Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.185
Filtrar
1.
J Water Health ; 22(3): 536-549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557569

RESUMO

Bacterial communities in drinking water provide a gauge to measure quality and confer insights into public health. In contrast to urban systems, water treatment in rural areas is not adequately monitored and could become a health risk. We performed 16S rRNA amplicon sequencing to analyze the microbiome present in the water treatment plants at two rural communities, one city, and the downstream water for human consumption in schools and reservoirs in the Andean highlands of Ecuador. We tested the effect of water treatment on the diversity and composition of bacterial communities. A set of physicochemical variables in the sampled water was evaluated and correlated with the structure of the observed bacterial communities. Predominant bacteria in the analyzed communities belonged to Proteobacteria and Actinobacteria. The Sphingobium genus, a chlorine resistance group, was particularly abundant. Of health concern in drinking water reservoirs were Fusobacteriaceae, Lachnospiraceae, and Ruminococcaceae; these families are associated with human and poultry fecal contamination. We propose the latter families as relevant biomarkers for establishing local standards for the monitoring of potable water systems in highlands of Ecuador. Our assessment of bacterial community composition in water systems in the Ecuadorian highlands provides a technical background to inform management decisions.


Assuntos
Água Potável , Humanos , Equador , RNA Ribossômico 16S/genética , Bactérias , Proteobactérias/genética , Microbiologia da Água
2.
J Water Health ; 22(3): 510-521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557567

RESUMO

Anecdotal evidence and available literature indicated that contaminated water played a major role in spreading the prolonged cholera epidemic in Malawi from 2022 to 2023. This study assessed drinking water quality in 17 cholera-affected Malawi districts from February to April 2023. Six hundred and thirty-three records were analysed. The median counts/100 ml for thermotolerant coliform was 98 (interquartile range (IQR): 4-100) and that for Escherichia coli was 0 (IQR: 0-9). The drinking water in all (except one) districts was contaminated by thermotolerant coliform, while six districts had their drinking water sources contaminated by E. coli. The percentage of contaminated drinking water sources was significantly higher in shallow unprotected wells (80.0% for E. coli and 95.0% for thermotolerant coliform) and in households (55.8% for E. coli and 86.0% for thermotolerant coliform). Logistic regression showed that household water has three times more risk of being contaminated by E. coli and two and a half times more risk of being contaminated by thermotolerant coliform compared to other water sources. This study demonstrated widespread contamination of drinking water sources during a cholera epidemic in Malawi, which may be the plausible reason for the protracted nature of the epidemic.


Assuntos
Cólera , Água Potável , Humanos , Abastecimento de Água , Cólera/epidemiologia , Estudos Transversais , Escherichia coli , Malaui/epidemiologia , Microbiologia da Água , Qualidade da Água
3.
Environ Sci Technol ; 58(15): 6540-6551, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574283

RESUMO

Water age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of Legionella pneumophila via a growth model. In turn, the L. pneumophila concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection (Pinf) and clinically severe illness (Pcsi) due to showering. Risk reductions achieved by purging devices, which reduce water age, were also quantified. The median annual Pinf exceeded the commonly used 1 in 10,000 (10-4) risk benchmark in all scenarios, but the median annual Pcsi was always 1-3 orders of magnitude below 10-4. The median annual Pcsi was lower in homes with two occupants (4.7 × 10-7) than with one occupant (7.5 × 10-7) due to more frequent use of water fixtures, which reduced water ages. The median annual Pcsi for homes with one occupant was reduced by 39-43% with scheduled purging 1-2 times per day. Smart purging devices, which purge only after a certain period of nonuse, maintained these lower annual Pcsi values while reducing additional water consumption by 45-62%.


Assuntos
Água Potável , Legionella pneumophila , Legionella , Abastecimento de Água , Microbiologia da Água , Engenharia Sanitária , Medição de Risco
4.
PLoS One ; 19(4): e0299254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640136

RESUMO

Estuarine water quality is declining worldwide due to increased tourism, coastal development, and a changing climate. Although well-established methods are in place to monitor water quality, municipalities struggle to use the data to prioritize infrastructure for monitoring and repair and to determine sources of contamination when they occur. The objective of this study was to assess water quality and prioritize sources of contamination within Town Creek Estuary (TCE), Beaufort, North Carolina, by combining culture, molecular, and geographic information systems (GIS) data into a novel contamination source ranking system. Water samples were collected from TCE at ten locations on eight sampling dates in Fall 2021 (n = 80). Microbiological water quality was assessed using US Environmental Protection Agency (U.S. EPA) approved culture-based methods for fecal indicator bacteria (FIB), including analysis of total coliforms (TC), Escherichia coli (EC), and Enterococcus spp. (ENT). The quantitative microbial source tracking (qMST) human-associated fecal marker, HF183, was quantified using droplet digital PCR (ddPCR). This information was combined with environmental data and GIS information detailing proximal sewer, septic, and stormwater infrastructure to determine potential sources of fecal contamination in the estuary. Results indicated FIB concentrations were significantly and positively correlated with precipitation and increased throughout the estuary following rainfall events (p < 0.01). Sampling sites with FIB concentrations above the U.S. EPA threshold also had the highest percentages of aged, less durable piping materials. Using a novel ranking system combining concentrations of FIB, HF183, and sewer infrastructure data at each site, we found that the two sites nearest the most aged sewage infrastructure and stormwater outflows were found to have the highest levels of measurable fecal contamination. This case study supports the inclusion of both traditional water quality measurements and local infrastructure data to support the current need for municipalities to identify, prioritize, and remediate failing infrastructure.


Assuntos
Monitoramento Ambiental , Poluição da Água , Humanos , Idoso , Monitoramento Ambiental/métodos , Poluição da Água/análise , Cidades , North Carolina , Estuários , Bactérias/genética , Fezes/microbiologia , Microbiologia da Água
5.
J Occup Environ Hyg ; 21(4): 259-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447033

RESUMO

Legionella pneumophila, the leading cause of Legionnaires' disease in the United States, is found in lakes, ponds, and streams but poses a health risk when it grows in building water systems. The growth of L. pneumophila in hot water systems of healthcare facilities poses a significant risk to patients, staff, and visitors. Hospitals and long-term care facilities account for 76% of reported Legionnaires' disease cases with mortality rates of 25%. Controlling L. pneumophila growth in hot water systems serving healthcare and hospitality buildings is currently achieved primarily by adding oxidizing chemical disinfectants. Chemical oxidants generate disinfection byproducts and can accelerate corrosion of premise plumbing materials and equipment. Alternative control methods that do not generate hazardous disinfection byproducts or accelerate corrosion are needed. L. pneumophila is an obligate aerobe that cannot sustain cellular respiration, amplify, or remain culturable when dissolved oxygen (DO) concentrations are too low (< 0.3 mg/L). An alternative method of controlling L. pneumophila growth by reducing DO levels in a hot water model system using a gas transfer membrane contactor was evaluated. A hot water model system was constructed and inoculated with L. pneumophila at DO concentrations above 0.5 mg/L. Once the model system was colonized, DO levels were incrementally reduced. Water samples were collected each week to evaluate the effect of reducing dissolved oxygen levels when all other conditions favored Legionella amplification. At DO concentrations below 0.3 mg/L, L. pneumophila concentrations were reduced by 1-log over 7 days. Under conditions in the hot water model system, at favorable temperatures and with no residual chlorine disinfectant, L. pneumophila concentrations were reduced by 1-log, indicating growth inhibition by reducing DO levels as the sole control measure. In sections of the model system where DO levels were not lowered L. pneumophila continued to grow. Reducing dissolved oxygen levels in hot water systems of healthcare and other large buildings to control L. pneumophila could also lower the risk of supplemental chemical treatment methods currently in use.


Assuntos
Desinfetantes , Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Doença dos Legionários/prevenção & controle , Abastecimento de Água , Engenharia Sanitária , Desinfetantes/farmacologia , Água/farmacologia , Microbiologia da Água , Temperatura Alta
6.
Sci Total Environ ; 926: 171389, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38432386

RESUMO

This research investigated the in-situ decay rates of four human wastewater-associated markers (Bacteroides HF183 (HF183), Lachnospiraceae Lachno3 (Lachno3), cross-assembling phage (crAssphage), pepper mild mottle virus (PMMoV) and three enteric viruses (human adenovirus 40/41 (HAdV 40/41), enterovirus (EV) and human norovirus GII (HNoV GII) in two estuarine water environments (Davidson Park (DP) and Hen and Chicken Bay (HCB) in temperate Sydney, NSW, Australia, employing qPCR and RT-qPCR assays. The study also aimed to compare decay rates observed in mesocosms with previously published laboratory microcosms, providing insights into the persistence of markers and viruses in estuarine environments. Results indicated varying decay rates between DP and HCB mesocosms, with HF183 exhibiting relatively faster decay rates compared to other markers and enteric viruses in sunlight and dark mesocosms. In DP mesocosms, HF183 decayed the fastest, contrasting with PMMoV, which exhibited the slowest. Sunlight induced higher decay rates for all markers and viruses in DP mesocosms. In HCB sunlight mesocosms, HF183 nucleic acid decayed most rapidly compared to other markers and enteric viruses. In dark mesocosms, crAssphage showed the fastest decay, while PMMoV decayed at the slowest rate in both sunlight and dark mesocosms. Comparisons with laboratory microcosms revealed faster decay of markers and enteric viruses in laboratory microcosms than the mesocosms, except for crAssphage and HAdV 40/41 in dark, and PMMoV in sunlight mesocosms. The study concludes that decay rates of markers and enteric viruses vary between estuarine mesocosms, emphasizing the impact of sunlight exposure, which was potentially influenced by the elevated turbidity at HCB estuarine waters. The generated decay rates contribute valuable insights for establishing site-specific risk-based thresholds of human wastewater-associated markers.


Assuntos
Bacteriófagos , Enterovirus , Tobamovirus , Vírus , Humanos , Animais , Feminino , Águas Residuárias , Monitoramento Ambiental , Galinhas , Austrália , Microbiologia da Água , Fezes
7.
Med J Malaysia ; 79(Suppl 1): 14-22, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38555880

RESUMO

INTRODUCTION: A study on the quality of drinking water was conducted at Air Kuning Treatment Plant In Perak, Malaysia, based on a sanitary survey in 14 sampling points stations from the intake area to the auxiliary points. This was to ensure the continuous supply of clean and safe drinking water to the consumers for public health protection. The objective was to examine the physical, microbiological, and chemical parameters of the water, classification at each site based on National Drinking Water Standards (NDWQS) and to understand the spatial variation using environmetric technique; principal component analysis (PCA). MATERIALS AND METHODS: Water samples were subjected to in situ and laboratory water quality analyses and focused on pH, turbidity, chlorine, Escherichia coli, total coliform, total hardness, iron (Fe), aluminium (Al), zinc (Zn), magnesium (Mg) and sodium (Na). All procedures followed the American Public Health Association (APHA) testing procedures. RESULTS: Based on the results obtained, the values of each parameter were found to be within the safe limits set by the NDWQS except for total coliform and iron (Fe). PCA has indicated that turbidity, total coliform, E. coli, Na, and Al were the major factors that contributed to the drinking water contamination in river water intake. CONCLUSION: Overall, the water from all sampling point stations after undergoing water treatment process was found to be safe as drinking water. It is important to evaluate the drinking water quality of the treatment plant to ensure that consumers have access to safe and clean drinking water as well as community awareness on drinking water quality is essential to promote public health and environmental protection.


Assuntos
Água Potável , Qualidade da Água , Humanos , Escherichia coli , Malásia , Ferro , Microbiologia da Água
8.
PLoS One ; 19(3): e0297794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547180

RESUMO

This study assessed the physical, chemical, and microbiological quality with emphasis on risk score, source apportionment, geochemistry, feacal coliforms and water quality index of drinking water from selected water sources. A cross-sectional study was conducted in six villages in Mbarara city, south-western Uganda. Each selected source was inspected using a WHO-adopted sanitary inspection questionnaire. Each source's risk score was calculated. Thirty-seven samples were taken from one borehole, nine open dug wells, four rain harvest tanks, and twenty-three taps. The values for apparent color and phosphate were higher than the permissible level as set by the World Health Organization and Ugandan standards (US EAS 12). The isolated organisms were Klebsiella spp. (8.11%), Citrobacter divergens (62.16%), Citrobacter fluendii (2.7%), E. coli (35.14%), Enterobacter aerogenes (8.11%), Enterobacter agglomerus (5.4%), Proteus spp. (2.7%), Enterobacter cloacae (13.5%), and Proteus mirabilis (2.7%). Twelve water sources (32.4%) had water that was unfit for human consumption that was unfit for human consumption (Grade E), Five sources (13.5%) had water that had a very poor index (Grade D), nine (24.3%) had water of poor index (Grade C), eight (21.6%) had water of good water index (Grade B), and only three (8.1%) had water of excellent water quality index (Grade A). The piper trilinear revealed that the dominant water type of the area were Mgso4 and Caso4 type. Gibbs plot represents precipitation dominance. PCA for source apportionment showed that well, tap and borehole water account for the highest variations in the quality of drinking water. These results suggest that drinking water from sources in Mbarara city is not suitable for direct human consumption without treatment. We recommend necessary improvements in water treatment, distribution, and maintenance of all the available water sources in Mbarara City, South Western Uganda.


Assuntos
Água Potável , Abastecimento de Água , Humanos , Uganda , Escherichia coli , Estudos Transversais , Qualidade da Água , Microbiologia da Água
9.
Ann Agric Environ Med ; 31(1): 24-28, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549473

RESUMO

INTRODUCTION: Legionella pneumophila is the primary etiological agent of Legionnaires' disease. These are opportunistic pathogens causing lung infections by inhalation of contaminated aerosols. Controlling the presence of these bacteria in domestic distribution water systems (mainly hot water systems) is important for reducing the threat they pose to human health. Legionella pathogens are detected and quantified during routine testing of water samples according to procedures included in PN-EN ISO 11731:2017. However, these procedures are labour-intensive, and the results are obtained after a relatively long time. Implementing the Legiolert™/Quanti-Tray® test as an alternative method may constitute a good solution: it simplifies the testing procedure and significantly reduces the time necessary to obtain the final result. OBJECTIVE: The aim of the study was to compare the relative recovery of Legionella from water samples tested according to PN-EN ISO 11731:2017, and the alternative method of the most probable number (MPN) with the Legiolert™/Quanti-Tray® (IDEXX) test, and to assess the suitability of the alternative method for routine testing. MATERIAL AND METHODS: Parallel testing was conducted of 38 hot water samples to detect and determine Legionella acc. to PN-EN ISO 11731:2017 and the Legiolert™/Quanti-Tray® test. Statistical analysis of the results was performed according to PN-EN ISO 17994:2014 and the McNemar's test. RESULTS: The Legiolert™ test was confirmed to be comparable in performance to the reference standardized method in both qualitative and quantitative detection of L. pneumophila in hot water samples. CONCLUSIONS: The study confirmed that the Legiolert™ test is specific and easy to use, and may constitute an alternative to standardized procedures used in the quantification of L. pneumophila in water.


Assuntos
Água Potável , Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Microbiologia da Água , Aerossóis e Gotículas Respiratórios , Doença dos Legionários/diagnóstico , Doença dos Legionários/microbiologia
10.
J Microorg Control ; 29(1): 1-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508757

RESUMO

The growth of acid-fast bacteria often hinders the detection of Legionella in water samples on agar plates by the plate culture method. We studied whether anti-tubercular agents inhibit acid-fast bacteria growth on agar plates. First, the antimicrobial activities of isoniazid, ethionamide, and ethambutol were evaluated against Mycobacterium and Legionella. We found that ethambutol at ≥ 100 µg/mL completely inhibited Mycobacterium growth, but ethambutol at 1,000 µg/mL did not inhibit Legionella growth. Next, the effect of ethambutol dissolved in acid buffer was examined. Cell suspensions of L. pneumophila and Mycobacterium spp. were mixed, and ethambutol-acid buffer was added. After 5 min, mixtures were inoculated on GVPC agar plates and incubated at 36℃ for 6 d. We found that ethambutol inhibited Mycobacterium growth on agar plates, but the Legionella colonies recovered. The effect of ethambutol was also significant in the evaluation using bathwaters. Comparing 1,302 bathwaters, the addition of ethambutol reduced the detection rate of acid-fast bacteria from 30.6% to 0% and increased the detection rate of Legionella from 7.1% to 7.5%. Ethambutol, which selectively inhibited acid-fast bacteria growth, enhanced the detection of Legionella on agar plates and will contribute to improving the accuracy of Legionella testing by the plate culture method.


Assuntos
Legionella , Etambutol/farmacologia , Ágar , Microbiologia da Água , Água
11.
MMWR Surveill Summ ; 73(1): 1-23, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38470836

RESUMO

Problem/Condition: Public health agencies in U.S. states, territories, and freely associated states investigate and voluntarily report waterborne disease outbreaks to CDC through the National Outbreak Reporting System (NORS). This report summarizes NORS drinking water outbreak epidemiologic, laboratory, and environmental data, including data for both public and private drinking water systems. The report presents outbreak-contributing factors (i.e., practices and factors that lead to outbreaks) and, for the first time, categorizes outbreaks as biofilm pathogen or enteric illness associated. Period Covered: 2015-2020. Description of System: CDC launched NORS in 2009 as a web-based platform into which public health departments voluntarily enter outbreak information. Through NORS, CDC collects reports of enteric disease outbreaks caused by bacterial, viral, parasitic, chemical, toxin, and unknown agents as well as foodborne and waterborne outbreaks of nonenteric disease. Data provided by NORS users, when known, for drinking water outbreaks include 1) the number of cases, hospitalizations, and deaths; 2) the etiologic agent (confirmed or suspected); 3) the implicated type of water system (e.g., community or individual or private); 4) the setting of exposure (e.g., hospital or health care facility; hotel, motel, lodge, or inn; or private residence); and 5) relevant epidemiologic and environmental data needed to describe the outbreak and characterize contributing factors. Results: During 2015-2020, public health officials from 28 states voluntarily reported 214 outbreaks associated with drinking water and 454 contributing factor types. The reported etiologies included 187 (87%) biofilm associated, 24 (11%) enteric illness associated, two (1%) unknown, and one (<1%) chemical or toxin. A total of 172 (80%) outbreaks were linked to water from public water systems, 22 (10%) to unknown water systems, 17 (8%) to individual or private systems, and two (0.9%) to other systems; one (0.5%) system type was not reported. Drinking water-associated outbreaks resulted in at least 2,140 cases of illness, 563 hospitalizations (26% of cases), and 88 deaths (4% of cases). Individual or private water systems were implicated in 944 (43%) cases, 52 (9%) hospitalizations, and 14 (16%) deaths.Enteric illness-associated pathogens were implicated in 1,299 (61%) of all illnesses, and 10 (2%) hospitalizations. No deaths were reported. Among these illnesses, three pathogens (norovirus, Shigella, and Campylobacter) or multiple etiologies including these pathogens resulted in 1,225 (94%) cases. The drinking water source was identified most often (n = 34; 7%) as the contributing factor in enteric disease outbreaks. When water source (e.g., groundwater) was known (n = 14), wells were identified in 13 (93%) of enteric disease outbreaks.Most biofilm-related outbreak reports implicated Legionella (n = 184; 98%); two nontuberculous mycobacteria (NTM) (1%) and one Pseudomonas (0.5%) outbreaks comprised the remaining. Legionella-associated outbreaks generally increased over the study period (14 in 2015, 31 in 2016, 30 in 2017, 34 in 2018, 33 in 2019, and 18 in 2020). The Legionella-associated outbreaks resulted in 786 (37%) of all illnesses, 544 (97%) hospitalizations, and 86 (98%) of all deaths. Legionella also was the outbreak etiology in 160 (92%) public water system outbreaks. Outbreak reports cited the premise or point of use location most frequently as the contributing factor for Legionella and other biofilm-associated pathogen outbreaks (n = 287; 63%). Legionella was reported to NORS in 2015 and 2019 as the cause of three outbreaks in private residences (2). Interpretation: The observed range of biofilm and enteric drinking water pathogen contributing factors illustrate the complexity of drinking water-related disease prevention and the need for water source-to-tap prevention strategies. Legionella-associated outbreaks have increased in number over time and were the leading cause of reported drinking water outbreaks, including hospitalizations and deaths. Enteric illness outbreaks primarily linked to wells represented approximately half the cases during this reporting period. This report enhances CDC efforts to estimate the U.S. illness and health care cost impacts of waterborne disease, which revealed that biofilm-related pathogens, NTM, and Legionella have emerged as the predominant causes of hospitalizations and deaths from waterborne- and drinking water-associated disease. Public Health Action: Public health departments, regulators, and drinking water partners can use these findings to identify emerging waterborne disease threats, guide outbreak response and prevention programs, and support drinking water regulatory efforts.


Assuntos
Água Potável , Legionella , Doenças Transmitidas pela Água , Humanos , Estados Unidos/epidemiologia , Microbiologia da Água , Surtos de Doenças , Abastecimento de Água , Vigilância da População
12.
Environ Sci Technol ; 58(14): 6335-6348, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530925

RESUMO

Fecal bacteria in surface water may indicate threats to human health. Our hypothesis is that village settlements in tropical rural areas are major hotspots of fecal contamination because of the number of domestic animals usually roaming in the alleys and the lack of fecal matter treatment before entering the river network. By jointly monitoring the dynamics of Escherichia coli and of seven stanol compounds during four flood events (July-August 2016) at the outlet of a ditch draining sewage and surface runoff out of a village of Northern Lao PDR, our objectives were (1) to assess the range of E. coli concentration in the surface runoff washing off from a village settlement and (2) to identify the major contributory sources of fecal contamination using stanol compounds during flood events. E. coli pulses ranged from 4.7 × 104 to 3.2 × 106 most probable number (MPN) 100 mL-1, with particle-attached E. coli ranging from 83 to 100%. Major contributory feces sources were chickens and humans (about 66 and 29%, respectively), with the highest percentage switching from the human pole to the chicken pole during flood events. Concentrations indicate a severe fecal contamination of surface water during flood events and suggest that villages may be considered as major hotspots of fecal contamination pulses into the river network and thus as point sources in hydrological models.


Assuntos
Monitoramento Ambiental , Escherichia coli , Humanos , Animais , Microbiologia da Água , Galinhas , Poluição da Água , Água , Fezes
13.
Sci Total Environ ; 920: 170708, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336079

RESUMO

Outdoor defecation by people experiencing homelessness is frequently perceived as a potentially large source of human fecal pollution and a significant source of health risk in urban waterbodies with recreational contact. The goal of this study was to count the number of people experiencing homelessness and quantifies their sanitation habits in an urban river corridor setting, then use this information for estimating human fecal pollutant loading on a watershed scale. Two types of census counts were conducted including periodic point-in-time counts over six years and weekly counts of encampments. While the population census varied from count-to-count, the range of population estimates in the river corridor varied from 109 to 349 individuals during the six-year span, which mirrored the weekly counts of encampments. A face-to-face survey of people experiencing homelessness assessed the sanitation habits of the unsheltered population (N = 63), including outdoor defecation frequency and containment practices. Overall, 95 % of survey respondents reported defecating outdoors; 36 % practiced outdoor defecation between 4 and 7 days/week and 27 % practiced outdoor defecation <1 day/week. Of those that did practice outdoor defecation, 75 % contained their feces in a bucket or bag, thereby limiting fecal material contributions to the river; 6.7 % reported defecating on low ground near the river that could wash off when flood waters rise during a storm event. Only a single survey respondent reported defecating directly into the river. Based on literature values for average HF183 output for an adult human, and the average rainfall in the urban watershed, the total watershed contribution of HF183 averaged 1.2 × 1010 gene copies per storm event (95 % CI: 0.9 × 1010-1.6 × 1010) along the 41 km stretch of river in this study. This human fecal loading estimate is at least two orders of magnitude less than cumulative HF183 loading from all human sources measured at the bottom of the watershed.


Assuntos
Defecação , Qualidade da Água , Humanos , Monitoramento Ambiental , Microbiologia da Água , Fezes , Poluição da Água
14.
Sci Total Environ ; 921: 171086, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382601

RESUMO

Biofilms, constituting over 95 % of the biomass in drinking water distribution systems, form an ecosystem impacting both the aesthetic and microbiological quality of water. This study investigates the microbiome of biofilms within a real-scale drinking water distribution system in eastern Spain, utilizing amplicon-based metagenomics. Forty-one biofilm samples underwent processing and sequencing to analyze both bacterial and eukaryotic microbiomes, with an assessment of active biomass. Genus-level analysis revealed considerable heterogeneity, with Desulfovibrio, Ralstonia, Bradyrhizobium, Methylocystis, and Bacillus identified as predominant genera. Notably, bacteria associated with corrosion processes, including Desulfovibrio, Sulfuricella, Hyphomicrobium, and Methylobacterium, were prevalent. Potentially pathogenic bacteria such as Helicobacter, Pseudomonas, and Legionella were also detected. Among protozoa, Opisthokonta and Archaeplastida were the most abundant groups in biofilm samples, with potential pathogenic eukaryotes (Acanthamoeba, Naegleria, Blastocystis) identified. Interestingly, no direct correlation between microbiota composition and pipe materials was observed. The study suggests that the usual concentration of free chlorine in bulk water proved insufficient to prevent the presence of undesirable bacteria and protozoa in biofilms, which exhibited a high concentration of active biomass.


Assuntos
Água Potável , Microbiota , Qualidade da Água , Bactérias , Biofilmes , Abastecimento de Água , Microbiologia da Água
15.
Sci Data ; 11(1): 197, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351104

RESUMO

The South China Sea (SCS) is a marginal sea characterized by strong land-sea biogeochemical interactions. SCS has a distinctive landscape with a multitude of seamounts in its basin. Seamounts create "seamount effects" that influence the diversity and distribution of planktonic microorganisms in the surrounding oligotrophic waters. Although the vertical distribution and community structure of marine microorganisms have been explored in certain regions of the global ocean, there is a lack of comprehensive microbial genomic surveys for uncultured microorganisms in SCS, particularly in the seamount regions. Here, we employed a metagenomic approach to study the uncultured microbial communities sampled from the Xianbei seamount region to the North Coast waters of SCS. A total of 1887 non-redundant prokaryotic metagenome-assembled genomes (MAGs) were reconstructed, of which, 153 MAGs were classified as high-quality MAGs based on the MIMAG standards. The community structure and genomic information provided by this dataset could be used to analyze microbial distribution and metabolism in the SCS.


Assuntos
Metagenoma , Microbiota , Microbiologia da Água , China , Genômica , Metagenômica , Oceanos e Mares
16.
Environ Pollut ; 345: 123431, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301821

RESUMO

Faecal Indicator Organism (FIO) concentrations in nearshore coastal waters may lead to significant public health concerns and economic loss. A three-dimensional numerical source-receptor connectivity study was conducted to improve the modelling of FIO transport and decay processes and identify major FIO sources impacting sensitive receptors (source apportionment). The study site was Swansea Bay, UK and the effects of wind, density, and tracer microbe (surrogate FIO) decay models were investigated by comparing the model simulations to microbial tracer field studies. The relevance of connectivity tests to source apportionment was demonstrated by hindcasting FIO concentration in Swansea Bay with the identified FIO source and the Impulse Response Function (IRF) in Control System theory. This is the first time the IRF approach has been applied for FIO modelling in bathing waters. Results show the importance of density, widely ignored in fully mixed water bodies, and the potential for biphasic decay models to improve prediction accuracy. The microbe-carrying riverine freshwater, having a smaller hydrostatic pressure, could not intrude on the heavier seawater and remained in the nearshore areas. The freshwater and the associated tracer microbes then travelled along the shoreline and reached bathing water sites. This effect cannot be faithfully modelled without the inclusion of the density effect. Biphasic decay models improved the agreement between measured and modelled microbe concentrations. The IRF hindcasted and measured FIO concentrations for Swansea Bay agreed reasonably, demonstrating the importance of connectivity tests in identifying key FIO sources. The findings of this study, namely enhancing hydro-epidemiological modelling and highlighting the effectiveness of connectivity studies in identifying key FIO sources, directly benefit hydraulics and water quality modellers, regulatory authorities, water resource managers and policy.


Assuntos
Água Doce , Qualidade da Água , Água do Mar , Saúde Pública , Monitoramento Ambiental/métodos , Fezes , Microbiologia da Água
17.
Epidemiol Infect ; 152: e38, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403890

RESUMO

Understanding historical environmental determinants associated with the risk of elevated marine water contamination could enhance monitoring marine beaches in a Canadian setting, which can also inform predictive marine water quality models and ongoing climate change preparedness efforts. This study aimed to assess the combination of environmental factors that best predicts Escherichia coli (E. coli) concentration at public beaches in Metro Vancouver, British Columbia, by combining the region's microbial water quality data and publicly available environmental data from 2013 to 2021. We developed a Bayesian log-normal mixed-effects regression model to evaluate predictors of geometric E. coli concentrations at 15 beaches in the Metro Vancouver Region. We identified that higher levels of geometric mean E. coli levels were predicted by higher previous sample day E. coli concentrations, higher rainfall in the preceding 48 h, and higher 24-h average air temperature at the median or higher levels of the 24-h mean ultraviolet (UV) index. In contrast, higher levels of mean salinity were predicted to result in lower levels of E. coli. Finally, we determined that the average effects of the predictors varied highly by beach. Our findings could form the basis for building real-time predictive marine water quality models to enable more timely beach management decision-making.


Assuntos
Praias , Escherichia coli , Teorema de Bayes , Qualidade da Água , Colúmbia Britânica , Monitoramento Ambiental , Microbiologia da Água , Fezes
18.
Water Res ; 253: 121305, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367380

RESUMO

Roof-harvested rainwater stored for potable and nonpotable usages represent a clean and sustainable water supply resource. However, the microbial dynamics and mechanisms of community assembly in long-termed operated rainwater storage systems remain elusive. In this study, characteristics of microbial communities in different habitats were systematically compared within rainwater and tap-water simulated storage systems (SWSSs) constructed with different tank materials (PVC, stainless steel and cement). Distinct microbial communities were observed between rainwater and tap-water SWSSs for both water and biofilm samples (ANOSIM, p < 0.05), with lower diversity indexes noted in rainwater samples. Notably, a divergent potential pathogen profile was observed between rainwater and tap-water SWSSs, with higher relative abundances of potential pathogens noted in rainwater SWSSs. Moreover, tank materials had a notable impact on microbial communities in rainwater SWSSs (ANOSIM, p < 0.05), rather than tap-water SWSSs, illustrating the distinct interplay between water chemistry and engineering factors in shaping the SWSS microbiomes. Deterministic processes contributed predominantly to the microbial community assembly in cement rainwater SWSSs and all tap-water SWSSs, which might be ascribed to the high pH levels in cement rainwater SWSSs and low-nutrient levels in all tap-water SWSSs, respectively. However, microbial communities in the PVC and stainless-steel rainwater SWSSs were mainly driven by stochastic processes. Overall, the results provided insights to the distinct microbial assembly mechanisms and potential health risks in stored roof-harvested rainwater, highlighting the importance of developing tailored microbial management strategies for the storage and utilization of rainwater.


Assuntos
Microbiota , Microbiologia da Água , Chuva , Abastecimento de Água , Água
19.
Water Res ; 253: 121109, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377920

RESUMO

Running cold and hot water in buildings is a widely established commodity. However, interests regarding hygiene and microbiological aspects had so far been focussed on cold water. Little attention has been given to the microbiology of domestic hot-water installations (DHWIs), except for aspects of pathogenic Legionella. World-wide, regulations consider hot (or warm) water as 'heated drinking water' that must comply (cold) drinking water (DW) standards. However, the few reports that exist indicate presence and growth of microbial flora in DHWIs, even when supplied with water with disinfectant residual. Using flow cytometric (FCM) total cell counting (TCC), FCM-fingerprinting, and 16S rRNA-gene-based metagenomic analysis, the characteristics and composition of bacterial communities in cold drinking water (DW) and hot water from associated boilers (operating at 50 - 60 °C) was studied in 14 selected inhouse DW installations located in Switzerland and Austria. A sampling strategy was applied that ensured access to the bulk water phase of both, supplied cold DW and produced hot boiler water. Generally, 1.3- to 8-fold enhanced TCCs were recorded in hot water compared to those in the supplied cold DW. FCM-fingerprints of cold and corresponding hot water from individual buildings indicated different composition of cold- and hot-water microbial floras. Also, hot waters from each of the boilers sampled had its own individual FCM-fingerprint. 16S rRNA-gene-based metagenomic analysis confirmed the marked differences in composition of microbiomes. E.g., in three neighbouring houses supplied from the same public network pipe each hot-water boiler contained its own thermophilic bacterial flora. Generally, bacterial diversity in cold DW was broad, that in hot water was restricted, with mostly thermophilic strains from the families Hydrogenophilaceae, Nitrosomonadaceae and Thermaceae dominating. Batch growth assays, consisting of cold DW heated up to 50 - 60 °C and inoculated with hot water, resulted in immediate cell growth with doubling times between 5 and 10 h. When cold DW was used as an inoculum no significant growth was observed. Even boilers supplied with UVC-treated cold DW contained an actively growing microbial flora, suggesting such hot-water systems as autonomously operating, thermophilic bioreactors. The generation of assimilable organic carbon from dissolved organic carbon due to heating appears to be the driver for growth of thermophilic microbial communities. Our report suggests that a man-made microbial ecosystem, very close to us all and of potential hygienic importance, may have been overlooked so far. Despite consumers having been exposed to microbial hot-water flora for a long time, with no major pathogens so far been associated specifically with hot-water usage (except for Legionella), the role of harmless thermophiles and their interaction with potential human pathogens able to grow at elevated temperatures in DHWIs remains to be investigated.


Assuntos
Água Potável , Legionella , Humanos , Água Potável/microbiologia , RNA Ribossômico 16S , Ecossistema , Abastecimento de Água , Bactérias/genética , Microbiologia da Água
20.
Ecotoxicol Environ Saf ; 273: 116152, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417319

RESUMO

Sandboxes in public play spaces afford a crucial opportunity for urban children to engage in naturalistic play that fosters development of cognitive, social, and motor skills. As open pits, sandboxes in New York City public playgrounds are potentially exposed to fecal inputs from various sources, including wild and domestic animals. A longitudinal study of thirteen sandboxes located in public playgrounds on the east side of Manhattan reveals ubiquity of the fecal indicator bacteria enterococci and Escherichia coli through all seasons. The highest concentrations of bacteria occur in surface sand (n = 42; mean enterococci 230 MPN/g and E. coli 182 MPN/g dry weight), with significantly lower levels at depths below the surface (n = 35; mean enterococci 21 MPN/g and E. coli 12 MPN/g dry weight), a stratification consistent with fecal loading at the surface. Generalized linear mixed models indicate that sand depth (surface vs. underlayers) is the most influential variable affecting bacterial levels (P <0.001 for both enterococci and E. coli), followed by sampling season (P <0.001 for both). Bacterial concentrations do not vary significantly as a function of playground location or ZIP code within the study area. Children's exposure while playing in sandboxes likely reaches 105 enterococci and 104E. coli in a typical play period. Microbial source tracking to identify fecal hosts reveals dog, bird, and human biomarkers in low concentrations. Open sandbox microcosms installed at ground level in the urban environment of Manhattan are fouled by enterococci and E. coli within two weeks, while adjacent closed microcosms exhibit no fecal contamination over a 33-day sampling period. Collectively, our results indicate that increasing the frequency of sand refills and covering sandboxes during times of disuse would be straightforward management strategies to mitigate fecal contamination in playground sandboxes.


Assuntos
Escherichia coli , Areia , Criança , Animais , Cães , Humanos , Cidade de Nova Iorque , Estudos Longitudinais , Bactérias , Enterococcus , Fezes/microbiologia , Microbiologia da Água , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...