Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2318857121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437547

RESUMO

Warning coloration and Batesian mimicry are classic examples of Darwinian evolution, but empirical evolutionary patterns are often paradoxical. We test whether foraging costs predict the evolution of striking coloration by integrating genetic and ecological data for aposematic and mimetic snakes (Elapidae and Dipsadidae). Our phylogenetic comparison on a total of 432 species demonstrated that dramatic changes in coloration were well predicted by foraging strategy. Multiple tests consistently indicated that warning coloration and conspicuous mimicry were more likely to evolve in species where foraging costs of conspicuous appearance were relaxed by poor vision of their prey, concealed habitat, or nocturnal activity. Reversion to crypsis was also well predicted by ecology for elapids but not for dipsadids. In contrast to a theoretical prediction and general trends, snakes' conspicuous coloration was correlated with secretive ecology, suggesting that a selection regime underlies evolutionary patterns. We also found evidence that mimicry of inconspicuous models (pitvipers) may have evolved in association with foraging demand for crypsis. These findings demonstrate that foraging is an important factor necessary to understand the evolution, persistence, and diversity of warning coloration and mimicry of snakes, highlighting the significance of additional selective factors in solving the warning coloration paradox.


Assuntos
Mimetismo Biológico , Baixa Visão , Humanos , Filogenia
2.
Proc Natl Acad Sci U S A ; 121(11): e2300886121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408213

RESUMO

Flight was a key innovation in the adaptive radiation of insects. However, it is a complex trait influenced by a large number of interacting biotic and abiotic factors, making it difficult to unravel the evolutionary drivers. We investigate flight patterns in neotropical heliconiine butterflies, well known for mimicry of their aposematic wing color patterns. We quantify the flight patterns (wing beat frequency and wing angles) of 351 individuals representing 29 heliconiine and 9 ithomiine species belonging to ten color pattern mimicry groupings. For wing beat frequency and up wing angles, we show that heliconiine species group by color pattern mimicry affiliation. Convergence of down wing angles to mimicry groupings is less pronounced, indicating that distinct components of flight are under different selection pressures and constraints. The flight characteristics of the Tiger mimicry group are particularly divergent due to convergence with distantly related ithomiine species. Predator-driven selection for mimicry also explained variation in flight among subspecies, indicating that this convergence can occur over relatively short evolutionary timescales. Our results suggest that the flight convergence is driven by aposematic signaling rather than shared habitat between comimics. We demonstrate that behavioral mimicry can occur between lineages that have separated over evolutionary timescales ranging from <0.5 to 70 My.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Evolução Biológica , Asas de Animais
3.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401262

RESUMO

Hypolimnas misippus is a Batesian mimic of the toxic African Queen butterfly (Danaus chrysippus). Female H. misippus butterflies use two major wing patterning loci (M and A) to imitate three color morphs of D. chrysippus found in different regions of Africa. In this study, we examine the evolution of the M locus and identify it as an example of adaptive atavism. This phenomenon involves a morphological reversion to an ancestral character that results in an adaptive phenotype. We show that H. misippus has re-evolved an ancestral wing pattern present in other Hypolimnas species, repurposing it for Batesian mimicry of a D. chrysippus morph. Using haplotagging, a linked-read sequencing technology, and our new analytical tool, Wrath, we discover two large transposable element insertions located at the M locus and establish that these insertions are present in the dominant allele responsible for producing mimetic phenotype. By conducting a comparative analysis involving additional Hypolimnas species, we demonstrate that the dominant allele is derived. This suggests that, in the derived allele, the transposable elements disrupt a cis-regulatory element, leading to the reversion to an ancestral phenotype that is then utilized for Batesian mimicry of a distinct model, a different morph of D. chrysippus. Our findings present a compelling instance of convergent evolution and adaptive atavism, in which the same pattern element has independently evolved multiple times in Hypolimnas butterflies, repeatedly playing a role in Batesian mimicry of diverse model species.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Borboletas/genética , Elementos de DNA Transponíveis , Mimetismo Biológico/genética , Fenótipo , África , Asas de Animais/anatomia & histologia
4.
Biol Lett ; 20(1): 20230461, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166416

RESUMO

It has long been hypothesized that a species that is relatively easy to catch by predators may face selection to resemble a species that is harder to catch. Several experiments using avian predators have since supported this 'evasive mimicry' hypothesis. However, the sudden movement of artificial evasive prey in each of the above experiments may have startled the predators, generating an avoidance response unrelated to difficulty of capture. Additionally in the above experiments the catchability of prey was all or nothing, while in nature predators may occasionally catch evasive prey or fail to catch slower species, which might inhibit learning. Here, using mantids as predators, we conducted an experimental test of the evasive mimicry hypothesis that circumvents these limitations, using live painted calyptrate flies with modified evasive capabilities as prey. We found that mantids readily learned to avoid pursuing the more evasive prey types. Warning signals based on evasiveness and their associated mimicry may be widespread phenomena in nature. These findings not only further support its plausibility but demonstrate that even arthropod predators can select for it.


Assuntos
Artrópodes , Mimetismo Biológico , Animais , Comportamento Predatório/fisiologia , Evolução Biológica , Modelos Biológicos , Aprendizagem
5.
Proc Biol Sci ; 291(2015): 20232292, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38264783

RESUMO

Predator-prey interactions have been suggested as drivers of diversity in different lineages, and the presence of anti-predator defences in some clades is linked to higher rates of diversification. Warning signals are some of the most widespread defences in the animal world, and there is evidence of higher diversification rates in aposematic lineages. The mechanisms behind such species richness, however, are still unclear. Here, we test whether lineages that use aposematism as anti-predator defence exhibit higher levels of genetic differentiation between populations, leading to increased opportunities for divergence. We collated from the literature more than 3000 pairwise genetic differentiation values across more than 700 populations from over 60 amphibian species. We find evidence that over short geographical distances, populations of species of aposematic lineages exhibit greater genetic divergence relative to species that are not aposematic. Our results support a scenario where the use of warning signals could restrict gene flow, and suggest that anti-predator defences could impact divergence between populations and potentially have effects at a macro-evolutionary scale.


Assuntos
Anuros , Mimetismo Biológico , Animais , Deriva Genética , Evolução Biológica , Fluxo Gênico
6.
J Theor Biol ; 577: 111683, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38008158

RESUMO

Batesian mimicry is a strategy in which palatable prey species (mimic-species) resemble unpalatable prey species with aposematism (model-species). Theoretical studies on Batesian mimicry have been conducted in terms of their evolutionary significance and ecological consequences. However, despite the importance of eco-evolutionary feedback, the evolution and population dynamics of mimicry complex have long been explored separately. Previous studies on the dynamics of mimicry complex have proposed the possibility of the extinction of unpalatable species due to high predation by predators confusing palatable and unpalatable species. If the abundance of palatable species was large in comparison with unpalatable species, predation pressure on both unpalatable and palatable species became severe, resulting in the extinction of the unpalatable species. We hypothesized that palatable species evolved not to be similar to unpalatable species when unpalatable species became rare, because this situation is no longer advantageous for palatable species to mimic unpalatable species. Here, we constructed the eco-evolutionary dynamics of unpalatable and palatable species, and demonstrated that the evolutionary process of palatable species, which has been overlooked in previous theoretical studies, could rescue the unpalatable species from extinction. We modeled predators' foraging decisions based on signal detection theory. We assumed that palatable species evolve in a trait space, in which there are separate adaptive peaks on either side of an adaptive valley for mimicry and cryptic phenotypes. Then, we derived the stability conditions of the equilibria. As a result, the evolution of a cryptic phenotype in palatable species was driven when unpalatable species was rare, which mitigated predation pressure on unpalatable species through the reduction in the probability to be attacked. This could work to rescue unpalatable species from extinction.


Assuntos
Evolução Biológica , Mimetismo Biológico , Animais , Comportamento Predatório , Fenótipo , Meio Ambiente
7.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039153

RESUMO

Müllerian mimicry provides natural replicates ideal for exploring mechanisms underlying adaptive phenotypic divergence and convergence, yet the genetic mechanisms underlying mimetic variation remain largely unknown. The current study investigates the genetic basis of mimetic color pattern variation in a highly polymorphic bumble bee, Bombus breviceps (Hymenoptera, Apidae). In South Asia, this species and multiple comimetic species converge onto local Müllerian mimicry patterns by shifting the abdominal setal color from orange to black. Genetic crossing between the orange and black phenotypes suggested the color dimorphism being controlled by a single Mendelian locus, with the orange allele being dominant over black. Genome-wide association suggests that a locus at the intergenic region between 2 abdominal fate-determining Hox genes, abd-A and Abd-B, is associated with the color change. This locus is therefore in the same intergenic region but not the same exact locus as found to drive red black midabdominal variation in a distantly related bumble bee species, Bombus melanopygus. Gene expression analysis and RNA interferences suggest that differential expression of an intergenic long noncoding RNA between abd-A and Abd-B at the onset setal color differentiation may drive the orange black color variation by causing a homeotic shift late in development. Analysis of this same color locus in comimetic species reveals no sequence association with the same color shift, suggesting that mimetic convergence is achieved through distinct genetic routes. Our study establishes Hox regions as genomic hotspots for color pattern evolution in bumble bees and demonstrates how pleiotropic developmental loci can drive adaptive radiations in nature.


Assuntos
Mimetismo Biológico , Estudo de Associação Genômica Ampla , Abelhas/genética , Animais , Fenótipo , Mimetismo Biológico/genética , Edição de Genes , DNA Intergênico/genética
8.
Behav Processes ; 213: 104956, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805082

RESUMO

Many flies and moths mimic the frontal appearance of jumping spiders. This type of mimicry, which we term as partial mimicry, can be distinguished from Batesian mimicry since the mimic has spider resembling patterns only in certain parts of the body, and not the entire body. The presence of spider-like patterns is obvious only at certain angles suggesting that the mimic is frequently targeted by its predators from particular angles. We tested this hypothesis using Deep Convolutional Neural Networks (DCNNs). First, we trained the network on images of forward facing jumping spiders, where features such as the large principal eyes, small lateral eyes and outstretched legs were evident. Then we tested the classifier on images of jumping spider mimicking flies and moths. A probability value according to the likelihood of the image being a jumping spider or not was assigned by the classifier. We show that the classifier was more likely to misidentify mimicking flies and moths as jumping spiders, but that this probability varied according to the species tested. We further tested it on images of flies from different angles and by taking into consideration the visual acuity of potential predators. Our results suggest that neural networks can be efficient tools for testing evolutionary hypotheses, and that partial mimicry may be a result of the effect of the signaling angle and orientation of the mimics in combination with the likelihood that predators may depend on cognitive shortcuts to identify insects as prey. Further experiments incorporating the properties of the visual system of predators (such as vision in ultraviolet) would result in a better understanding of the evolution of partial mimicry.


Assuntos
Formigas , Mimetismo Biológico , Aranhas , Animais , Comportamento Predatório
9.
J Theor Biol ; 575: 111609, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37708988

RESUMO

Floral food deception is a well-known phenomenon which is not thoroughly understood. Particularly, it is unclear what drives a plant towards Batesian mimicry or towards generalized food deception. We analysed the evolutionary game between a Model species with nectar-secreting flowers and a Deceiver species that provides no nectar who share pollinators for reproduction. We focused our analysis on the effect of similarity of floral signals between participating plants and on costs of nectar production. We defined payoffs in the game between Models and Deceivers as the stationary visitation frequencies to participating species with different signal similarities and nectar costs. Therefore, fitness payoff of each strategy was a product of complex interactions between plant species composing the community and the pollinators visiting them. Our model provides a unified framework in which consequences of Model species interaction with different deception modes can be compared. Our findings suggest that plant-pollinator systems, like other mutualistic systems, are prone to exploitation, and that exploitation may persist at a large range of conditions. We showed that floral similarity, and thus, pollinators' ability to discriminate between Model and deceptive species, governs the stability of Batesian mimicry, while pollinator switching and sampling behaviour enables the persistence of general food deception.


Assuntos
Mimetismo Biológico , Orchidaceae , Néctar de Plantas , Polinização , Flores , Plantas
10.
Sci Adv ; 9(34): eadi5168, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611100

RESUMO

Warning coloration are common defense strategies used by animals to deter predators. Pestilential gregarious locusts exhibit a notable black-brown pattern as a form of warning coloration. However, the mechanisms regulating this distinctive pattern remain largely unknown. Here, we revealed that the black and brown integuments of locusts are governed by varying amounts of ß-carotene and ß-carotene-binding protein (ßCBP) complexes. ßCBP expression is regulated by the bZIP transcription factor activation transcription factor 2 (ATF2), which is activated by protein kinase C alpha in response to crowding. Specifically, ATF2 is phosphorylated at Ser327 and translocates to the nucleus, where it binds to the ßCBP promoter and stimulates overexpression. Differential phosphorylation of ATF2 leads to the divergent black and brown coloration in gregarious locusts. The accumulation of red pigments vital for creating the brown sternum depends on ßCBP overexpression. The spatial variation in ATF2 phosphorylation enables locusts to rapidly adapt to changing environment for aposematism.


Assuntos
Mimetismo Biológico , Gafanhotos , Animais , Fosforilação , beta Caroteno , Núcleo Celular
11.
Zootaxa ; 5270(2): 231-261, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37518166

RESUMO

Phalaena militta Stoll, [1781], currently in the combination Thyrgis militta, is transferred to the new combination Calodesma militta. Phalaena militta is the type species of Thyrgis Walker, 1854, and so Thyrgis is a junior synonym of Calodesma Hübner, [1820]. The reinstated genus Seileria Dognin, 1923 is the next available name for the genus previously known as Thyrgis, and the remaining eight species and their subspecies currently in Thyrgis are transferred to new combinations as species of Seileria: S. angustifascia (Hering, 1925), S. basipunctata (Hering, 1926), S. constrictifascia (Dognin, 1919), S. flavonigra (Dognin, 1910), S. investigatorum (Toulgoët, 1988), S. marginata (Butler, 1875), S. meres (Druce, 1911), S. phlegon (Druce, 1885), S. phlegon ruscia (Druce, 1895), S. tenuifascia (Hering, 1930) and S. tenuifascia daguana (Hering, 1930). Eucyanoides Toulgoët, 1988, currently a synonym of Thyrgis, is made a new subjective synonym of Seileria. Based on DNA barcodes, we recognise three very similar, sexually dimorphic and in two cases polymorphic South American species of Calodesma with some phenotypes in common but very similar male genitalia: C. militta (BOLD:AAK1660), C. sp. cf. collaris (BOLD:ABZ2392) and C. pseudocollaris Cock new species (BOLD:AEI2170). Calodesma militta is widespread in South America, with two male morphs (collaris and dioptis) and two female morphs with variable markings (white and orange morphs). Centronia plorator Kaye, [1923] and Thyrgis lacryma Dognin, 1919 are variants of the white female morph and are new synonyms of Calodesma militta. A third female morph with red markings was not sequenced and could not be allocated to a species. Calodesma sp. cf. collaris (BOLD:ABZ2392) occurs in southern South America with both male morphs but only a white female morph. Calodesma pseudocollaris new species (BOLD:AEI2170) is only known from Trinidad, with one male morph (collaris) and the white female morph. Although more than ten morphs relating to this complex have been described as species, they cannot be synonymised without more data on distribution of the different species or DNA barcodes from the type specimens. Collated life history information indicates species of this group are split between Malpighiaceae feeders and Bromeliaceae feeders, but more work is needed to define these differences. The morphism patterns observed are discussed in terms of Müllerian mimicry and mimicry rings, and we suggest that in Trinidad (and elsewhere) there is a loose mimicry ring of diurnal black species with white spots or transparent patches on the wings which are most conspicuous and frequently observed when feeding on white Asteraceae flowers.


Assuntos
Mimetismo Biológico , Mariposas , Feminino , Masculino , Animais , Trinidad e Tobago , Código de Barras de DNA Taxonômico , Mariposas/genética
12.
Mol Ecol ; 32(18): 4986-4998, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37503654

RESUMO

The evolution of Batesian mimicry - whereby harmless species avoid predation through their resemblance to harmful species - has long intrigued biologists. In rare cases, Batesian mimicry is linked to intraspecific colour variation, in which only some individuals within a population resemble a noxious 'model'. Here, we assess intraspecific colour variation within a widespread New Zealand stonefly, wherein highly melanized individuals of Zelandoperla closely resemble a chemically defended aposematic stonefly, Austroperla cyrene. We assess convergence in the colour pattern of these two species, compare their relative palatability to predators, and use genome-wide association mapping to assess the genetic basis of this resemblance. Our analysis reveals that melanized Zelandoperla overlap significantly with Austroperla in colour space but are significantly more palatable to predators, implying that they are indeed Batesian mimics. Analysis of 194,773 genome-wide SNPs reveals an outlier locus (ebony) strongly differentiating melanic versus non-melanic Zelandoperla. Genotyping of 338 specimens from a single Zelandoperla population indicates that ebony explains nearly 70% of the observed variance in melanism. As ebony has a well-documented role in insect melanin biosynthesis, our findings indicate this locus has a conserved function across deeply divergent hexapod lineages. Distributional records suggest a link between the occurrence of melanic Zelandoperla and the forested ecosystems where the model Austroperla is abundant, suggesting the potential for adaptive shifts in this system underpinned by environmental change.


Assuntos
Mimetismo Biológico , Insetos , Humanos , Animais , Ecossistema , Estudo de Associação Genômica Ampla , Mimetismo Biológico/genética , Neópteros , Comportamento Predatório , Evolução Biológica
13.
Am Nat ; 202(1): 64-77, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37384762

RESUMO

AbstractMany species gain antipredator benefits by combining gregarious behavior with warning coloration, yet there is debate over which trait evolves first and which is the secondary adaptive enhancement. Body size can also influence how predators receive aposematic signals and potentially constrain the evolution of gregarious behavior. To our knowledge, the causative links between the evolution of gregariousness, aposematism, and larger body sizes have not been fully resolved. Here, using the most recently resolved butterfly phylogeny and an extensive new dataset of larval traits, we reveal the evolutionary interactions between important traits linked to larval gregariousness. We show that larval gregariousness has arisen many times across butterflies, and aposematism is a likely prerequisite for gregariousness to evolve. We also find that body size may be an important factor for determining the coloration of solitary, but not gregarious, larvae. Additionally, by exposing artificial larvae to wild avian predation, we show that undefended, cryptic larvae are heavily predated when aggregated but benefit from solitariness, whereas the reverse is true for aposematic prey. Our data reinforce the importance of aposematism for gregarious larval survival while identifying new questions about the roles of body size and toxicity in the evolution of grouping behavior.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Larva , Comportamento Predatório , Tamanho Corporal
14.
PeerJ ; 11: e15380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304866

RESUMO

In defensive mimicry, resemblance between unequally defended species can be parasitic; this phenomenon has been termed quasi-Batesian mimicry. Few studies have used real co-mimics and their predators to test whether the mimetic interactions were parasitic. Here, we investigated the mimetic interaction between two well-defended insect species, the bombardier beetle Pheropsophus occipitalis jessoensis (Coleoptera: Carabidae) and the assassin bug Sirthenea flavipes (Hemiptera: Reduviidae), using their potential predator, the pond frog Pelophylax nigromaculatus (Anura: Ranidae), which coexists with these insect species in the same habitat in Japan. We observed behavioural responses of this frog species (adults and juveniles) to adult Ph. occipitalis jessoensis and adult S. flavipes under laboratory conditions. Among the frogs, 100% and 75% rejected Ph. occipitalis jessoensis and S. flavipes, respectively, suggesting that, compared with the assassin bug S. flavipes, the bombardier beetle Ph. occipitalis jessoensis is more well-defended against frogs. An assassin bug or a bombardier beetle was provided to a frog that had encountered the other insect species. Frogs with a history of assassin bug encounter demonstrated a lower rate of attack toward bombardier beetles. Similarly, frogs with a history of bombardier beetle encounter demonstrated a lower rate of attack toward assassin bugs. Therefore, both the bombardier beetle Ph. occipitalis jessoensis and the assassin bug S. flavipes benefit from the mimetic interaction.


Assuntos
Mimetismo Biológico , Besouros , Triatoma , Animais , Insetos , Anuros
15.
J Evol Biol ; 36(8): 1116-1132, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37341138

RESUMO

Changes in ecological preference, often driven by spatial and temporal variation in resource distribution, can expose populations to environments with divergent information content. This can lead to adaptive changes in the degree to which individuals invest in sensory systems and downstream processes, to optimize behavioural performance in different contexts. At the same time, environmental conditions can produce plastic responses in nervous system development and maturation, providing an alternative route to integrating neural and ecological variation. Here, we explore how these two processes play out across a community of Heliconius butterflies. Heliconius communities exhibit multiple Mullerian mimicry rings, associated with habitat partitioning across environmental gradients. These environmental differences have previously been linked to heritable divergence in brain morphology in parapatric species pairs. They also exhibit a unique dietary adaptation, known as pollen feeding, that relies heavily on learning foraging routes, or trap-lines, between resources, which implies an important environmental influence on behavioural development. By comparing brain morphology across 133 wild-caught and insectary-reared individuals from seven Heliconius species, we find strong evidence for interspecific variation in patterns of neural investment. These largely fall into two distinct patterns of variation; first, we find consistent patterns of divergence in the size of visual brain components across both wild and insectary-reared individuals, suggesting genetically encoded divergence in the visual pathway. Second, we find interspecific differences in mushroom body size, a central component of learning and memory systems, but only among wild caught individuals. The lack of this effect in common-garden individuals suggests an extensive role for developmental plasticity in interspecific variation in the wild. Finally, we illustrate the impact of relatively small-scale spatial effects on mushroom body plasticity by performing experiments altering the cage size and structure experienced by individual H. hecale. Our data provide a comprehensive survey of community level variation in brain structure, and demonstrate that genetic effects and developmental plasticity contribute to different axes of interspecific neural variation.


Assuntos
Mimetismo Biológico , Borboletas , Humanos , Animais , Borboletas/genética , Encéfalo , Aprendizagem , Adaptação Fisiológica
16.
Science ; 379(6637): 1136-1140, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927015

RESUMO

The initial evolution of warning signals in unprofitable prey, termed aposematism, is often seen as a paradox because any new conspicuous mutant would be easier to detect than its cryptic conspecifics and not readily recognized by naïve predators as defended. One possibility is that permanent aposematism first evolved through species using hidden warning signals, which are only exposed to would-be predators on encounter. Here, we present a large-scale analysis of evolutionary transitions in amphibian antipredation coloration and demonstrate that the evolutionary transition from camouflage to aposematism is rarely direct but tends to involve an intermediary stage, namely cryptic species that facultatively reveal conspicuous coloration. Accounting for this intermediate step can resolve the paradox and thereby advance our understanding of the evolution of aposematism.


Assuntos
Evolução Biológica , Mimetismo Biológico , Comportamento Predatório , Animais , Anfíbios
17.
Ecol Lett ; 26(6): 843-857, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929564

RESUMO

Understanding the mechanisms underlying species distributions and coexistence is both a priority and a challenge for biodiversity hotspots such as the Neotropics. Here, we highlight that Müllerian mimicry, where defended prey species display similar warning signals, is key to the maintenance of biodiversity in the c. 400 species of the Neotropical butterfly tribe Ithomiini (Nymphalidae: Danainae). We show that mimicry drives large-scale spatial association among phenotypically similar species, providing new empirical evidence for the validity of Müller's model at a macroecological scale. Additionally, we show that mimetic interactions drive the evolutionary convergence of species climatic niche, thereby strengthening the co-occurrence of co-mimetic species. This study provides new insights into the importance of mutualistic interactions in shaping both niche evolution and species assemblages at large spatial scales. Critically, in the context of climate change, our results highlight the vulnerability to extinction cascades of such adaptively assembled communities tied by positive interactions.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Biodiversidade , Simbiose
18.
Science ; 379(6638): 1238-1242, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36952420

RESUMO

The genetic basis of adaptive traits has rarely been used to predict future vulnerability of populations to climate change. We show that light versus dark seasonal pelage in white-tailed jackrabbits (Lepus townsendii) tracks snow cover and is primarily determined by genetic variation at endothelin receptor type B (EDNRB), corin serine peptidase (CORIN), and agouti signaling protein (ASIP). Winter color variation was associated with deeply divergent alleles at these genes, reflecting selection on both ancestral and introgressed variation. Forecasted reductions in snow cover are likely to induce widespread camouflage mismatch. However, simulated populations with variation for darker winter pelage are predicted to adapt rapidly, providing a trait-based genetic framework to facilitate evolutionary rescue. These discoveries demonstrate how the genetic basis of climate change adaptation can inform conservation.


Assuntos
Aclimatação , Mimetismo Biológico , Mudança Climática , Lebres , Animais , Aclimatação/genética , Lebres/genética , Lebres/fisiologia , Estações do Ano , Mimetismo Biológico/genética , Receptor de Endotelina B/genética , Variação Genética , Serina Endopeptidases/genética , Proteína Agouti Sinalizadora/genética
19.
Biol Rev Camb Philos Soc ; 98(4): 1310-1328, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36994698

RESUMO

Many bees and stinging wasps, or aculeates, exhibit striking colour patterns or conspicuous coloration, such as black and yellow stripes. Such coloration is often interpreted as an aposematic signal advertising aculeate defences: the venomous sting. Aposematism can lead to Müllerian mimicry, the convergence of signals among different species unpalatable to predators. Müllerian mimicry has been extensively studied, notably on Neotropical butterflies and poison frogs. However, although a very high number of aculeate species harbour putative aposematic signals, aculeates are under-represented in mimicry studies. Here, we review the literature on mimicry rings that include bee and stinging wasp species. We report over a hundred described mimicry rings, involving a thousand species that belong to 19 aculeate families. These mimicry rings are found all throughout the world. Most importantly, we identify remaining knowledge gaps and unanswered questions related to the study of Müllerian mimicry in aculeates. Some of these questions are specific to aculeate models, such as the impact of sociality and of sexual dimorphism in defence levels on mimicry dynamics. Our review shows that aculeates may be one of the most diverse groups of organisms engaging in Müllerian mimicry and that the diversity of aculeate Müllerian mimetic interactions is currently under-explored. Thus, aculeates represent a new and major model system to study the evolution of Müllerian mimicry. Finally, aculeates are important pollinators and the global decline of pollinating insects raises considerable concern. In this context, a better understanding of the impact of Müllerian mimicry on aculeate communities may help design strategies for pollinator conservation, thereby providing future directions for evolutionary research.


Assuntos
Mimetismo Biológico , Borboletas , Vespas , Abelhas , Animais , Modelos Biológicos , Comportamento Social , Evolução Biológica
20.
Science ; 379(6636): 1043-1049, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893249

RESUMO

Little is known about the extent to which species use homologous regulatory architectures to achieve phenotypic convergence. By characterizing chromatin accessibility and gene expression in developing wing tissues, we compared the regulatory architecture of convergence between a pair of mimetic butterfly species. Although a handful of color pattern genes are known to be involved in their convergence, our data suggest that different mutational paths underlie the integration of these genes into wing pattern development. This is supported by a large fraction of accessible chromatin being exclusive to each species, including the de novo lineage-specific evolution of a modular optix enhancer. These findings may be explained by a high level of developmental drift and evolutionary contingency that occurs during the independent evolution of mimicry.


Assuntos
Evolução Biológica , Mimetismo Biológico , Borboletas , Montagem e Desmontagem da Cromatina , Asas de Animais , Animais , Mimetismo Biológico/genética , Borboletas/anatomia & histologia , Borboletas/genética , Borboletas/crescimento & desenvolvimento , Pigmentação/genética , Asas de Animais/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Elementos Facilitadores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...