Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.598
Filtrar
1.
Methods Mol Biol ; 2852: 181-196, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235745

RESUMO

This chapter introduces protocols for culturing and maintaining Dictyostelium discoideum and methods for conducting virulence assays in this organism to study bacterial pathogenicity. It outlines advanced techniques, such as automated microscopy and flow cytometry, for detailed cellular analysis and traditional microbiological approaches. These comprehensive protocols will enable researchers to probe the virulence factors of pathogens like Klebsiella pneumoniae and to elucidate the details of host-pathogen interactions within a cost-effective and adaptable laboratory framework.


Assuntos
Dictyostelium , Citometria de Fluxo , Klebsiella pneumoniae , Dictyostelium/microbiologia , Citometria de Fluxo/métodos , Klebsiella pneumoniae/patogenicidade , Fagocitose , Virulência , Interações Hospedeiro-Patógeno , Microscopia/métodos
2.
Euro Surveill ; 29(36)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39239731

RESUMO

BackgroundThe number of cholera cases reported to the World Health Organization (WHO) in 2022 was more than double that of 2021. Nine countries of the WHO European Region reported 51 cases of cholera in 2022 vs five reported cases in 2021.AimWe aimed to confirm that the Vibrio cholerae O1 isolates reported by WHO European Region countries in 2022 belonged to the seventh pandemic El Tor lineage (7PET). We also studied their virulence, antimicrobial resistance (AMR) determinants and phylogenetic relationships.MethodsWe used microbial genomics to study the 49 V. cholerae O1 isolates recovered from the 51 European cases. We also used > 1,450 publicly available 7PET genomes to provide a global phylogenetic context for these 49 isolates.ResultsAll 46 good-quality genomes obtained belonged to the 7PET lineage. All but two isolates belonged to genomic Wave 3 and were grouped within three sub-lineages, one of which, Pre-AFR15, predominated (34/44). This sub-lineage, corresponding to isolates from several countries in Southern Asia, the Middle East and Eastern or Southern Africa, was probably a major contributor to the global upsurge of cholera cases in 2022. No unusual AMR profiles were inferred from analysis of the AMR gene content of the 46 genomes.ConclusionReference laboratories in high-income countries should use whole genome sequencing to assign V. cholerae O1 isolates formally to the 7PET or non-epidemic lineages. Periodic collaborative genomic studies based on isolates from travellers can provide useful information on the circulating strains and their evolution, particularly as concerns AMR.


Assuntos
Antibacterianos , Cólera , Filogenia , Vibrio cholerae O1 , Vibrio cholerae O1/genética , Vibrio cholerae O1/isolamento & purificação , Vibrio cholerae O1/classificação , Cólera/microbiologia , Cólera/epidemiologia , Humanos , Europa (Continente)/epidemiologia , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Genoma Bacteriano , Genômica , Virulência/genética , Farmacorresistência Bacteriana/genética
3.
Immun Inflamm Dis ; 12(9): e70012, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39240051

RESUMO

BACKGROUNDS: Mycobacterium tuberculosis (Mtb), the pathogen responsible for tuberculosis, secretes a multitude of proteins that modulate the host's immune response to ensure its own persistence. The region of difference (RD) genes encoding proteins play key roles in TB immunity and pathogenesis. Nevertheless, the roles of the majority of RD-encoded proteins remain to be elucidated. OBJECTS: To elucidate the role of Rv2652c located in RD13 in Mtb on bacterial growth, bacterial survival, and host immune response. METHODS: We constructed the strain MS_Rv2652c which over-expresses Mtb RD-encoding protein Rv2652c in M. smegmatis (MS), and compared it with the wild strain in the bacterial growth, bacterial survival, virulence of Rv2652c, and determined the effect of MS_Rv2652c on host immune response in macrophages. RESULTS: Rv2652c protein is located at cell wall of MS_Rv2652c strain and also an integral component of the Mtb H37Rv cell wall. Rv2652c can enhance the resistance of recombinant MS to various stressors. Moreover, Rv2652c inhibits host proinflammatory responses via modulation of the NF-κB pathway, thereby promoting Mtb survival in vitro and in vivo. CONCLUSION: Our data suggest that cell wall protein Rv2652c plays an important role in creating a favorable environment for bacterial survival by modulating host signals and could be established as a potential TB drug target.


Assuntos
Proteínas de Bactérias , Macrófagos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia , Humanos , Interações Hospedeiro-Patógeno/imunologia , Virulência , Mycobacterium smegmatis/imunologia , Viabilidade Microbiana/imunologia , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Parede Celular/imunologia , Parede Celular/metabolismo
4.
BMC Vet Res ; 20(1): 395, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242520

RESUMO

BACKGROUND: Trueperella pyogenes is an opportunistic pathogen that causes suppurative infections in various animal species, including goats. So far, only limited knowledge of phenotypic and genotypic properties of T. pyogenes isolates from goats has been gathered. In our study, we characterized the phenotypic and genotypic properties of caprine T. pyogenes isolates and established their relationship by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). RESULTS: From 2015 to 2023, 104 T. pyogenes isolates were obtained from 1146 clinical materials. In addition, two T. pyogenes isolates were obtained from 306 swabs collected from healthy goats. A total of 51 T. pyogenes isolates were subjected to detailed phenotypic and genotypic characterization. The virulence genotype plo/nanH/nanP/fimA/fimC/luxS was predominant. All of the tested isolates showed the ability to form a biofilm but with different intensities, whereby most of them were classified as strong biofilm formers (72.5%). The high level of genetic diversity among tested caprine T. pyogenes isolates (19 different RAPD profiles) was observed. The same RAPD profiles were found for isolates obtained from one individual, as well as from other animals in the same herd, but also in various herds. CONCLUSIONS: This study provided important data on the occurrence of T. pyogenes infections in goats. The assessment of virulence properties and genetic relationships of caprine T. pyogenes isolates contributed to the knowledge of the epidemiology of infections caused by this pathogen in small ruminants. Nevertheless, further investigations are warranted to clarify the routes of transmission and dissemination of the pathogen.


Assuntos
Actinomycetaceae , Infecções por Actinomycetales , Variação Genética , Doenças das Cabras , Cabras , Técnica de Amplificação ao Acaso de DNA Polimórfico , Animais , Doenças das Cabras/microbiologia , Doenças das Cabras/epidemiologia , Virulência/genética , Actinomycetaceae/genética , Actinomycetaceae/patogenicidade , Actinomycetaceae/isolamento & purificação , Actinomycetaceae/classificação , Infecções por Actinomycetales/veterinária , Infecções por Actinomycetales/microbiologia , Genótipo , Biofilmes/crescimento & desenvolvimento
5.
Nat Commun ; 15(1): 7812, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242612

RESUMO

Streptococcus mitis is a leading cause of infective endocarditis (IE). However, our understanding of the genomic epidemiology and pathogenicity of IE-associated S. mitis is hampered by low IE incidence. Here we use whole genome sequencing of 129 S. mitis bloodstream infection (BSI) isolates collected between 2001-2016 from clinically diagnosed IE cases in the UK to investigate genetic diversity, antimicrobial resistance, and pathogenicity. We show high genetic diversity of IE-associated S. mitis with virtually all isolates belonging to distinct lineages indicating no predominance of specific lineages. Additionally, we find a highly variable distribution of known pneumococcal virulence genes among the isolates, some of which are overrepresented in disease when compared to carriage strains. Our findings suggest that S. mitis in patients with clinically diagnosed IE is not primarily caused by specific hypervirulent or antimicrobial resistant lineages, highlighting the accidental pathogenic nature of S. mitis in patients with clinically diagnosed IE.


Assuntos
Bacteriemia , Infecções Estreptocócicas , Streptococcus mitis , Humanos , Streptococcus mitis/genética , Streptococcus mitis/isolamento & purificação , Reino Unido/epidemiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/epidemiologia , Irlanda/epidemiologia , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Endocardite/microbiologia , Endocardite/epidemiologia , Genoma Bacteriano/genética , Sequenciamento Completo do Genoma , Masculino , Feminino , Variação Genética , Genômica , Idoso , Filogenia , Pessoa de Meia-Idade , Farmacorresistência Bacteriana/genética , Endocardite Bacteriana/microbiologia , Endocardite Bacteriana/epidemiologia , Adulto , Fatores de Virulência/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Virulência/genética
6.
BMC Microbiol ; 24(1): 324, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243004

RESUMO

Acinetobacter species such as A. venetianus and A. guillouiae have been studied for various biotechnology applications, including bioremediation of recalcitrant and harmful environmental contaminants, as well as bioengineering of enzymes and diagnostic materials. Bacteria used in biotechnology are often combined with other microorganisms in mixtures to formulate efficacious commercial products. However, if the mixture contained a closely related Acinetobacter pathogen such as A. baumannii (Ab), it remains unclear whether the survival and virulence of Ab would be masked or augmented. This uncertainty poses a challenge in ensuring the safety of such biotechnology products, since Ab is one of the most significant pathogens for both hospital and community -acquired infections. This research aimed to investigate the growth and virulence of Ab within a mixture of 11 bacterial species formulated as a mock microbial mixture (MM). Growth challenges with environmental stressors (i.e., temperature, pH, sodium, iron, and antibiotics) revealed that Ab could thrive under diverse conditions except in the presence of ciprofloxacin. When cultured alone, Ab exhibited significantly more growth in the presence of almost all the environmental stressors than when it was co-incubated with the MM. During the exposure of A549 lung epithelial cells to the MM, Ab growth was stimulated compared to that in standard mammalian culture media. Cytotoxicity caused by Ab was suppressed in the presence of the MM. Lymphocytes were significantly reduced in mice exposed to Ab with or without MM via intravenous injection. The levels of the splenic cytokines IL-1α, IL-1ß, MCP-1, and MIP-1α were significantly reduced 24 h after exposure to Ab + MM. This study demonstrated that the presence of the MM marginally but significantly reduced the growth and virulence of Ab, which has implications for the safety of mixtures of microorganisms for biotechnological applications. Furthermore, these findings expand our understanding of the virulence of Ab during host-pathogen interactions.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Animais , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Virulência , Camundongos , Humanos , Infecções por Acinetobacter/microbiologia , Células A549 , Antibacterianos/farmacologia , Feminino , Citocinas/metabolismo , Viabilidade Microbiana/efeitos dos fármacos
7.
BMC Microbiol ; 24(1): 330, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244528

RESUMO

The RNA binding protein is crucial for gene regulation at the post transcription level. In this study, functions of the DUF1127-containing protein and ProQ, which are RNA-binding proteins, were revealed in Vibrio alginolyticus. DUF1127 deletion increased the ability of biofilm formation, whereas ProQ deletion reduced the amount of biofilm. Moreover, extracellular proteinase secretion was significantly reduced in the DUF1127 deletion strain. ProQ, not DUF1127-containing protein, can help the cell to defense oxidative stress. Deletion of DUF1127 resulted in a higher ROS level in the cell, however, ProQ deletion showed no difference. RNA-seq unveiled the expression of genes involved in extracellular protease secretion were significantly downregulated and biofilm synthesis-related genes, such as rbsB and alsS, were differentially expressed in the DUF1127 deletion strain. ProQ affected the expression of genes involved in biofilm synthesis (flgC and flgE), virulence (betB and hutG), and oxidative stress. Moreover, the DUF1127-containing and ProQ affected the mRNA levels of various regulators, such as LysR and BetI. Overall, our study revealed that the DUF1127-containing protein and ProQ have crucial functions on biofilm formation in V. alginolyticus.


Assuntos
Proteínas de Bactérias , Biofilmes , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Vibrio alginolyticus , Biofilmes/crescimento & desenvolvimento , Vibrio alginolyticus/genética , Vibrio alginolyticus/fisiologia , Vibrio alginolyticus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Virulência/genética , Deleção de Genes , Espécies Reativas de Oxigênio/metabolismo
8.
Commun Biol ; 7(1): 1082, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232082

RESUMO

Fungal pathogens exhibit extensive strain heterogeneity, including variation in virulence. Whether closely related non-pathogenic species also exhibit strain heterogeneity remains unknown. Here, we comprehensively characterized the pathogenic potentials (i.e., the ability to cause morbidity and mortality) of 16 diverse strains of Aspergillus fischeri, a non-pathogenic close relative of the major pathogen Aspergillus fumigatus. In vitro immune response assays and in vivo virulence assays using a mouse model of pulmonary aspergillosis showed that A. fischeri strains varied widely in their pathogenic potential. Furthermore, pangenome analyses suggest that A. fischeri genomic and phenotypic diversity is even greater. Genomic, transcriptomic, and metabolic profiling identified several pathways and secondary metabolites associated with variation in virulence. Notably, strain virulence was associated with the simultaneous presence of the secondary metabolites hexadehydroastechrome and gliotoxin. We submit that examining the pathogenic potentials of non-pathogenic close relatives is key for understanding the origins of fungal pathogenicity.


Assuntos
Aspergillus , Animais , Virulência , Aspergillus/patogenicidade , Aspergillus/genética , Aspergillus/metabolismo , Camundongos , Gliotoxina/metabolismo , Modelos Animais de Doenças , Aspergilose Pulmonar/microbiologia , Feminino , Genoma Fúngico
9.
J Med Virol ; 96(9): e29895, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228306

RESUMO

Dengue viruses are the causative agents of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, which are mainly transmitted by Aedes aegypti and Aedes albopictus mosquitoes, and cost billions of dollars annually in patient treatment and mosquito control. Progress in understanding DENV pathogenesis and developing effective treatments has been hampered by the lack of a suitable small pathological animal model. Until now, the candidate vaccine, antibody, and drug for DENV have not been effectively evaluated. Here, we analyzed the pathogenicity of DENV-1 in type Ⅰ and type Ⅱ interferon receptor-deficient mice (AGB6) by intraperitoneal inoculation. Infected mice showed such neurological symptoms as opisthotonus, hunching, ataxia, and paralysis of one or both hind limbs. Viremia can be detected 3 days after infection. It was found that 6.98 × 103 PFU or higher dose induce 100% mortality. To determine the cause of lethality in mice, heart, liver, spleen, lung, kidney, intestinal, and brain tissues were collected from AGB6 mice (at an attack dose of 6.98 × 103 PFU) for RNA quantification, and it was found that the viral load in brain tissues peaked at moribund states (14 dpi) and that the viral loads in the other tissues and organs decreased over time. Significant histopathologic changes were observed in brain tissue (hippocampal region and cerebral cortex). Hematological analysis showed hemorrhage and hemoconcentration in infected mice. DENV-1 can be isolated from the brain tissue of infected mice. Subsequently, brain tissue transcriptome sequencing was performed to assess host response characteristics in infected AGB6 mice. Transcriptional patterns in brain tissue suggest that aberrant expression of pro-inflammatory cytokines induces antiviral responses and tissue damage. Screening of hub genes and their characterization by qPCR and ELISA, it was hypothesized that IL-6 and IFN-γ might be the key factors in dengue virus-induced inflammatory response. Therefore, this study provides an opportunity to decipher certain aspects of dengue pathogenesis further and provides a new platform for drug, antibody, and vaccine testing.


Assuntos
Vírus da Dengue , Dengue , Modelos Animais de Doenças , Transcriptoma , Carga Viral , Animais , Vírus da Dengue/patogenicidade , Vírus da Dengue/genética , Dengue/virologia , Dengue/imunologia , Camundongos , Sorogrupo , Perfilação da Expressão Gênica , Encéfalo/virologia , Encéfalo/patologia , Virulência , Viremia , Camundongos Knockout
10.
Enzymes ; 55: 313-342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39222996

RESUMO

Carbonic anhydrases (CAs) catalyze the reversable hydration of carbon dioxide to bicarbonate placing them into the core of the biochemical carbon cycle. Due to the fundamental importance of their function, they evolved independently into eight classes, three of which have been recently discovered. Most research on CAs has focused on their representatives in eukaryotic organisms, while prokaryotic CAs received significantly less attention. Nevertheless, prokaryotic CAs play a key role in the fundamental ability of the biosphere to acquire CO2 for photosynthesis and to decompose the organic matter back to CO2. They also contribute to a broad spectrum of processes in pathogenic bacteria, enhancing their ability to survive in a host and, therefore, present a promising target for developing antimicrobials. This review focuses on the distribution of CAs among bacterial pathogens and their importance in bacterial virulence and host-pathogen interactions.


Assuntos
Bactérias , Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Bactérias/enzimologia , Bactérias/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Dióxido de Carbono/metabolismo , Virulência
11.
Curr Microbiol ; 81(10): 336, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223428

RESUMO

Fatty acids (FAs) participate in extensive physiological activities such as energy metabolism, transcriptional control, and cell signaling. In bacteria, FAs are degraded and utilized through various metabolic pathways, including ß-oxidation. Over the past ten years, significant progress has been made in studying FA oxidation in bacteria, particularly in E. coli, where the processes and roles of FA ß-oxidation have been comprehensively elucidated. Here, we provide an update on the new research achievements in FAs ß-oxidation in bacteria. Using Xanthomonas as an example, we introduce the oxidation process and regulation mechanism of the DSF-family quorum sensing signal. Based on current findings, we propose the specific enzymes required for ß-oxidation of several specific FAs. Finally, we discuss the future outlook on scientific issues that remain to be addressed. This paper supplies theoretical guidance for further study of the FA ß-oxidation pathway with particular emphasis on its connection to the pathogenicity mechanisms of bacteria.


Assuntos
Ácidos Graxos , Oxirredução , Percepção de Quorum , Transdução de Sinais , Xanthomonas , Ácidos Graxos/metabolismo , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Xanthomonas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Virulência , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética
12.
Virulence ; 15(1): 2397503, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39282885

RESUMO

Cationic biocides (CBs), which include quaternary ammonium compounds (QACs), are employed to mitigate the spread of infectious bacteria, but resistance to such surface disinfectants is rising. CB exposure can have profound phenotypic implications that extend beyond allowing microorganisms to persist on surfaces. Pseudomonas aeruginosa is a deadly bacterial pathogen that is intrinsically tolerant to a wide variety of antimicrobials and is commonly spread in healthcare settings. In this study, we pursued resistance selection assays to the QAC benzalkonium chloride and quaternary phosphonium compound P6P-10,10 to assess the phenotypic effects of CB exposure in P. aeruginosa PAO1 and four genetically diverse, drug-resistant clinical isolates. In particular, we sought to examine how CB exposure affects defensive strategies and the virulence-associated "offensive" strategies in P. aeruginosa. We demonstrated that development of resistance to BAC is associated with increased production of virulence-associated pigments and alginate as well as pellicle formation. In an in vivo infection model, CB-resistant PAO1 exhibited a decreased level of virulence compared to wild type, potentially due to an observed fitness cost in these strains. Taken together, these results illustrate the significant consequence CB resistance exerts on the virulence-associated phenotypes of P. aeruginosa.


Assuntos
Desinfetantes , Infecções por Pseudomonas , Pseudomonas aeruginosa , Fatores de Virulência , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Desinfetantes/farmacologia , Virulência , Fatores de Virulência/genética , Infecções por Pseudomonas/microbiologia , Animais , Compostos de Benzalcônio/farmacologia , Farmacorresistência Bacteriana , Camundongos , Compostos de Amônio Quaternário/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Adaptação Fisiológica , Cátions/farmacologia
13.
Virulence ; 15(1): 2401963, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39282964

RESUMO

Streptococcus suis (S. suis) is an important swine bacterial pathogen and causes human infections, leading to a wide range of diseases. However, the role of 5'-nucleotidases in its virulence remains to be fully elucidated. Herein, we identified four cell wall-anchored 5'-nucleotidases (Snts) within S. suis, named SntA, SntB, SntC, and SntD, each displaying similar domains yet exhibiting low sequence homology. The malachite green reagent and HPLC assays demonstrated that these recombinant enzymes are capable of hydrolysing ATP, ADP, and AMP into adenosine (Ado), with the hierarchy of catalytic efficiency being SntC>SntB>SntA>SntD. Moreover, comprehensive enzymatic activity assays illustrated slight variances in substrate specificity, pH tolerance, and metal ion requirements, yet highlighted a conserved substrate-binding pocket, His-Asp catalytic dyad, metal, and phosphate-binding sites across Snts, with the exception of SntA. Through bactericidal assays and murine infection assays involving in site-mutagenesis strains, it was demonstrated that SntB and SntC collaboratively enhance bacterial survivability within whole blood and polymorphonuclear leukocytes (PMNs) via the Ado-A2aR pathway in vitro, and within murine blood and organs in vivo. This suggests a direct correlation between enzymatic activity and enhancement of bacterial survival and virulence. Collectively, S. suis 5'-nucleotidases additively contribute to the generation of adenosine, influencing susceptibility within blood and PMNs, and enhancing survival within blood and organs in vivo. This elucidation of their integral functions in the pathogenic process of S. suis not only enhances our comprehension of bacterial virulence mechanisms, but also illuminates new avenues for therapeutic intervention aimed at curbing S. suis infections.


Assuntos
5'-Nucleotidase , Adenosina , Modelos Animais de Doenças , Evasão da Resposta Imune , Infecções Estreptocócicas , Streptococcus suis , Animais , Streptococcus suis/patogenicidade , Streptococcus suis/enzimologia , Streptococcus suis/imunologia , Streptococcus suis/genética , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , 5'-Nucleotidase/metabolismo , Camundongos , Adenosina/metabolismo , Virulência , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Feminino , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Camundongos Endogâmicos BALB C , Especificidade por Substrato
14.
Virulence ; 15(1): 2397512, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39282989

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes diarrhea and vomiting in piglets, leading to a mortality rate of 100%. Due to the high frequency of mutation, it is important to monitor the evolution of PEDV and develop potential vaccine candidates. In this study, two PEDV strains (ZJ2022 and ZQ2022) were identified by PCR. These strains were subsequently isolated, and their genome sequences, growth characteristics, and pathogenicity were compared. Phylogenetic and recombination analyses revealed that both strains belonged to GIIa-subgroup, and ZQ2022 was identified as a recombinant strain derived from ZJ2022. Further sequence analysis showed that the ZJ2022 strain had a modified top region of the S1 protein due to a three amino acid insertion (T380_Y380insGGE) in the S1 gene. According to the virus growth curve, ZJ2022 exhibited better cellular adaptation than ZQ2022, with higher viral titers from 8 hpi to 24 hpi. Additionally, ZQ2022 exhibited a high level of pathogenicity, causing severe diarrhea in piglets at 36 hpi and a 100% mortality rate by 96 hpi. In contrast, ZJ2022 showed lower pathogenicity, inducing severe diarrhea in piglets at 60 hpi, with a mortality rate of 60% at 96 hpi and 100% at 120 hpi. In summary, our findings provided evidence of the undergoing mutations in Chinese PEDV strains. Furthermore, the S gene insertion strain ZJ2022 exhibited strong cellular adaptability and low pathogenicity, making it a potential candidate strain for vaccine development.


Assuntos
Animais Recém-Nascidos , Infecções por Coronavirus , Diarreia , Filogenia , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/classificação , Suínos , Doenças dos Suínos/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Virulência , Diarreia/virologia , Diarreia/veterinária , Glicoproteína da Espícula de Coronavírus/genética , Genoma Viral , Mutagênese Insercional , China , Células Vero
15.
World J Microbiol Biotechnol ; 40(10): 322, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283509

RESUMO

Staphylococcus aureus can develop antibiotic resistance and evade immune responses, causing infections in different body sites. However, the metabolic changes underlying this process are poorly understood. A variant strain, C1V, was derived from the parental strain C1 by exposing it to increasing concentrations of vancomycin in vitro. C1V exhibited a vancomycin-intermediate phenotype and physiological changes compared to C1. It showed higher survival rates than C1 when phagocytosed by Raw264.7 cells. Metabolomics analysis identified significant metabolic differences pre- and post-induction (C1 + SC1 vs. C1V + SC1V: 201 metabolites) as well as pre- and post-phagocytosis (C1 vs. SC1: 50 metabolites; C1V vs. SC1V: 95 metabolites). The variant strain had distinct morphological characteristics, decreased adhesion ability, impaired virulence, and enhanced resistance to phagocytosis compared to the parental strain. Differential metabolites may contribute to S. aureus ' resistance to antibiotics and phagocytosis, offering insights into potential strategies for altering vancomycin nonsusceptibility and enhancing phagocyte killing by manipulating bacterial metabolism.


Assuntos
Antibacterianos , Metabolômica , Fagocitose , Staphylococcus aureus , Vancomicina , Vancomicina/farmacologia , Camundongos , Animais , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Antibacterianos/farmacologia , Virulência , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana , Resistência a Vancomicina/genética , Metaboloma/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Adaptação Fisiológica
16.
NPJ Biofilms Microbiomes ; 10(1): 82, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261499

RESUMO

Pseudomonas aeruginosa is a widespread nosocomial pathogen with a significant to cause both severe planktonic acute and biofilm-related chronic infections. Small RNAs (sRNAs) are noncoding regulatory molecules that are stabilized by the RNA chaperone Hfq to trigger various virulence-related signaling pathways. Here, we identified an Hfq-binding sRNA in P. aeruginosa PAO1, PqsS, which promotes bacterial pathogenicity and pseudomonas quinolone signal quorum sensing (pqs QS) system. Specifically, PqsS enhanced acute bacterial infections by inducing host cell death and promoting rhamnolipid-regulated swarming motility. Meanwhile, PqsS reduced chronic infection traits including biofilm formation and antibiotic resistance. Moreover, PqsS repressed pqsL transcript, increasing PQS levels for pqs QS. A PQS-rich environment promoted PqsS expression, thus forming a positive feedback loop. Furthermore, we demonstrated that the PqsS interacts and destabilizes the pqsL mRNA by recruiting RNase E to drive degradation. These findings provide insights for future research on P. aeruginosa pathogenesis and targeted treatment.


Assuntos
Proteínas de Bactérias , Biofilmes , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro , Pseudomonas aeruginosa , Quinolonas , Percepção de Quorum , RNA Bacteriano , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/metabolismo , Virulência , Biofilmes/crescimento & desenvolvimento , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quinolonas/metabolismo , Quinolonas/farmacologia , Endorribonucleases/metabolismo , Endorribonucleases/genética , Animais , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Infecções por Pseudomonas/microbiologia , Humanos , Camundongos , Glicolipídeos/metabolismo
17.
Front Immunol ; 15: 1452828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267751

RESUMO

Toxoplasmosis is a globally significant disease that poses a severe threat to immunocompromised individuals, especially in Brazil, where a high prevalence of virulent and atypical strains of Toxoplasma gondii is observed. In 1998, the EGS strain, exhibiting a unique infection phenotype, was isolated in Brazil, adding to the complexity of strain diversity. The P2X7 receptor is critical in inflammation and controlling intracellular microorganisms such as T. gondii. However, its genetic variability can result in receptor dysfunction, potentially worsening susceptibility. This study investigates the role of the P2X7 receptor during acute infection induced by the EGS atypical strain, offering insight into the mechanisms of T. gondii infection in this context. We infected the female C57BL/6 (WT) or P2X7 knockout (P2X7-/-) by gavage. The EGS infection causes intestinal inflammation. The P2X7-/- mice presented higher parasite load in the intestine, spleen, and liver. The absence of the P2X7 receptor disrupts inflammatory cell balance by reducing NLRP3, IL-1ß, and Foxp3 expression while increasing IFN-γ expression and production in the intestine. In the liver, P2X7-/- animals demonstrate diminished inflammatory infiltrate within the portal and lobular regions concurrent with an enlargement of the spleen. In conclusion, the infection of mice with the EGS strain elicited immune alterations, leading to acute inflammation and cytokine dysregulation, while the P2X7 receptor conferred protection against parasitic proliferation across multiple organs.


Assuntos
Genótipo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Purinérgicos P2X7 , Toxoplasma , Animais , Toxoplasma/imunologia , Toxoplasma/genética , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/imunologia , Camundongos , Feminino , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Inflamação/imunologia , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/parasitologia , Carga Parasitária , Virulência , Doença Aguda , Citocinas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fígado/parasitologia , Fígado/imunologia , Fígado/patologia , Fígado/metabolismo
18.
Commun Biol ; 7(1): 1130, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271946

RESUMO

Pneumolysin (Ply) of Streptococcus pneumoniae (pneumococcus) at relatively high and low levels facilitates pneumococcal invasion into the lung and brain, respectively; however, the regulatory mechanisms of Ply expression are poorly understood. Here, we find that a small RNA plyT, processed from the 3'UTR of the ply operon, is expressed higher in anaerobically- than in statically-cultured pneumococcus D39. Using bioinformatic, biochemical and genetic approaches, we reveal that PlyT inhibits Ply synthesis and hemolytic activities by pairing with an RBS-embedded intergenic region of the ply operon. The RNA-binding protein SPD_1558 facilitates the pairing. Importantly, PlyT inhibition of Ply synthesis is stronger in anaerobic culture and leads to lower Ply abundance. Deletion of plyT decreases the number of pneumococci in the infected mouse brain and reduces the virulence, demonstrating that PlyT-regulated lower Ply in oxygen-void microenvironments, such as the blood, is important for pneumococcus to cross the blood-brain barrier and invade the brain. PlyT-mediated repression of Ply synthesis at anoxic niches is also verified in pneumococcal serotype 4 and 14 strains; moreover, the ply operon with a 3'UTR-embedded plyT, and the pairing sequences of IGR and plyT are highly conserved among pneumococcal strains, implying PlyT-regulated Ply synthesis might be widely employed by pneumococcus.


Assuntos
Regiões 3' não Traduzidas , Proteínas de Bactérias , Encéfalo , Infecções Pneumocócicas , Streptococcus pneumoniae , Estreptolisinas , Estreptolisinas/metabolismo , Estreptolisinas/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Animais , Camundongos , Infecções Pneumocócicas/microbiologia , Encéfalo/metabolismo , Encéfalo/microbiologia , Regulação Bacteriana da Expressão Gênica , Virulência/genética , Óperon , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
19.
Nat Commun ; 15(1): 8047, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277621

RESUMO

Magnaporthe oryzae is a devastating fungal pathogen that causes the rice blast disease worldwide. The post-translational modification of ADP-ribosylation holds significant importance in various fundamental biological processes. However, the specific function of this modification in M. oryzae remains unknown. This study revealed that Poly(ADP-ribosyl)ation (PARylation) executes a critical function in M. oryzae. M. oryzae Poly(ADP-ribose) polymerase 1 (PARP1) exhibits robust PARylation activity. Disruption of PARylation by PARP1 knock-out or chemical inhibition reveals its involvement in M. oryzae virulence, particularly in appressorium formation. Furthermore, we identified two M. oryzae 14-3-3 proteins, GRF1 and GRF2, as substrates of PARP1. Deletion of GRF1 or GRF2 results in delayed and dysfunctional appressorium, diminished plant penetration, and reduced virulence of the fungus. Biochemical and genetic evidence suggest that PARylation of 14-3-3s is essential for its function in M. oryzae virulence. Moreover, PARylation regulates 14-3-3 dimerization and is required for the activation of the mitogen-activated protein kinases (MAPKs), Pmk1 and Mps1. GRF1 interacts with both Mst7 and Pmk1, and bridges their interaction in a PARylation-dependent manner. This study unveils a distinctive mechanism that PARylation of 14-3-3 proteins controls appressorium formation through MAPK activation, and could facilitate the development of new strategies of rice blast disease control.


Assuntos
Proteínas 14-3-3 , Proteínas Fúngicas , Oryza , Doenças das Plantas , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Virulência , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , ADP-Ribosilação , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Ascomicetos/patogenicidade , Ascomicetos/genética , Ascomicetos/metabolismo , Magnaporthe/patogenicidade , Magnaporthe/genética , Magnaporthe/metabolismo , Processamento de Proteína Pós-Traducional
20.
Sci Rep ; 14(1): 21521, 2024 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277662

RESUMO

The quorum sensing (QS) system mediated by the abaI gene in Acinetobacter baumannii is crucial for various physiological and pathogenic processes. In this study, we constructed a stable markerless abaI knockout mutant (ΔabaI) strain using a pEXKm5-based allele replacement method to investigate the impact of abaI on A. baumannii. Proteomic analysis revealed significant alterations in protein expression between the wild type (WT) and ΔabaI mutant strains, particularly in proteins associated with membrane structure, antibiotic resistance, and virulence. Notably, the downregulation of key outer membrane proteins such as SurA, OmpA, OmpW, and BamA suggests potential vulnerabilities in outer membrane integrity, which correlate with structural abnormalities in the ΔabaI mutant strain, including irregular cell shapes and compromised membrane integrity, observed by scanning and transmission electron microscopy. Furthermore, diminished expression of regulatory proteins such as OmpR and GacA-GacS highlights the broader regulatory networks affected by abaI deletion. Functional assays revealed impaired biofilm formation and surface-associated motility in the mutant strain, indicative of altered colonization capabilities. Interestingly, the mutant showed a complex antibiotic susceptibility profile. While it demonstrated increased susceptibility to membrane-targeting antibiotics, its response to beta-lactams was more nuanced. Despite increased expression of metallo-beta-lactamase (MBL) superfamily proteins and DcaP-like protein, the mutant unexpectedly showed lower MICs for carbapenems (imipenem and meropenem) compared to the wild-type strain. This suggests that abaI deletion affects antibiotic susceptibility through multiple, potentially competing mechanisms. Further investigation is needed to fully elucidate the interplay between quorum sensing, antibiotic resistance genes, and overall antibiotic susceptibility in A. baumannii. Our findings underscore the multifaceted role of the abaI gene in modulating various cellular processes and highlight its significance in A. baumannii physiology, pathogenesis, and antibiotic resistance. Targeting the abaI QS system may offer novel therapeutic strategies for this clinically significant pathogen.


Assuntos
Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Biofilmes , Mutação , Percepção de Quorum , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/patogenicidade , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Virulência/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Percepção de Quorum/genética , Percepção de Quorum/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA