Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 876836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600893

RESUMO

Ultrasound-based sensing of muscle deformation, known as sonomyography, has shown promise for accurately classifying the intended hand grasps of individuals with upper limb loss in offline settings. Building upon this previous work, we present the first demonstration of real-time prosthetic hand control using sonomyography to perform functional tasks. An individual with congenital bilateral limb absence was fitted with sockets containing a low-profile ultrasound transducer placed over forearm muscle tissue in the residual limbs. A classifier was trained using linear discriminant analysis to recognize ultrasound images of muscle contractions for three discrete hand configurations (rest, tripod grasp, index finger point) under a variety of arm positions designed to cover the reachable workspace. A prosthetic hand mounted to the socket was then controlled using this classifier. Using this real-time sonomyographic control, the participant was able to complete three functional tasks that required selecting different hand grasps in order to grasp and move one-inch wooden blocks over a broad range of arm positions. Additionally, these tests were successfully repeated without retraining the classifier across 3 hours of prosthesis use and following simulated donning and doffing of the socket. This study supports the feasibility of using sonomyography to control upper limb prostheses in real-world applications.

2.
Neurorehabil Neural Repair ; 36(4-5): 317-327, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35321610

RESUMO

BACKGROUND: Synergy analysis provides a means of quantifying the complexity of neuromuscular control during gait. Prior studies have shown evidence of reduced neuromuscular complexity during gait in individuals with neurological disorders associated with stroke, cerebral palsy, and Parkinson's disease. OBJECTIVE: The purpose of this study was to investigate neuromuscular complexity during gait in individuals who experienced a prior traumatic brain injury (TBI) that resulted in chronic balance deficits. METHODS: We measured and analyzed lower extremity electromyographic data during treadmill and overground walking for 44 individuals with residual balance deficits from a mild-to-moderate TBI at least 1 year prior. We also tested 20 unimpaired controls as a comparison. Muscle synergies were calculated for each limb using non-negative matrix factorization of the activation patterns for 6 leg muscles. We quantified neuromuscular complexity using Walk-DMC, a normalized metric of the total variance accounted for by a single synergy, in which a Walk-DMC score of 100 represents normal variance accounted for. We compared group average synergy structures and inter-limb similarity using cosine similarity. We also quantified each individual's gait and balance using the Sensory Organization Test, the Dynamic Gait Index, and the Six-Minute Walk Test. RESULTS: Neuromuscular complexity was diminished for individuals with a prior TBI. Walk-DMC averaged 92.8 ± 12.3 for the TBI group during overground walking, which was significantly less than seen in controls (100.0 ± 10.0). Individuals with a prior TBI exhibited 13% slower overground walking speeds than controls and reduced performance on the Dynamic Gait Index (18.5 ± 4.7 out of 24). However, Walk-DMC measures were insufficient to stratify variations in assessments of gait and balance performance. Group average synergy structures were similar between groups, although there were considerable between-group differences in the inter-limb similarity of the synergy activation vectors. CONCLUSIONS: Individuals with gait and balance deficits due to a prior TBI exhibit evidence of decreased neuromuscular complexity during gait. Our results suggest that individuals with TBI exhibit similar muscle synergy weightings as controls, but altered control of the temporal activation of these muscle weightings.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos Neurológicos da Marcha , Lesões Encefálicas Traumáticas/complicações , Eletromiografia/métodos , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Humanos , Músculo Esquelético/fisiologia , Caminhada/fisiologia
3.
J Appl Biomech ; 38(2): 84-94, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287111

RESUMO

Changes in knee mechanics following anterior cruciate ligament (ACL) reconstruction are known to be magnified during more difficult locomotor tasks, such as when descending stairs. However, it is unclear if increased task difficulty could distinguish differences in forces generated by the muscles surrounding the knee. This study examined how knee muscle forces differ between individuals with ACL reconstruction with different graft types (hamstring tendon and patellar tendon autograft) and "healthy" controls when performing tasks with increasing difficulty. Dynamic simulations were used to identify knee muscle forces in 15 participants when walking overground and descending stairs. The analysis was restricted to the stance phase (foot contact through toe-off), yielding 162 separate simulations of locomotion in increasing difficulty: overground walking, step-to-floor stair descent, and step-to-step stair descent. Results indicated that knee muscle forces were significantly reduced after ACL reconstruction, and stair descent tasks better discriminated changes in the quadriceps and gastrocnemii muscle forces in the reconstructed knees. Changes in quadriceps forces after a patellar tendon graft and changes in gastrocnemii forces after a hamstring tendon graft were only revealed during stair descent. These results emphasize the importance of incorporating sufficiently difficult tasks to detect residual deficits in muscle forces after ACL reconstruction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Humanos , Joelho/fisiologia , Articulação do Joelho/fisiologia , Músculo Quadríceps/fisiologia
4.
Wearable Technol ; 3: e16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38486895

RESUMO

Electrical muscle stimulation (EMS) is widely used in rehabilitation and athletic training to generate involuntary muscle contractions. However, EMS leads to rapid muscle fatigue, limiting the force a muscle can produce during prolonged use. Currently available methods to monitor localized muscle fatigue and recovery are generally not compatible with EMS. The purpose of this study was to examine whether Doppler ultrasound imaging can assess changes in stimulated muscle twitches that are related to muscle fatigue from electrical stimulation. We stimulated five isometric muscle twitches in the medial and lateral gastrocnemius of 13 healthy subjects before and after a fatiguing EMS protocol. Tissue Doppler imaging of the medial gastrocnemius recorded muscle tissue velocities during each twitch. Features of the average muscle tissue velocity waveforms changed immediately after the fatiguing stimulation protocol (peak velocity: -38%, p = .022; time-to-zero velocity: +8%, p = .050). As the fatigued muscle recovered, the features of the average tissue velocity waveforms showed a return towards their baseline values similar to that of the normalized ankle torque. We also found that features of the average tissue velocity waveform could significantly predict the ankle twitch torque for each participant (R2 = 0.255-0.849, p < .001). Our results provide evidence that Doppler ultrasound imaging can detect changes in muscle tissue during isometric muscle twitch that are related to muscle fatigue, fatigue recovery, and the generated joint torque. Tissue Doppler imaging may be a feasible method to monitor localized muscle fatigue during EMS in a wearable device.

5.
Physiol Rep ; 7(23): e14298, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31814337

RESUMO

Standing balance performance is often characterized by sway, as measured via fluctuations of the center of pressure (COP) under the feet. For example, COP metrics can effectively delineate changes in balance under altered sensory conditions. However, COP is a global metric of whole-body dynamics and thus does not necessarily lend insight into the underlying musculotendon control. We have previously shown that shear wave tensiometers can track wave speeds in tendon as a surrogate measure of the load transmitted by the muscle-tendon unit. The purpose of this study was to investigate whether shear wave metrics have sufficient sensitivity to track subtle variations in Achilles tendon loading that correspond with postural sway. Sixteen healthy young adults (26 ± 5 years) stood for 10 s with their eyes open and closed. We simultaneously recorded COP under the feet and shear wave speed in the right Achilles tendon. We found that Achilles tendon shear wave speed closely tracked (r > 0.95) dynamic fluctuations of the COP in the anteroposterior direction. Achilles tendon wave speed fluctuations significantly increased during standing with eyes closed, mirroring increases in COP fluctuations. These results demonstrate that tendon wave speed can track the subtle variations in Achilles tendon loading that modulate COP in standing. Hence, shear wave tensiometry exhibits the sensitivity to investigate the muscular control of quiet standing, and may also be useful for investigating other fine motor and force steadiness tasks.


Assuntos
Tendão do Calcâneo/fisiologia , Equilíbrio Postural , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Resistência ao Cisalhamento , Posição Ortostática
6.
Hum Mov Sci ; 66: 587-599, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31255870

RESUMO

Humans will naturally synchronize their posture to the motion of a visual surround, but it is unclear if this visuomotor entrainment can be attenuated with an increased sensitivity to somatosensory information. Sub-threshold vibratory noise applied to the Achilles tendons has proven to enhance ankle proprioception through the phenomenon of stochastic resonance. Our purpose was to compare visuomotor entrainment during walking and standing, and to understand how this entrainment might be attenuated by applying sub-threshold vibratory noise over the Achilles tendons. We induced visuomotor entrainment during standing and treadmill walking for ten subjects (24.5 ±â€¯2.9 years) using a speed-matched virtual hallway with continuous mediolateral perturbations at three different frequencies. Vibrotactile motors over the Achilles tendons provided noise (0-400 Hz) with an amplitude set to 90% of each participant's sensory threshold. Mediolateral sacrum, C7, and head motion was greatly amplified (4-8× on average) at the perturbation frequencies during walking, but was much less pronounced during standing. During walking, individuals with greater mediolateral head motion at the fastest perturbation frequency saw the greatest attenuation of that motion with applied noise. Similarly, during standing, individuals who exhibited greater postural sway (as measured by the center of pressure) also saw the greatest reductions in sway with sub-threshold noise applied in three of our summary metrics. Our results suggest that, at least for healthy young adults, sub-threshold vibratory noise over the Achilles tendons can slightly improve postural control during disruptive mediolateral visual perturbations, but the applied noise does not substantially attenuate visuomotor entrainment during walking or standing.

7.
J Electromyogr Kinesiol ; 44: 8-14, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30448641

RESUMO

The purpose of this study was to compare how healthy aging interacts with environments that challenge cognitive load and optical flow to affect antagonist leg muscle coactivation during walking. We measured leg muscle activity in sixteen older adults (70.4 ±â€¯4.2 years) and twelve young adults (23.6 ±â€¯3.9 years) walking on a treadmill at their preferred speed while watching a speed-matched virtual hallway. Cognitive load was challenged using a dual-task to interfere with available attentional resources. Optical flow was challenged using perturbations designed to create a perception of lateral imbalance. We found antagonist coactivation increased with aging, independent of condition. We also found that, compared to unperturbed walking, only in the presence of optical flow perturbations did the older adults increase their antagonist coactivation. Antagonist coactivation in the young adults was not affected by either condition. Our findings provide evidence that antagonist leg muscle coactivation in healthy older adults is more sensitive to walking environments that challenge optical flow than environments that challenge cognitive load. As increased antagonist coactivation may indicate compromised balance, these findings may be relevant in the design of living environments to reduce falls risk.


Assuntos
Envelhecimento/fisiologia , Cognição , Marcha , Músculo Esquelético/fisiologia , Fluxo Óptico , Adulto , Idoso , Humanos , Contração Muscular
8.
Gait Posture ; 62: 510-517, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29684885

RESUMO

BACKGROUND: Gait and balance disorders are common among individuals who have experienced a mild to moderate traumatic brain injury (TBI). However, little is known about how the neuromuscular control of gait is altered following a TBI. RESEARCH QUESTION: Investigate the relationship between lower limb muscle activation patterns and chronic gait deficits in individuals who previously experienced a mild to moderate TBI. METHODS: Lower extremity electromyographic (EMG) signals were collected bilaterally during treadmill and overground walking in 44 ambulatory individuals with a TBI >1 year prior and 20 unimpaired controls. Activation patterns of TBI muscles were cross-correlated with normative data from control subjects to assess temporal phasing of muscle recruitment. Clinical assessments of gait and balance were performed using dynamic posturography, the dynamic gait index, six-minute walk test, and preferred walking speed. RESULTS: TBI subjects exhibited abnormal activation patterns in the tibialis anterior, medial gastrocnemius, and rectus femoris muscles during both overground and treadmill walking. Activation patterns of the vastus lateralis and soleus muscles did not differ from normal. There was considerable heterogeneity in performance on clinical balance and gait assessments. Abnormal muscle activation patterns were significantly correlated with variations in the dynamic gait index among the TBI subjects. SIGNIFICANCE: Individuals who have experienced a prior TBI do exhibit characteristic changes in the temporal coordination of select lower extremity muscles, which may contribute to impairments during challenging walking tasks.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Marcha/fisiologia , Extremidade Inferior/fisiopatologia , Músculo Esquelético/fisiopatologia , Adulto , Estudos de Casos e Controles , Estudos Transversais , Eletromiografia , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...