccharomyces cerevisiae) in a high concentration of the fungicide nystatin. In similar experiments using haploid yeast, the genetic changes underlying evolutionary rescue were highly repeatable, with all rescued lines containing a single mutation in the ergosterol biosynthetic pathway. All of these beneficial mutations were recessive, which led to the expectation that diploids would find alternative genetic routes to adaptation. To test this, we repeated the experiment using both haploid and diploid strains and found that diploid populations did not evolve resistance. Although diploids are able to adapt at the same rate as haploids to a lower, not fully inhibitory, concentration of nystatin, the present study suggests that diploids are limited in their ability to adapt to an inhibitory concentration of nystatin, while haploids may undergo evolutionary rescue. These results demonstrate that ploidy can tip the balance between adaptation and extinction when organisms face an extreme environmental change.


Assuntos
Antifúngicos , Nistatina , Ploidias , Saccharomyces cerevisiae , Nistatina/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacologia , Haploidia , Farmacorresistência Fúngica/genética , Adaptação Fisiológica/genética , Mutação , Evolução Biológica , Diploide
17.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38869242

RESUMO

Genomic selection and doubled haploids hold significant potential to enhance genetic gains and shorten breeding cycles across various crops. Here, we utilized stochastic simulations to investigate the best strategies for optimize a sweet corn breeding program. We assessed the effects of incorporating varying proportions of old and new parents into the crossing block (3:1, 1:1, 1:3, and 0:1 ratio, representing different degrees of parental substitution), as well as the implementation of genomic selection in two distinct pipelines: one calibrated using the phenotypes of testcross parents (GSTC scenario) and another using F1 individuals (GSF1). Additionally, we examined scenarios with doubled haploids, both with (DH) and without (DHGS) genomic selection. Across 20 years of simulated breeding, we evaluated scenarios considering traits with varying heritabilities, the presence or absence of genotype-by-environment effects, and two program sizes (50 vs 200 crosses per generation). We also assessed parameters such as parental genetic mean, average genetic variance, hybrid mean, and implementation costs for each scenario. Results indicated that within a conventional selection program, a 1:3 parental substitution ratio (replacing 75% of parents each generation with new lines) yielded the highest performance. Furthermore, the GSTC model outperformed the GSF1 model in enhancing genetic gain. The DHGS model emerged as the most effective, reducing cycle time from 5 to 4 years and enhancing hybrid gains despite increased costs. In conclusion, our findings strongly advocate for the integration of genomic selection and doubled haploids into sweet corn breeding programs, offering accelerated genetic gains and efficiency improvements.


Assuntos
Simulação por Computador , Haploidia , Modelos Genéticos , Melhoramento Vegetal , Seleção Genética , Zea mays , Zea mays/genética , Melhoramento Vegetal/métodos , Genômica/métodos , Fenótipo , Genoma de Planta , Genótipo
18.
Nature ; 632(8025): 576-584, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866052

RESUMO

Increasing planting density is a key strategy for enhancing maize yields1-3. An ideotype for dense planting requires a 'smart canopy' with leaf angles at different canopy layers differentially optimized to maximize light interception and photosynthesis4-6, among other features. Here we identified leaf angle architecture of smart canopy 1 (lac1), a natural mutant with upright upper leaves, less erect middle leaves and relatively flat lower leaves. lac1 has improved photosynthetic capacity and attenuated responses to shade under dense planting. lac1 encodes a brassinosteroid C-22 hydroxylase that predominantly regulates upper leaf angle. Phytochrome A photoreceptors accumulate in shade and interact with the transcription factor RAVL1 to promote its degradation via the 26S proteasome, thereby inhibiting activation of lac1 by RAVL1 and decreasing brassinosteroid levels. This ultimately decreases upper leaf angle in dense fields. Large-scale field trials demonstrate that lac1 boosts maize yields under high planting densities. To quickly introduce lac1 into breeding germplasm, we transformed a haploid inducer and recovered homozygous lac1 edits from 20 diverse inbred lines. The tested doubled haploids uniformly acquired smart-canopy-like plant architecture. We provide an important target and an accelerated strategy for developing high-density-tolerant cultivars, with lac1 serving as a genetic chassis for further engineering of a smart canopy in maize.


Assuntos
Produção Agrícola , Fotossíntese , Folhas de Planta , Zea mays , Brassinosteroides/metabolismo , Produção Agrícola/métodos , Escuridão , Haploidia , Homozigoto , Luz , Mutação , Fotossíntese/efeitos da radiação , Fitocromo A/metabolismo , Melhoramento Vegetal , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/anatomia & histologia , Zea mays/enzimologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos da radiação
19.
Theor Appl Genet ; 137(6): 141, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789698

RESUMO

KEY MESSAGE: Stable and novel QTLs that affect seed vigor under different storage durations were discovered, and BnaOLE4, located in the interval of cqSW-C2-3, increased seed vigor after aging. Seed vigor is an important trait in crop breeding; however, the underlying molecular regulatory mechanisms governing this trait in rapeseed remain largely unknown. In the present study, vigor-related traits were analyzed in seeds from a doubled haploid (DH) rapeseed (Brassica napus) population grown in 2 different environments using seeds stored for 7, 5, and 3 years under natural storage conditions. A total of 229 quantitative trait loci (QTLs) were identified and were found to explain 3.78%-17.22% of the phenotypic variance for seed vigor-related traits after aging. We further demonstrated that seed vigor-related traits were positively correlated with oil content (OC) but negatively correlated with unsaturated fatty acids (FAs). Some pleiotropic QTLs that collectively regulate OC, FAs, and seed vigor, such as uq.A8, uq.A3-2, uq.A9-2, and uq.C3-1, were identified. The transcriptomic results from extreme pools of DH lines with distinct seed vigor phenotypes during accelerated aging revealed that various biological pathways and metabolic processes (such as glutathione metabolism and reactive oxygen species) were involved in seed vigor. Through integration of QTL analysis and RNA-Seq, a regulatory network for the control of seed vigor was constructed. Importantly, a candidate (BnaOLE4) from cqSW-C2-3 was selected for functional analysis, and transgenic lines overexpressing BnaOLE4 showed increased seed vigor after artificial aging. Collectively, these results provide novel information on QTL and potential candidate genes for molecular breeding for improved seed storability.


Assuntos
Brassica napus , Fenótipo , Locos de Características Quantitativas , Sementes , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/genética , Mapeamento Cromossômico , Vigor Híbrido , Haploidia , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal
20.
Theor Appl Genet ; 137(5): 117, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700534

RESUMO

KEY MESSAGE: A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.


Assuntos
Mapeamento Cromossômico , Haploidia , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Mapeamento Cromossômico/métodos , Melhoramento Vegetal , Genoma de Planta , Fenótipo , Alelos , Cromossomos de Plantas/genética , Genes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA