Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.214
Filtrar
1.
BMC Plant Biol ; 24(1): 289, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627624

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play a crucial role in regulating gene expression vital for the growth and development of plants. Despite this, the role of lncRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis) pollen development and male fertility remains poorly understood. RESULTS: In this study, we characterized a recessive genic male sterile mutant (366-2 S), where the delayed degradation of tapetum and the failure of tetrad separation primarily led to the inability to form single microspores, resulting in male sterility. To analyze the role of lncRNAs in pollen development, we conducted a comparative lncRNA sequencing using anthers from the male sterile mutant line (366-2 S) and the wild-type male fertile line (366-2 F). We identified 385 differentially expressed lncRNAs between the 366-2 F and 366-2 S lines, with 172 of them potentially associated with target genes. To further understand the alterations in mRNA expression and explore potential lncRNA-target genes (mRNAs), we performed comparative mRNA transcriptome analysis in the anthers of 366-2 S and 366-2 F at two stages. We identified 1,176 differentially expressed mRNAs. Remarkably, GO analysis revealed significant enrichment in five GO terms, most notably involving mRNAs annotated as pectinesterase and polygalacturonase, which play roles in cell wall degradation. The considerable downregulation of these genes might contribute to the delayed degradation of tapetum in 366-2 S. Furthermore, we identified 15 lncRNA-mRNA modules through Venn diagram analysis. Among them, MSTRG.9997-BraA04g004630.3 C (ß-1,3-glucanase) is associated with callose degradation and tetrad separation. Additionally, MSTRG.5212-BraA02g040020.3 C (pectinesterase) and MSTRG.13,532-BraA05g030320.3 C (pectinesterase) are associated with cell wall degradation of the tapetum, indicating that these three candidate lncRNA-mRNA modules potentially regulate pollen development. CONCLUSION: This study lays the foundation for understanding the roles of lncRNAs in pollen development and for elucidating their molecular mechanisms in regulating male sterility in Chinese cabbage.


Assuntos
Brassica rapa , Brassica , Infertilidade Masculina , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Brassica/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma , Fertilidade , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética
2.
Yi Chuan ; 46(4): 333-345, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632095

RESUMO

China has a high dependence on soybean imports, yield increase at a faster rate is an urgent problem that need to be solved at present. The application of heterosis is one of the effective ways to significantly increase crop yield. In recent years, the development of an intelligent male sterility system based on recessive nuclear sterile genes has provided a potential solution for rapidly harnessing the heterosis in soybean. However, research on male sterility genes in soybean has been lagged behind. Based on transcriptome data of soybean floral organs in our research group, a soybean stamen-preferentially expressed gene GmFLA22a was identified. It encodes a fasciclin-like arabinogalactan protein with the FAS1 domain, and subcellular localization studies revealed that it may play roles in the endoplasmic reticulum. Take advantage of the gene editing technology, the Gmfla22a mutant was generated in this study. However, there was a significant reduction in the seed-setting rate in the mutant plants at the reproductive growth stage. The pollen viability and germination rate of Gmfla22a mutant plants showed no apparent abnormalities. Histological staining demonstrated that the release of pollen grains in the mutant plants was delayed and incomplete, which may due to the locule wall thickening in the anther development. This could be the reason of the reduced seed-setting rate in Gmfla22a mutants. In summary, our study has preliminarily revealed that GmFLA22a may be involved in regulating soybean male fertility. It provides crucial genetic materials for further uncovering its molecular function and gene resources and theoretical basis for the utilization of heterosis in soybean.


Assuntos
Soja , Infertilidade Masculina , Masculino , Humanos , Plantas , Pólen/genética , Fertilidade , Infertilidade das Plantas/genética , Regulação da Expressão Gênica de Plantas
3.
Theor Appl Genet ; 137(3): 63, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427048

RESUMO

KEY MESSAGE: The gene BrABCG26 responsible for male sterility of Chinese cabbage was confirmed by two allelic mutants. Male-sterile lines are an important way of heterosis utilization in Chinese cabbage. In this study, two allelic male-sterile mutants msm3-1 and msm3-2 were obtained from a Chinese cabbage double haploid (DH) line 'FT' by using EMS-mutagenesis. Compared to the wild-type 'FT,' the stamens of mutants were completely degenerated and had no pollen, and other characters had no obvious differences. Cytological observation revealed that the failure of vacuolation of the mononuclear microspore, accompanied by abnormal tapetal degradation, resulted in anther abortion in mutants. Genetic analysis showed that a recessive gene controlled the mutant trait. MutMap combined with kompetitive allele specific PCR genotyping analyses showed that BraA01g038270.3C, encoding a transporter ABCG26 that played a vital role in pollen wall formation, was the candidate gene for msm3-1, named BrABCG26. Compared with wild-type 'FT,' the mutations existed on the second exon (C to T) and the sixth exon (C to T) of BrABCG26 gene in mutants msm3-1 and msm3-2, leading to the loss-of-function truncated protein, which verified the BrABCG26 function in stamen development. Subcellular localization and expression pattern analysis indicated that BrABCG26 was localized in the nucleus and was expressed in all organs, with the highest expression in flower buds. Compared to the wild-type 'FT,' the expressions of BrABCG26 were significantly reduced in flower buds and anthers of mutants. Promoter activity analysis showed that a strong GUS signal was detected in flower buds. These results indicated that BrABCG26 is responsible for the male sterility of msm3 mutants in Chinese cabbage.


Assuntos
Brassica rapa , Brassica , Infertilidade Masculina , Masculino , Humanos , Brassica rapa/genética , Perfilação da Expressão Gênica/métodos , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Plantas/genética , Brassica/genética , Mutação , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética
4.
Plant Physiol Biochem ; 208: 108484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452452

RESUMO

Flavonoids have been shown to play an essential role in plant growth and fertility. 4-Coumarate CoA ligase (4CL) is one of the indispensable enzymes involved in the biosynthesis of flavonoids. However, the role of 4CL and flavonoids in impact on cotton fertility is still unknown. In this study, on the basis of identification of an additional Gh4CL gene, Gh4CL20A, by using an updated G. hirsutum genome, we found that Gh4CL20A and its homologous Gh4CL20 were preferentially expressed in petals and stamens. The petals of the loss-of-function Gh4CL20/Gh4CL20A mutant generated by CRISPR/Cas9 gene editing remained white until wilting. Notably, the mutant showed indehiscent anthers, reduced number of pollen grains and pollen viability, leading to male sterility. Histological analysis revealed that abnormal degradation of anther tapetum at the tetrad stage and abnormal pollen grain development at the mature stage caused male sterility of the gene editing mutant. Analysis of the anther transcriptome identified a total of 10574 and 11962 genes up- and down-regulated in the mutant, respectively, compared to the wild-type. GO, KEGG, and WGCNA analyses linked the abnormality of the mutant anthers to the defective flavonoid biosynthetic pathway, leading to decreased activity of 4CL and chalcone isomerase (CHI) and reduced accumulation of flavonoids in the mutant. These results imply a role of Gh4CL20/Gh4CL20A in assuring proper development of cotton anthers by regulating flavonoid metabolism. This study elucidates a molecular mechanism underlying cotton anther development and provides candidate genes for creating cotton male sterile germplasm that has the potential to be used in production of hybrid seeds.


Assuntos
Gossypium , Infertilidade Masculina , Masculino , Humanos , Gossypium/metabolismo , Transcriptoma , Flavonoides/metabolismo , Fertilidade , Regulação da Expressão Gênica de Plantas , Flores/genética , Infertilidade das Plantas/genética
5.
Sci Rep ; 14(1): 2346, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282114

RESUMO

The study presents the first to characterize novel Erucastrum canarianse Webb and Berthel (or Can) sterile cytoplasm-based CMS lines in Indian cauliflower (Brassica oleracea var. botrytis L.) and investigating their commercial suitability. Eleven Can-based CMS lines were examined for 12 agro-morphological and yield traits,18 floral traits, four seed yield traits together with three each of the Ogura (source: wild Japanese Radish) and Tour (Source: Brassica tournefortii) cytoplasms. All of the recorded floral and seed traits showed significant (P > 0.05) differences between the CMS lines of each group. Agro-morphological and yield traits in CMS lines and their maintainers, however, were non-significantly different. All the Can- and Ogura-based CMS lines showed flowering and appropriate seed formation by natural cross-pollination. Only two Tour cytoplasm-based CMS lines, Tour (DC-41-5) and Tour (DC-67), produced the smallest malformed flowers and stigma. The highest seed yield per plant in CMS lines was in Ogu (DC-98-4) and the lowest in Tour (DC-67). P14 and P15, two polymorphic mtDNA markers, were discovered for the Can CMS system for early detection. Five primers (ITS5a-ITS4, atpF-atpH, P16, rbeL and trnL), along with their maintainers, were sequenced and aligned to detect nucleotide changes including as additions and or deletions at different positions. The newly introduced E. canariense sterile cytoplasm-based CMS system in cauliflower is the subject of the first comprehensive report, which emphasises their potential as a further stable and reliable genetic mechanism for hybrid breeding.


Assuntos
Brassica , Raphanus , Brassica/genética , Melhoramento Vegetal , Citoplasma/genética , Citosol , Fenótipo , Infertilidade das Plantas/genética
6.
New Phytol ; 241(5): 2059-2074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197218

RESUMO

Thermo-sensitive genic male sterile (TGMS) lines are the core of two-line hybrid rice (Oryza sativa). However, elevated or unstable critical sterility-inducing temperatures (CSITs) of TGMS lines are bottlenecks that restrict the development of two-line hybrid rice. However, the genes and molecular mechanisms controlling CSIT remain unknown. Here, we report the CRITICAL STERILITY-INDUCING TEMPERATURE 2 (CSIT2) that encodes a really interesting new gene (RING) type E3 ligase, controlling the CSIT of thermo-sensitive male sterility 5 (tms5)-based TGMS lines through ribosome-associated protein quality control (RQC). CSIT2 binds to the large and small ribosomal subunits and ubiquitinates 80S ribosomes for dissociation, and may also ubiquitinate misfolded proteins for degradation. Mutation of CSIT2 inhibits the possible damage to ubiquitin system and protein translation, which allows more proteins such as catalases to accumulate for anther development and inhibits abnormal accumulation of reactive oxygen species (ROS) and premature programmed cell death (PCD) in anthers, partly rescuing male sterility and raised the CSIT of tms5-based TGMS lines. These findings reveal a mechanism controlling CSIT and provide a strategy for solving the elevated or unstable CSITs of tms5-based TGMS lines in two-line hybrid rice.


Assuntos
Infertilidade Masculina , Oryza , Masculino , Humanos , Temperatura , Oryza/genética , Ubiquitina , Ubiquitina-Proteína Ligases/genética , Infertilidade das Plantas/genética
7.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256191

RESUMO

DNA methylation is widely found in higher plants and can control gene expression by regulation without changing the DNA sequence. In this study, the whole-genome methylation map of sugar beet was constructed by WGBS (whole-genome bisulfite sequencing) technology, and the results of WGBS were verified by bisulfite transformation, indicating that the results of WGBS technology were reliable. In addition, 12 differential methylation genes (DMGs) were identified, which were related to carbohydrate and energy metabolism, pollen wall development, and endogenous hormone regulation. Quantitative real-time PCR (qRT-PCR) showed that 75% of DMG expression levels showed negative feedback with methylation level, indicating that DNA methylation can affect gene expression to a certain extent. In addition, we found hypermethylation inhibited gene expression, which laid a foundation for further study on the molecular mechanism of DNA methylation at the epigenetic level in sugar beet male sterility.


Assuntos
Beta vulgaris , Metilação de DNA , Sulfitos , Beta vulgaris/genética , Infertilidade das Plantas/genética , Verduras , Açúcares
8.
Plant Biotechnol J ; 22(5): 1325-1334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213067

RESUMO

Cytoplasmic male sterility (CMS), encoded by the mitochondrial open reading frames (ORFs), has long been used to economically produce crop hybrids. However, the utilization of CMS also hinders the exploitation of sterility and fertility variation in the absence of a restorer line, which in turn narrows the genetic background and reduces biodiversity. Here, we used a mitochondrial targeted transcription activator-like effector nuclease (mitoTALENs) to knock out ORF138 from the Ogura CMS broccoli hybrid. The knockout was confirmed by the amplification and re-sequencing read mapping to the mitochondrial genome. As a result, knockout of ORF138 restored the fertility of the CMS hybrid, and simultaneously manifested a cold-sensitive male sterility. ORF138 depletion is stably inherited to the next generation, allowing for direct use in the breeding process. In addition, we proposed a highly reliable and cost-effective toolkit to accelerate the life cycle of fertile lines from CMS-derived broccoli hybrids. By applying the k-mean clustering and interaction network analysis, we identified the central gene networks involved in the fertility restoration and cold-sensitive male sterility. Our study enables mitochondrial genome editing via mitoTALENs in Brassicaceae vegetable crops and provides evidence that the sex production machinery and its temperature-responsive ability are regulated by the mitochondria.


Assuntos
Brassica , Infertilidade Masculina , Masculino , Humanos , Brassica/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Melhoramento Vegetal , Mitocôndrias/genética , Fertilidade/genética , Infertilidade das Plantas/genética
9.
BMC Plant Biol ; 23(1): 618, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057735

RESUMO

BACKGROUND: Cytoplasmic male sterility (CMS) plays a crucial role in hybrid production. K-type CMS, a cytoplasmic male sterile line of wheat with the cytoplasms of Aegilops kotschyi, is widely used due to its excellent characteristics of agronomic performance, easy maintenance and easy restoration. However, the mechanism of its pollen abortion is not yet clear. RESULTS: In this study, wheat K-type CMS MS(KOTS)-90-110 (MS line) and it's fertile near-isogenic line MR (KOTS)-90-110 (MR line) were investigated. Cytological analysis indicated that the anthers of MS line microspore nucleus failed to divide normally into two sperm nucleus and lacked starch in mature pollen grains, and the key abortive period was the uninucleate stage to dinuclear stage. Then, we compared the transcriptome of MS line and MR line anthers at these two stages. 11,360 and 5182 differentially expressed genes (DEGs) were identified between the MS and MR lines in the early uninucleate and binucleate stages, respectively. Based on GO enrichment and KEGG pathways analysis, it was evident that significant transcriptomic differences were "plant hormone signal transduction", "MAPK signaling pathway" and "spliceosome". We identified 17 and 10 DEGs associated with the IAA and ABA signal transduction pathways, respectively. DEGs related to IAA signal transduction pathway were downregulated in the early uninucleate stage of MS line. The expression level of DEGs related to ABA pathway was significantly upregulated in MS line at the binucleate stage compared to MR line. The determination of plant hormone content and qRT-PCR further confirmed that hormone imbalance in MS lines. Meanwhile, 1 and 2 DEGs involved in ABA and Ethylene metabolism were also identified in the MAPK cascade pathway, respectively; the significant up regulation of spliceosome related genes in MS line may be another important factor leading to pollen abortion. CONCLUSIONS: We proposed a transcriptome-mediated pollen abortion network for K-type CMS in wheat. The main idea is hormone imbalance may be the primary factor, MAPK cascade pathway and alternative splicing (AS) may also play important regulatory roles in this process. These findings provided intriguing insights for the molecular mechanism of microspore abortion in K-type CMS, and also give useful clues to identify the crucial genes of CMS in wheat.


Assuntos
Redes Reguladoras de Genes , Triticum , Triticum/metabolismo , Infertilidade das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Sementes , Perfilação da Expressão Gênica , Transcriptoma , Citoplasma/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Sci Rep ; 13(1): 23057, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155162

RESUMO

In order to evaluate the genetic effect caused by hybrid sterile loci, NILs with O. glaberrima fragment at six hybrid sterile loci under O. sativa genetic background (single-locus-NILs) were developed; two lines harboring two hybrid sterile loci, one line harboring three hybrid sterile loci were further developed. A total of nine NILs were used to test cross with O. sativa recurrent parent, and O. glaberrima accessions respectively. The results showed that the sterility of pollen grains in F1 hybrids deepened with the increase of the number of hybrid sterile loci, when the nine lines test crossed with O. sativa recurrent parent. The F1 hybrids were almost completely sterile when three hybrid sterile loci were heterozygeous. On the other hand, the single-locus-NILs had limited bridge effect on improving pollen grain fertility of interspecific hybrids. Compared single-locus-NILs, the multiple-loci-NILs showed increasing effect on pollen fertility when test crossing with O. glaberrima accessions. Further backcrossing can improve the fertility of pollen grain and spikelet of interspecific hybrids. The optimal solution to improve the fertility of interspecific hybrid can be utilization of pyramiding bridge parent plus backcrossing. This report has potential for understanding the nature of interspecific hybrid sterility, and overcoming the interspecific hybrid F1 pollen grain sterility between O. sativa and O. glaberrima.


Assuntos
Infertilidade , Oryza , Oryza/genética , Fertilidade/genética , Pólen/genética , Infertilidade das Plantas/genética
11.
Nat Commun ; 14(1): 7528, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980335

RESUMO

Breakdown of reproductive isolation facilitates flow of useful trait genes into crop plants from their wild relatives. Hybrid sterility, a major form of reproductive isolation exists between cultivated rice (Oryza sativa) and wild rice (O. meridionalis, Mer). Here, we report the cloning of qHMS1, a quantitative trait locus controlling hybrid male sterility between these two species. Like qHMS7, another locus we cloned previously, qHMS1 encodes a toxin-antidote system, but differs in the encoded proteins, their evolutionary origin, and action time point during pollen development. In plants heterozygous at qHMS1, ~ 50% of pollens carrying qHMS1-D (an allele from cultivated rice) are selectively killed. In plants heterozygous at both qHMS1 and qHMS7, ~ 75% pollens without co-presence of qHMS1-Mer and qHMS7-D are selectively killed, indicating that the antidotes function in a toxin-dependent manner. Our results indicate that different toxin-antidote systems provide stacked reproductive isolation for maintaining species identity and shed light on breakdown of hybrid male sterility.


Assuntos
Infertilidade Masculina , Oryza , Masculino , Humanos , Hibridização Genética , Cruzamentos Genéticos , Oryza/genética , Antídotos , Mapeamento Cromossômico , Isolamento Reprodutivo , Infertilidade das Plantas/genética
12.
Nat Commun ; 14(1): 7333, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957162

RESUMO

Cytoplasmic male sterility (CMS) lines are important for breeding hybrid crops, and utilization of CMS lines requires strong fertility restorer (Rf) genes. Rf4, a major Rf for Wild-Abortive CMS (CMS-WA), has been cloned in rice. However, the Rf4 evolution and formation of CMS-WA/Rf system remain elusive. Here, we show that the Rf4 locus emerges earlier than the CMS-WA gene WA352 in wild rice, and 69 haplotypes of the Rf4 locus are generated in the Oryza genus through the copy number and sequence variations. Eight of these haplotypes of the Rf4 locus are enriched in modern rice cultivars during natural and human selections, whereas non-functional rf4i is preferentially selected for breeding current CMS-WA lines. We further verify that varieties carrying two-copy Rf4 haplotype have stronger fertility restoration ability and are widely used in three-line hybrid rice breeding. Our findings increase our understanding of CMS/Rf systems and will likely benefit crop breeding.


Assuntos
Genes de Plantas , Oryza , Humanos , Oryza/genética , Variações do Número de Cópias de DNA , Melhoramento Vegetal , Citoplasma , Fertilidade/genética , Infertilidade das Plantas/genética
13.
Theor Appl Genet ; 136(12): 248, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978996

RESUMO

Three-line hybrid rice has primarily been developed on wild abortive (WA)-type cytoplasmic male sterility (CMS) and has helped increase the yield of rice globally. The development of WA-type CMS lines and hybrids was expedited through the identification and mapping of the fertility restorer gene (Rf) in maintainers. This study observed fertile plants in WA-TianfengA/Zhenshan97B//TianfengB population, indicating that the maintainer line 'Zhenshan97B' should carry Rfs for WA-type CMS. Several advanced backcross populations were generated with the genetic background of the 'WA-TianfengA,' and the pollen fertility levels of the backcrossed individuals in BC3F1, BC4F1 and BC4F2 populations are governed by a new gene, Rf20(t), from 'Zhenshan97B.' Employing bulk segregant analysis of fertile and sterile pools from the BC4F1 population, Rf20(t) was genetically mapped to a candidate region on chromosome 10. Subsequently, Rf20(t) was located between RM24883 and RM24919 through recombination analysis of molecular markers using the BC4F2 population. Implementing a substitution mapping strategy, Rf20(t) was ultimately mapped to a 245-kb region between the molecular markers STS10-122 and STS10-126 and obtained the most likely candidate gene LOC_Os10g02650, which is predicted to encode pentatricopeptide repeat-containing (PPR) protein. These results enhance our understanding of the fertility restoration of WA-type CMS lines, facilitating the development of high-quality pairs of WA-type CMS and maintainer lines.


Assuntos
Oryza , Humanos , Oryza/genética , Infertilidade das Plantas/genética , Citoplasma/genética , Fertilidade/genética , Genes de Plantas
14.
Theor Appl Genet ; 136(11): 234, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878085

RESUMO

KEY MESSAGE: A novel strong fertility restorer gene Rf12 for C-type cytoplasmic male sterility of maize was finely mapped on chromosome 2. Its best candidate gene Zm00001d007531 is predicted to encode a p-type PPR protein. The lack of strong restorer gene of maize CMS-C greatly limits its application in hybrid seed production. Therefore, the cloning of maize CMS-C novel strong restorer genes is necessary. In this study, a strong restorer line ZH91 for maize CMS-C was found, and the novel restorer gene named Rf12 in ZH91 had been mapped in a 146 kb physical interval on maize chromosome 2. Using the third-generation high-throughput sequencing (ONT), the whole genome sequence of ZH91 was got, and with integrating the annotation information of the reference genome B73_RefGen_v4 and B73_RefGen_v5, four candidate genes were predicted in ZH91 within the mapping region. Then using gene cloning, stranded specific RNA sequencing, qRT-PCR analysis and subcellular localization, Zm00001d007531 was identified as the most likely candidate gene of Rf12. Zm00001d007531 encodes a p-type PPR protein with 19 PPR motifs and targets mitochondria and chloroplast. Stranded specific RNA sequencing and qRT-PCR results both show that the expression of Zm00001d007531 between anthers of near-isogenic lines C478Rf12Rf12 and C478rf12rf12 was significantly difference in pollen mother cell stage. And the result of sequence alignment for Zm00001d007531 gene in 60 materials showed that there are twelve SNPs in CDS region of Zm00001d007531 were tightly linked to the fertility. The finding of a novel strong restorer germplasm resource ZH91 for maize CMS-C can greatly promote the application of maize CMS-C line in maize hybrid seeds production, and the identification of candidate gene Zm00001d007531 can accelerate the backcrossing process of maize CMS-C strong restorer gene Rf12 to some extent.


Assuntos
Infertilidade das Plantas , Zea mays , Zea mays/genética , Infertilidade das Plantas/genética , Citoplasma , Fertilidade , Estudos de Associação Genética
15.
Nat Commun ; 14(1): 6212, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798291

RESUMO

Male sterility has been used for crop hybrid breeding for a long time. It has contributed greatly to crop yield increase. However, the genetic basis of male sterility has not been fully elucidated. Here, we report map-based cloning of the cabbage (Brassica oleracea) dominant male-sterile gene Ms-cd1 and reveal that it encodes a PHD-finger motif transcription factor. A natural allele Ms-cd1PΔ-597, resulting from a 1-bp deletion in the promoter, confers dominant genic male sterility (DGMS), whereas loss-of-function ms-cd1 mutant shows recessive male sterility. We also show that the ethylene response factor BoERF1L represses the expression of Ms-cd1 by directly binding to its promoter; however, the 1-bp deletion in Ms-cd1PΔ-597 affects the binding. Furthermore, ectopic expression of Ms-cd1PΔ-597 confers DGMS in both dicotyledonous and monocotyledonous plant species. We thus propose that the DGMS system could be useful for breeding hybrids of multiple crop species.


Assuntos
Brassica , Infertilidade Masculina , Masculino , Humanos , Infertilidade das Plantas/genética , Melhoramento Vegetal , Brassica/genética , Mutação
16.
Gene ; 888: 147740, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37661030

RESUMO

Chalcone synthase (CHS), also known as the plants-specific type III polyketide synthases (PKSs), catalyzes the first key step in the biosynthesis of plant flavonoids. Flavonoids are one of the most important secondary metabolites which participate in flower pigmentation and pollen fertility. Recent reports have demonstrated the role of the CHS family in plant pollen exine formation. This study focused on the potential roles of CHS in the pollen exine formation of wheat. In the present study, a genome-wide investigation of the CHS family was carried out, and 87 CHS genes were identified in wheat. TaCHS3, TaCHS10, and TaCHS13 are wheat orthologs of Arabidopsis LESS ADHESIVE POLLEN (LAP5); TaCHS58, TaCHS64, and TaCHS67 are wheat orthologs of AtLAP6. TaCHS3, TaCHS10, and TaCHS67 showed anther-specific patterns. The expression of TaCHS3, TaCHS10, and TaCHS67 was positively co-expressed with sporopollenin biosynthetic genes, including TaCYP703A2, TaCYP704B1, TaDRL1, TaTKPR2, and TaMS2. Coincidently, the expression of TaCHS3, TaCHS10, and TaCHS67, together with those sporopollenin biosynthetic genes, were repressed at the tetrads and uninucleate stages in the temperature-sensitive genic male-sterile (TGMS) line BS366 under sterile conditions. Wheat anther-specific CHS genes might participate in the exine formation of BS366 through co-expressing with sporopollenin biosynthetic genes, which will undoubtedly provide knowledge of the roles of CHS in wheat pollen development.


Assuntos
Infertilidade das Plantas , Triticum , Arabidopsis/genética , Flavonoides/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Temperatura , Triticum/genética , Infertilidade das Plantas/genética
17.
Mol Plant ; 16(10): 1695-1709, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37743625

RESUMO

Two-line hybrid breeding can fully utilize heterosis in crops. In thermo-sensitive genic male sterile (TGMS) lines, low critical sterility-inducing temperature (CSIT) is vital to safeguard the production of two-line hybrid seeds in rice (Oryza sativa), but the molecular mechanism determining CSIT is unclear. Here, we report the cloning of CSIT1, which encodes an E3 ubiquitin ligase, and show that CSIT1 modulates the CSIT of thermo-sensitive genic male sterility 5 (tms5)-based TGMS lines through ribosome-associated quality control (RQC). Biochemical assays demonstrated that CSIT1 binds to the 80S ribosomes and ubiquitinates abnormal nascent polypeptides for degradation in the RQC process. Loss of CSIT1 function inhibits the possible damage of tms5 to the ubiquitination system and protein translation, resulting in enhanced accumulation of anther-related proteins such as catalase to suppress abnormal accumulation of reactive oxygen species and premature programmed cell death in the tapetum, thereby leading to a much higher CSIT in the tms5-based TGMS lines. Taken together, our findings reveal a regulatory mechanism of CSIT, providing new insights into RQC and potential targets for future two-line hybrid breeding.


Assuntos
Infertilidade , Oryza , Temperatura , Oryza/genética , Ubiquitina-Proteína Ligases/genética , Melhoramento Vegetal , Ribossomos , Infertilidade das Plantas/genética
18.
New Phytol ; 240(2): 830-845, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37551058

RESUMO

Restorer-of-fertility (Rf) genes encode pentatricopeptide repeat (PPR) proteins that are targeted to mitochondria where they specifically bind to transcripts that induce cytoplasmic male sterility and repress their expression. In searching for a molecular signature unique to this class of proteins, we found that a majority of known Rf proteins have a distinct domain, which we called RfCTD (Restorer-of-fertility C-terminal domain), and its presence correlates with the ability to induce cleavage of the mitochondrial RNA target. A screen of 219 angiosperm genomes from 123 genera using a sequence profile that can quickly and accurately identify RfCTD sequences revealed considerable variation in RFL/RfCTD gene numbers across flowering plants. We observed that plant genera with bisexual flowers have significantly higher numbers of RFL genes compared to those with unisexual flowers, consistent with a role of these proteins in restoration of male fertility. We show that removing the RfCTD from the RFL protein RNA PROCESSING FACTOR 2-nad6 prevented cleavage of its RNA target, the nad6 transcript, in Arabidopsis thaliana mitochondria. We provide a simple way of identifying putative Rf candidates in genome sequences, new insights into the molecular mode of action of Rf proteins and the evolution of fertility restoration in flowering plants.


Assuntos
Arabidopsis , Genes de Plantas , Mitocôndrias/metabolismo , Citoplasma/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fertilidade/genética , Infertilidade das Plantas/genética
20.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37499659

RESUMO

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Assuntos
Tecnologia de Impulso Genético , Oryza , Hibridização Genética , Oryza/genética , Melhoramento Vegetal/métodos , Isolamento Reprodutivo , Infertilidade das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...