Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.094
Filtrar
1.
Cell Rep ; 43(3): 113849, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38427560

RESUMO

CRISPR-Cas immune systems provide bacteria with adaptive immunity against bacteriophages, but they are often transcriptionally repressed to mitigate auto-immunity. In some cases, CRISPR-Cas expression increases in response to a phage infection, but the mechanisms of induction are largely unknown, and it is unclear whether induction occurs strongly and quickly enough to benefit the bacterial host. In S. pyogenes, Cas9 is both an immune effector and auto-repressor of CRISPR-Cas expression. Here, we show that phage-encoded anti-CRISPR proteins relieve Cas9 auto-repression and trigger a rapid increase in CRISPR-Cas levels during a single phage infective cycle. As a result, fewer cells succumb to lysis, leading to a striking survival benefit after multiple rounds of infection. CRISPR-Cas induction also reduces lysogeny, thereby limiting a route for horizontal gene transfer. Altogether, we show that Cas9 is not only a CRISPR-Cas effector and repressor but also a phage sensor that can mount an anti-anti-CRISPR transcriptional response.


Assuntos
Bacteriófagos , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas/genética , Bactérias/metabolismo , Lisogenia , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Methods Mol Biol ; 2793: 257-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526735

RESUMO

We present here a CRISPR-interference-based protocol to trigger prophage induction, even for non-inducible prophages. This method can also be used to cure the prophage from the bacterial host. The method is based on silencing of the phage's repressor transcription, thanks to CRISPR interference. Plasmid electroporation is used to bring the CRISPRi system into the bacteria, specifically on a plasmid carrying spacers targeting the prophage repressor. This method enables prophage induction and curation in a week or two with a high efficiency.


Assuntos
Lisogenia , Prófagos , Prófagos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Ativação Viral , Plasmídeos/genética
3.
Arch Virol ; 169(4): 81, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519716

RESUMO

Bacillus subtilis is a Gram-positive bacterium that is widely used in fermentation and in the pharmaceutical industry. Phage contamination occasionally occurs in various fermentation processes and causes significant economic loss. Here, we report the isolation and characterization of a temperate B. subtilis phage, termed phi18-2, from spore powder manufactured in a fermentation plant. Transmission electron microscopy showed that phi18-2 has a symmetrical polyhedral head and a long noncontractile tail. Receptor analysis showed that phi18-2 recognizes wall teichoic acid (WTA) for infection. The phage virions have a linear double-stranded DNA genome of 64,467 bp with identical direct repeat sequences of 309 bp at each end of the genome. In lysogenic cells, the phage genome was found to be present in the cytoplasm without integration into the host cell chromosome, and possibly as a linear phage-plasmid with unmodified ends. Our data may provide some insight into the molecular basis of the unique lysogenic cycle of phage phi18-2.


Assuntos
Fagos Bacilares , Bacteriófagos , Bacteriófagos/genética , Fagos Bacilares/genética , DNA Viral/genética , Lisogenia , Genoma Viral , Plasmídeos/genética , Citoplasma
4.
Sci Rep ; 14(1): 2685, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302537

RESUMO

The ea22 gene resides in a relatively uncharacterized region of the lambda bacteriophage genome between the exo and xis genes and is among the earliest genes transcribed upon infection. In lambda and Shiga toxin-producing phages found in enterohemorrhagic E. coli (EHEC) associated with food poisoning, Ea22 favors a lysogenic over lytic developmental state. The Ea22 protein may be considered in terms of three domains: a short amino-terminal domain, a coiled-coiled domain, and a carboxy-terminal domain (CTD). While the full-length protein is tetrameric, the CTD is dimeric when expressed individually. Here, we report the NMR solution structure of the Ea22 CTD that is described by a mixed alpha-beta fold with a dimer interface reinforced by salt bridges. A conserved mobile loop may serve as a ligand for an unknown host protein that works with Ea22 to promote bacterial survival and the formation of new lysogens. From sequence and structural comparisons, the CTD distinguishes lambda Ea22 from homologs encoded by Shiga toxin-producing bacteriophages.


Assuntos
Bacteriófagos , Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Humanos , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Lisogenia/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Toxina Shiga/genética , Infecções por Escherichia coli/microbiologia
5.
Nat Microbiol ; 9(1): 161-172, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177302

RESUMO

Phages can use a small-molecule communication arbitrium system to coordinate lysis-lysogeny decisions, but the underlying mechanism remains unknown. Here we determined that the arbitrium system in Bacillus subtilis phage phi3T modulates the bacterial toxin-antitoxin system MazE-MazF to regulate the phage life cycle. We show that phi3T expresses AimX and YosL, which bind to and inactivate MazF. AimX also inhibits the function of phi3T_93, a protein that promotes lysogeny by binding to MazE and releasing MazF. Overall, these mutually exclusive interactions promote the lytic cycle of the phage. After several rounds of infection, the phage-encoded AimP peptide accumulates intracellularly and inactivates the phage antiterminator AimR, a process that eliminates aimX expression from the aimP promoter. Therefore, when AimP increases, MazF activity promotes reversion back to lysogeny, since AimX is absent. Altogether, our study reveals the evolutionary strategy used by arbitrium to control lysis-lysogeny by domesticating and fine-tuning a phage-defence mechanism.


Assuntos
Fagos Bacilares , Lisogenia , Fagos Bacilares/fisiologia , Peptídeos/metabolismo , Morte Celular
6.
mBio ; 15(2): e0326023, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236026

RESUMO

Bacteriophages are large and diverse components of the biosphere, and many phages are temperate. Upon infection, temperate phages can establish lysogeny in which a prophage is typically integrated into the bacterial chromosome. Here, we describe the phenomenon of tRNA-dependent lysogeny, a previously unrecognized behavior of some temperate phages. tRNA-dependent lysogeny is characterized by two unusual features. First, a phage-encoded tyrosine family integrase mediates site-specific recombination between a phage attP site and a bacterial attB site overlapping a host tRNA gene. However, attP and attB share only a short (~10 bp) common core such that a functional tRNA is not reconstructed upon integration. Second, the phage encodes a tRNA of the same isotype as the disrupted but essential host tRNA, complementing its loss, and consequently is required for the survival of lysogenic progeny. As expected, an integrase-defective phage mutant forms turbid plaques, and bacterial progeny are immune to superinfection, but they lack stability, and the prophage is rapidly lost. In contrast, a tRNA-defective phage mutant forms clear plaques and more closely resembles a repressor mutant, and lysogens are recovered only at very low frequency through the use of secondary attachment sites elsewhere in the host genome. Integration-proficient plasmids derived from these phages must also carry a cognate phage tRNA gene for efficient integration, and these may be useful tools for mycobacterial genetics. We show that tRNA-dependent lysogeny is used by phages within multiple different groups of related viruses and may be prevalent elsewhere in the broader phage community.IMPORTANCEBacteriophages are the most numerous biological entities in the biosphere, and a substantial proportion of phages are temperate, forming stable lysogens in which a prophage copy of the genome integrates into the bacterial chromosome. Many phages encode a variety of tRNA genes whose roles are poorly understood, although it has been proposed that they enhance translational efficiencies in lytic growth or that they counteract host defenses that degrade host tRNAs. Here, we show that phage-encoded tRNAs play key roles in the establishment of lysogeny of some temperate phages. They do so by compensating for the loss of tRNA function when phages integrate at an attB site overlapping a tRNA gene but fail to reconstruct the tRNA at the attachment junction. In this system of tRNA-dependent lysogeny, the phage-encoded tRNA is required for lysogeny, and deletion of the phage tRNA gives rise to a clear plaque phenotype and obligate lytic growth.


Assuntos
Bacteriófagos , Lisogenia , Lisogenia/genética , Bacteriófagos/genética , Prófagos/genética , Integrases/genética , Plasmídeos
7.
Nat Microbiol ; 9(1): 150-160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177304

RESUMO

Temperate Bacillus phages often utilize arbitrium communication to control lysis/lysogeny decisions, but the mechanisms by which this control is exerted remains largely unknown. Here we find that the arbitrium system of Bacillus subtilis phage ϕ3T modulates the host-encoded MazEF toxin-antitoxin system to this aim. Upon infection, the MazF ribonuclease is activated by three phage genes. At low arbitrium signal concentrations, MazF is inactivated by two phage-encoded MazE homologues: the arbitrium-controlled AimX and the later-expressed YosL proteins. At high signal, MazF remains active, promoting lysogeny without harming the bacterial host. MazF cleavage sites are enriched on transcripts of phage lytic genes but absent from the phage repressor in ϕ3T and other Spß-like phages. Combined with low activation levels of MazF during infections, this pattern explains the phage-specific effect. Our results show how a bacterial toxin-antitoxin system has been co-opted by a phage to control lysis/lysogeny decisions without compromising host viability.


Assuntos
Antitoxinas , Fagos Bacilares , Sistemas Toxina-Antitoxina , Lisogenia , Sistemas Toxina-Antitoxina/genética , Fagos Bacilares/fisiologia , Latência Viral
8.
J Appl Genet ; 65(1): 191-211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37968427

RESUMO

Lambdoid bacteriophages are excellent models in studies on molecular aspects of virus-host interactions. However, some of them carry genes encoding toxins which are responsible for virulence of pathogenic strains of bacteria. Shiga toxin-converting bacteriophages (Stx phages) encode Shiga toxins that cause virulence of enterohemorrhagic Escherichia coli (EHEC), and their effective production depends on Stx prophage induction. The exo-xis region of the lambdoid phage genome consists of genes which are dispensable for the phage multiplication under laboratory conditions; however, they might modulate the virus development. Nevertheless, their exact effects on the phage and host physiology remained unclear. Here, we present results of complex studies on the role of the exo-xis region of bacteriophage Φ24B, one of Stx2b phages. Transcriptomic analyses, together with proteomic and metabolomic studies, provided the basis for understanding the functions of the exo-xis region. Genes from this region promoted lytic development of the phage over lysogenization. Moreover, expression of the host genes coding for DnaK, DnaJ, GrpE, and GroELS chaperones was impaired in the cells infected with the Δexo-xis phage mutant, relative to the wild-type virus, corroborating the conclusion about lytic development promotion by the exo-xis region. Proteomic and metabolomic analyses indicated also modulation of gad and nrf operons, and levels of amino acids and acylcarnitines, respectively. In conclusion, the exo-xis region controls phage propagation and host metabolism by influencing expression of different phage and bacterial genes, directing the virus to the lytic rather than lysogenic developmental mode.


Assuntos
Escherichia coli , Toxina Shiga , Escherichia coli/genética , Toxina Shiga/genética , Bacteriófago lambda/fisiologia , Proteômica , Lisogenia
9.
Appl Environ Microbiol ; 90(1): e0140823, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38084945

RESUMO

Since 1989, investigations into viral ecology have revealed how bacteriophages can influence microbial dynamics within ecosystems at global scales. Most of the information we know about temperate phages, which can integrate themselves into the host genome and remain dormant via a process called lysogeny, has come from research in aquatic ecosystems. Soil environments remain under-studied, and more research is necessary to fully understand the range of impacts phage infections have on the soil bacteria they infect. The aims of this study were to compare the efficacy of different prophage-inducing agents and to elucidate potential temporal trends in lysogeny within a soil bacterial community. In addition to mitomycin C and acyl-homoserine lactones, our results indicated that halosulfuron methyl herbicides may also be potent inducing agents. In optimizing chemical induction assays, we determined that taking steps to reduce background virus particles and starve cells was critical in obtaining consistent results. A clear seasonal trend in inducible lysogeny was observed in an Appalachian oak-hickory forest soil. The average monthly air temperature was negatively correlated with inducible fraction and burst size, supporting the idea that lysogeny provides a mechanism for phage persistence when temperatures are low and host metabolism is slower. Furthermore, the inducible fraction was negatively correlated with both soil bacterial and soil viral abundance, supporting the idea that lysogeny provides a mechanism for temperate phage persistence when host density is lower. The present study is the first of its kind to reveal clear seasonal trends in inducible lysogeny in any soil.IMPORTANCELysogeny is a relationship in which certain viruses that infect bacteria (phages) may exist within their bacterial host cell as a segment of nucleic acid. In this state, the phage genome is protected from environmental damage and retains the potential to generate progeny particles in the future. It is thought that lysogeny provides a mechanism for long-term persistence for phages when host density is low or hosts are starved-two conditions likely to be found in soils. In the present study, we provide the first known evidence for a seasonal trend in lysogeny in a forest soil. Based on clear relationships observed between lysogeny, temperature, and soil microbial abundance, we find support for previous hypotheses regarding the factors governing lysogeny.


Assuntos
Bacteriófagos , Quercus , Lisogenia , Ecossistema , Estações do Ano , Solo , Bacteriófagos/genética , Bactérias/genética , Florestas
10.
PLoS Biol ; 21(12): e3002431, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064533

RESUMO

Bacteriophages encode anti-CRISPR (Acr) proteins that inactivate CRISPR-Cas bacterial immune systems, allowing successful invasion, replication, and prophage integration. Acr proteins inhibit CRISPR-Cas systems using a wide variety of mechanisms. AcrIIA1 is encoded by numerous phages and plasmids, binds specifically to the Cas9 HNH domain, and was the first Acr discovered to inhibit SpyCas9. Here, we report the observation of AcrIIA1-induced degradation of SpyCas9 and SauCas9 in human cell culture, the first example of Acr-induced degradation of CRISPR-Cas nucleases in human cells. AcrIIA1-induced degradation of SpyCas9 is abolished by mutations in AcrIIA1 that break a direct physical interaction between the 2 proteins. Targeted Cas9 protein degradation by AcrIIA1 could modulate Cas9 nuclease activity in human therapies. The small size and specificity of AcrIIA1 could be used in a CRISPR-Cas proteolysis-targeting chimera (PROTAC), providing a tool for developing safe and precise gene editing applications.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Humanos , Sistemas CRISPR-Cas/genética , Bacteriófagos/genética , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , Lisogenia
11.
PLoS One ; 18(12): e0296038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38117844

RESUMO

The 24B_1 small non-coding RNA molecule has been identified in Escherichia coli after induction of Shiga toxin-converting bacteriophage Φ24B. In this work, we focused on its direct role during phage and bacterial host development. We observed that in many aspects, this phage sRNA resembles herpesviral microRNAs. Similar to microRNAs, the mature 24B_1 is a short molecule, consisting of just 20 nucleotides. It is generated by cleaving the 80-nt long precursor transcript, and likely it undergoes a multi-step maturation process in which the Hfq protein plays an important role, as confirmed by demonstration of its binding to the 24B_1 precursor, but not to the 24B_1 mature form. Moreover, 24B_1 plays a significant role in maintaining the prophage state and reprogramming the host's energy metabolism. We proved that overproduction of this molecule causes the opposite physiological effects to the mutant devoid of the 24B_1 gene, and thus, favors the lysogenic pathway. Furthermore, the 24B_1 overrepresentation significantly increases the efficiency of expression of phage genes coding for proteins CI, CII, and CIII which are engaged in the maintenance of the prophage. It seems that through binding to mRNA of the sdhB gene, coding for the succinate dehydrogenase subunit, the 24B_1 alters the central carbon metabolism and causes a drop in the ATP intracellular level. Interestingly, a similar effect, called the Warburg switch, is caused by herpesviral microRNAs and it is observed in cancer cells. The advantage of the Warburg effect is still unclear, however, it was proposed that the metabolism of cancer cells, and all rapidly dividing cells, is adopted to convert nutrients such as glucose and glutamine faster and more efficiently into biomass. The availability of essential building blocks, such as nucleotides, amino acids, and lipids, is crucial for effective cell proliferation which in turn is essential for the prophage and its host to stay in the lysogenic state.


Assuntos
Bacteriófagos , Herpesviridae , MicroRNAs , Bacteriófagos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Escherichia coli/metabolismo , Lisogenia , Prófagos/genética , Herpesviridae/genética , Nucleotídeos/metabolismo
12.
Nat Commun ; 14(1): 7666, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996432

RESUMO

Bacteriophages are abundant in soils. However, the majority are uncharacterized, and their hosts are unknown. Here, we apply high-throughput chromosome conformation capture (Hi-C) to directly capture phage-host relationships. Some hosts have high centralities in bacterial community co-occurrence networks, suggesting phage infections have an important impact on the soil bacterial community interactions. We observe increased average viral copies per host (VPH) and decreased viral transcriptional activity following a two-week soil-drying incubation, indicating an increase in lysogenic infections. Soil drying also alters the observed phage host range. A significant negative correlation between VPH and host abundance prior to drying indicates more lytic infections result in more host death and inversely influence host abundance. This study provides empirical evidence of phage-mediated bacterial population dynamics in soil by directly capturing specific phage-host interactions.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Metagenoma , Solo , Bactérias/genética , Lisogenia/genética
13.
Cell Host Microbe ; 31(12): 2023-2037.e8, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38035880

RESUMO

Arbitrium-coding phages use peptides to communicate and coordinate the decision between lysis and lysogeny. However, the mechanism by which these phages establish lysogeny remains unknown. Here, focusing on the SPbeta phage family's model phages phi3T and SPß, we report that a six-gene operon called the "SPbeta phages repressor operon" (sro) expresses not one but two master repressors, SroE and SroF, the latter of which folds like a classical phage integrase. To promote lysogeny, these repressors bind to multiple sites in the phage genome. SroD serves as an auxiliary repressor that, with SroEF, forms the repression module necessary for lysogeny establishment and maintenance. Additionally, the proteins SroABC within the operon are proposed to constitute the transducer module, connecting the arbitrium communication system to the activity of the repression module. Overall, this research sheds light on the intricate and specialized repression system employed by arbitrium SPß-like phages in making lysis-lysogeny decisions.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Lisogenia , Peptídeos/metabolismo
14.
Viruses ; 15(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37896796

RESUMO

Telomere phages are a small group of temperate phages, whose prophages replicate as a linear plasmid with covalently closed ends. They have been isolated from some Enterobacteriaceae and from bacterial species living in aquatic environments. Phage PY54 was the first Yersinia (Y.) enterocolitica telomere phage isolated from a nonpathogenic O:5 strain, but recently a second telomeric Yersinia phage (vB_YenS_P840) was isolated from a tonsil of a wild boar in Germany. Both PY54 and vB_YenS_P840 (P840) have a siphoviridal morphology and a similar genome organization including the primary immunity region immB and telomere resolution site telRL. However, whereas PY54 only possesses one prophage repressor for the lysogenic cycle, vB_YenS_P840 encodes two. The telRL region of this phage was shown to be processed by the PY54 protelomerase under in vivo conditions, but unlike with PY54, a flanking inverted repeat was not required for processing. A further substantial difference between the phages is their host specificity. While PY54 infects Y. enterocolitica strains belonging to the serotypes O:5 and O:5,27, vB_YenS_P840 exclusively lyses O:3 strains. As the tail fiber and tail fiber assembly proteins of the phages differ significantly, we introduced the corresponding genes of vB_YenS_P840 by transposon mutagenesis into the PY54 genome and isolated several mutants that were able to infect both serotypes, O:5,27 and O:3.


Assuntos
Bacteriófagos , Yersinia enterocolitica , Bacteriófagos/genética , Yersinia enterocolitica/genética , Prófagos/genética , Lisogenia , Telômero
15.
Viruses ; 15(10)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37896838

RESUMO

Cold-active bacteriophages are bacterial viruses that infect and replicate at low temperatures (≤4 °C). Understanding remains limited of how cold-active phage-host systems sustain high viral abundance despite the persistently low temperatures in pelagic sediments in polar seas. In this study, two Pseudoalteromonas phages, ACA1 and ACA2, were isolated from sediment core samples of the continental shelf in the western Arctic Ocean. These phages exhibited successful propagation at a low temperature of 1 °C and displayed typical myovirus morphology with isometric icosahedral heads and contractile tails. The complete genome sequences of phages ACA1 and ACA2 were 36,825 bp and 36,826 bp in size, respectively, sharing almost the same gene content. These are temperate phages encoding lysogeny-related proteins such as anti-repressor, immunity repressor and integrase. The absence of cross-infection between the host strains, which were genomically distinct Pseudoalteromonas species, can likely be attributed to heavy divergence in the anti-receptor apparently mediated by an associated diversity-generating retroelement. HHpred searching identified genes for all of the structural components of a P2-like phage (family Peduoviridae), although the whole of the Peduoviridae family appeared to be divided between two anciently diverged tail modules. In contrast, Blast matching and whole genome tree analysis are dominated by a nonstructural gene module sharing high similarity with Pseudoalteromonas phage C5a (founder of genus Catalunyavirus). This study expands the knowledge of diversity of P2-like phages known to inhabit Peudoalteromonas and demonstrates their presence in the Arctic niche.


Assuntos
Bacteriófagos , Pseudoalteromonas , Bacteriófagos/genética , Pseudoalteromonas/genética , Genoma Viral , Lisogenia , Genômica , Filogenia
16.
mSphere ; 8(6): e0037223, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37882551

RESUMO

IMPORTANCE: Although numerous phage defense systems have recently been discovered in bacteria, how these systems defend against phage propagation or sense phage infections remains unclear. The Escherichia coli AbpAB defense system targets several lytic and lysogenic phages harboring DNA genomes. A phage-encoded single-stranded DNA-binding protein, Gp32, activates this system similar to other phage defense systems such as Retron-Eco8, Hachiman, ShosTA, Nhi, and Hna. DNA replication inhibitors or defects in DNA repair factors activate the AbpAB system, even without phage infection. This is one of the few examples of activating phage defense systems without phage infection or proteins. The AbpAB defense system may be activated by sensing specific DNA-protein complexes.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Lisogenia , DNA , Proteínas de Ligação a DNA/genética , Dano ao DNA
17.
Microb Ecol ; 86(4): 3068-3081, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37843655

RESUMO

Temperate phages integrate into the bacterial genomes propagating along with the bacterial genomes. Multiple phage elements, representing diverse prophages, are present in most bacterial genomes. The evolutionary events and the ecological dynamics underlying the accumulation of prophage elements in bacterial genomes have yet to be understood. Here, we show that the local wastewater had 7% of lysogens (hosting mitomycin C-inducible prophages), and they showed resistance to superinfection by their corresponding lysates. Genomic analysis of four lysogens and four non-lysogens revealed the presence of multiple prophages (belonging to Myoviridae and Siphoviridae) in both lysogens and non-lysogens. For large-scale comparison, 2180 Escherichia coli genomes isolated from various sources across the globe and 523 genomes specifically isolated from diverse wastewaters were analyzed. A total of 15,279 prophages were predicted among 2180 E. coli genomes and 2802 prophages among 523 global wastewater isolates, with a mean of ~ 5 prophages per genome. These observations indicate that most putative prophages are relics of past bacteria-phage conflicts; they are "grounded" prophages that cannot excise from the bacterial genome. Prophage distribution analysis based on the sequence homology suggested the random distribution of E. coli prophages within and between E. coli clades. The independent occurrence pattern of these prophages indicates extensive horizontal transfers across the genomes. We modeled the eco-evolutionary dynamics to reconstruct the events that could have resulted in the prophage accumulation accounting for infection, superinfection immunity, and grounding. In bacteria-phage conflicts, the bacteria win by grounding the prophage, which could confer superinfection immunity.


Assuntos
Bacteriófagos , Superinfecção , Humanos , Lisogenia , Prófagos/genética , Escherichia coli/genética , Superinfecção/genética , Águas Residuárias , Bacteriófagos/genética , Genoma Bacteriano
18.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762288

RESUMO

A high temperature-adapted bacteriophage, vB_PtoS_NIIg3.2 (NIIg3.2), was isolated in Lithuania from compost heaps using Parageobacillus toebii strain NIIg-3 as a host for phage propagation. Furthermore, NIIg3.2 was active against four strains of Geobacillus thermodenitrificans, and it infected the host cells from 50 to 80 °C. Transmission electron microscopy analysis revealed siphovirus morphology characterized by an isometric head (~59 nm in diameter) and a noncontractile tail (~226 nm in length). The double-stranded DNA genome of NIIg3.2 (38,970 bp) contained 71 probable protein-encoding genes and no genes for tRNA. In total, 29 NIIg3.2 ORFs were given a putative functional annotation, including those coding for the proteins responsible for DNA packaging, virion structure/morphogenesis, phage-host interactions, lysis/lysogeny, replication/regulation, and nucleotide metabolism. Based on comparative phylogenetic and bioinformatic analysis, NIIg3.2 cannot be assigned to any genus currently recognized by ICTV and potentially represents a new one within siphoviruses. The results of this study not only extend our knowledge about poorly explored thermophilic bacteriophages but also provide new insights for further investigation and understanding the evolution of Bacilllus-group bacteria-infecting viruses.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Filogenia , Lisogenia , Técnicas de Tipagem Bacteriana , Morte Celular
19.
Nucleic Acids Res ; 51(17): 9452-9474, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37602373

RESUMO

Prophages control their lifestyle to either be maintained within the host genome or enter the lytic cycle. Bacillus subtilis contains the SPß prophage whose lysogenic state depends on the MrpR (YopR) protein, a key component of the lysis-lysogeny decision system. Using a historic B. subtilis strain harboring the heat-sensitive SPß c2 mutant, we demonstrate that the lytic cycle of SPß c2 can be induced by heat due to a single nucleotide exchange in the mrpR gene, rendering the encoded MrpRG136E protein temperature-sensitive. Structural characterization revealed that MrpR is a DNA-binding protein resembling the overall fold of tyrosine recombinases. MrpR has lost its recombinase function and the G136E exchange impairs its higher-order structure and DNA binding activity. Genome-wide profiling of MrpR binding revealed its association with the previously identified SPbeta repeated element (SPBRE) in the SPß genome. MrpR functions as a master repressor of SPß that binds to this conserved element to maintain lysogeny. The heat-inducible excision of the SPß c2 mutant remains reliant on the serine recombinase SprA. A suppressor mutant analysis identified a previously unknown component of the lysis-lysogeny management system that is crucial for the induction of the lytic cycle of SPß.


Assuntos
Fagos Bacilares , Bacteriófagos , Proteínas Virais , Fagos Bacilares/genética , Bacillus subtilis/genética , Lisogenia/genética , Prófagos/genética , Recombinases/genética , Proteínas Virais/metabolismo
20.
Viruses ; 15(8)2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37632043

RESUMO

Soil Sinorhizobium phage AP-16-3, a strain phylogenetically close to Rhizobium phage 16-3, was isolated in a mountainous region of Dagestan, belonging to the origin of cultivated plants in the Caucasus, according to Vavilov N.I. The genome of phage AP-16-3 is 61 kbp in size and contains 62 ORFs, of which 42 ORFs have homologues in the genome of Rhizobium phage 16-3, which was studied in the 1960s-1980s. A search for Rhizobium phage 16-3-related sequences was performed in the genomes of modern strains of root nodule bacteria belonging to different species, genera, and families. A total of 43 prophages of interest were identified out of 437 prophages found in the genomes of 42 strains, of which 31 belonged to Sinorhizobium meliloti species. However, almost all of the mentioned prophages contained single ORFs, and only two prophages contained 51 and 39 ORFs homologous to phages related to 16-3. These prophages were detected in S. meliloti NV1.1.1 and Rh. leguminosarum OyaliB strains belonging to different genera; however, the similarity level of these two prophages did not exceed 14.7%. Analysis of the orphan genes in these prophages showed that they encoded predominantly virion structural elements, but also enzymes and an extensive group of hypothetical proteins belonging to the L, S, and E regions of viral genes of phage 16-3. The data obtained indicate that temperate phages related to 16-3 had high infectivity against nodule bacteria and participated in intragenomic recombination events involving other phages, and in horizontal gene transfer between rhizobia of different genera. According to the data obtained, it is assumed that the repetitive lysogenic cycle of temperate bacteriophages promotes the dissolution of the phage genetic material in the host bacterial genome, and radical updating of phage and host bacterial genomes takes place.


Assuntos
Bacteriófagos , Sinorhizobium , Siphoviridae , Humanos , Prófagos/genética , Lisogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...