Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 704
Filtrar
1.
PLoS Negl Trop Dis ; 18(9): e0012482, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255310

RESUMO

BACKGROUND: Climate change and urbanization will alter the global distribution of disease vectors, changing the disease burden in yet unpredictable ways. Aedes aegypti is a mosquito responsible for transmitting dengue, Zika, chikungunya, and yellow fever viruses that breeds in containers associated with urban environments. We sought to understand how ambient temperature and larval densities in the immature aquatic phases determine adult life history traits and dengue virus loads post-infection. We predicted that larval crowding and high temperatures would both lead to smaller mosquitoes that might struggle to invest in an immune response and, hence, would exhibit high viral loads. METHODS: We first examined larval densities from urban and rural areas via a meta-analysis. We then used these data to inform a laboratory-based 2x2 design examining the interacting effects of temperature (21 vs. 26°C) and density (0.2 vs. 0.4 larvae/mL) on adult life history and dengue virus loads. RESULTS: We found that urban areas had an ~8-fold increase in larval densities compared to more rural sites. In the lab, we found that crowding had more impact on mosquito traits than temperature. Crowding led to slower development, smaller mosquitoes, less survival, lower fecundity, and higher viral loads, as predicted. The higher temperature led to faster development, reduced fecundity, and lower viral loads. The virus-reducing effect of higher temperature rearing was, however, overwhelmed by the impact of larval crowding when both factors were present. CONCLUSIONS: These data reveal complex interactions between the environmental effects experienced by immature mosquitoes and adult traits. They especially highlight the importance of crowding with respect to adult viral loads. Together, these data suggest that urban environments might enhance dengue virus loads and, therefore, possibly transmission, a concerning result given the increasing rates of urbanization globally.

2.
Sci Rep ; 14(1): 18002, 2024 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097642

RESUMO

Zika virus (ZIKV) infection was first reported in 2015 in Brazil as causing microcephaly and other developmental abnormalities in newborns, leading to the identification of Congenital Zika Syndrome (CZS). Viral infections have been considered an environmental risk factor for neurodevelopmental disorders outcome, such as Autism Spectrum Disorder (ASD). Moreover, not only the infection per se, but maternal immune system activation during pregnancy, has been linked to fetal neurodevelopmental disorders. To understand the impact of ZIKV vertical infection on brain development, we derived induced pluripotent stem cells (iPSC) from Brazilian children born with CZS, some of the patients also being diagnosed with ASD. Comparing iPSC-derived neurons from CZS with a control group, we found lower levels of pre- and postsynaptic proteins and reduced functional synapses by puncta co-localization. Furthermore, neurons and astrocytes derived from the CZS group showed decreased glutamate levels. Additionally, the CZS group exhibited elevated levels of cytokine production, one of which being IL-6, already associated with the ASD phenotype. These preliminary findings suggest that ZIKV vertical infection may cause long-lasting disruptions in brain development during fetal stages, even in the absence of the virus after birth. These disruptions could contribute to neurodevelopmental disorders manifestations such as ASD. Our study contributes with novel knowledge of the CZS outcomes and paves the way for clinical validation and the development of potential interventions to mitigate the impact of ZIKV vertical infection on neurodevelopment.


Assuntos
Encéfalo , Células-Tronco Pluripotentes Induzidas , Transmissão Vertical de Doenças Infecciosas , Sinapses , Infecção por Zika virus , Zika virus , Humanos , Infecção por Zika virus/virologia , Infecção por Zika virus/patologia , Feminino , Zika virus/patogenicidade , Sinapses/patologia , Sinapses/metabolismo , Encéfalo/virologia , Encéfalo/patologia , Gravidez , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/virologia , Neurônios/virologia , Neurônios/metabolismo , Neurônios/patologia , Masculino , Astrócitos/virologia , Astrócitos/metabolismo , Doenças Neuroinflamatórias/virologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/patologia , Brasil , Recém-Nascido , Transtorno do Espectro Autista/virologia , Criança
3.
Med Trop Sante Int ; 4(2)2024 06 30.
Artigo em Francês | MEDLINE | ID: mdl-39099710

RESUMO

Zika virus infection, most oft n responsible for a benign arboviral disease or an asymptomatic infection, rarely Guillain-Barré syndrome, can become problematic in pregnant women, due to a risk of fetal malformations, in particular microcephaly linked to its neurotropism. The most recent large-scale epidemic was observed throughout Latin America between 2015 and 2017, causing several hundred thousand cases. Transmission is predominantly vector-borne, but sexual transmission has been described, mainly among travelers, although it undoubtedly accounts for a significant proportion of transmission in epidemic areas. The aim of this review is to describe this sexual transmission, mainly through examples linked to this large-scale epidemic in Latin America, to describe the link with prolonged excretion of infectious viral particles in genital secretions, especially semen but also vaginal secretions, and to highlight possible preventive measures apart from vector transmission, in particular the need for pregnant women or women wishing to become pregnant to avoid visiting countries where circulation of Zika virus is described.


Assuntos
Doenças Virais Sexualmente Transmissíveis , Infecção por Zika virus , Infecção por Zika virus/transmissão , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/epidemiologia , Humanos , Feminino , Gravidez , Doenças Virais Sexualmente Transmissíveis/transmissão , Doenças Virais Sexualmente Transmissíveis/prevenção & controle , Doenças Virais Sexualmente Transmissíveis/epidemiologia , Complicações Infecciosas na Gravidez/prevenção & controle , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/epidemiologia , Masculino , América Latina/epidemiologia
4.
Animals (Basel) ; 14(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39061481

RESUMO

The Asian tiger mosquito (Aedes albopictus) is an invasive mosquito species with a global distribution. This species has populations established in most continents, being considered one of the 100 most dangerous invasive species. Invasions of mosquitoes such as Ae. albopictus could facilitate local transmission of pathogens, impacting the epidemiology of some mosquito-borne diseases. Aedes albopictus is a vector of several pathogens affecting humans, including viruses such as dengue virus, Zika virus and Chikungunya virus, as well as parasites such as Dirofilaria. However, information about its competence for the transmission of parasites affecting wildlife, such as avian malaria parasites, is limited. In this literature review, we aim to explore the current knowledge about the relationships between Ae. albopictus and avian Plasmodium to understand the role of this mosquito species in avian malaria transmission. The prevalence of avian Plasmodium in field-collected Ae. albopictus is generally low, although studies have been conducted in a small proportion of the affected countries. In addition, the competence of Ae. albopictus for the transmission of avian malaria parasites has been only proved for certain Plasmodium morphospecies under laboratory conditions. Therefore, Ae. albopictus may play a minor role in avian Plasmodium transmission in the wild, likely due to its mammal-biased blood-feeding pattern and its reduced competence for the development of different avian Plasmodium. However, further studies considering other avian Plasmodium species and lineages circulating under natural conditions should be carried out to properly assess the vectorial role of Ae. albopictus for the Plasmodium species naturally circulating in its distribution range.

5.
Indian J Public Health ; 68(2): 163-166, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953800

RESUMO

BACKGROUND: Several sporadic cases and outbreaks of Zika virus disease have been reported from different states of India. OBJECTIVES: This paper explored the possibility of any ongoing transmission of Zika virus (ZIKV) in the Bhopal region of Central India, where the last outbreak of this disease was reported in 2018. MATERIALS AND METHODS: We screened a group of 75 febrile patients who had already tested negative for the locally endemic causes of fever like dengue, chikungunya, enteric fever, malaria, and scrub typhus and two groups of asymptomatic healthy individuals represented by blood donors (n = 75) and antenatal mothers (n = 75). We tested blood samples of febrile patients for ZIKV RNA using real-time polymerase chain reaction (PCR), and for the healthy individuals, we determined anti-zika immunoglobulin G (IgG) antibodies using enzyme-linked immunosorbent assay. RESULTS: ZIKV RNA was not detected in any of the 75 samples tested by real-time PCR assay. Among the voluntary blood donors and antenatal mothers, a total of 10 (15.38%) and 5 (6.66%) individuals were found to be seropositive for anti-ZIKV IgG antibodies, respectively. The seropositive group was found to have higher age 33.06 (±10.83) years as compared to seronegative individuals 26.60 (±5.12) years (P = 0.037). CONCLUSION: This study, which is the first survey of seroprevalence of anti-Zika antibodies from India, reports an overall seropositivity rate of 10% for anti-Zika antibodies among the healthy population, suggesting an ongoing, low level, silent transmission of ZIKV in the local community.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Índia/epidemiologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Estudos Soroepidemiológicos , Adulto , Feminino , Projetos Piloto , Masculino , Zika virus/imunologia , Zika virus/isolamento & purificação , Imunoglobulina G/sangue , Adulto Jovem , Anticorpos Antivirais/sangue , Pessoa de Meia-Idade , RNA Viral , Adolescente , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase em Tempo Real
6.
Lancet Reg Health Am ; 35: 100786, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38846808

RESUMO

Background: This study focuses on urban arboviruses, specifically dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV), which pose a significant public health challenge in Rio de Janeiro state, Southeast Brazil. In our research, we highlight critical findings on the transmission dynamics of these arboviruses in Rio de Janeiro, identifying distinct patterns of disease spread. Methods: By combining genomic data with case reports from the Brazilian Ministry of Health, we have analysed the phylogenetics, prevalence and spatial distribution of these endemic viruses within the state. Findings: Our results revealed sustained DENV transmission primarily in the northern part of the state, a significant ZIKV epidemic in 2016 affecting all mesoregions, and two major CHIKV outbreaks in 2018 and 2019, predominantly impacting the northern and southern areas. Our analysis suggests an inverse relationship between arboviral case incidence and urban density, with less populous regions experiencing higher transmission rates, potentially attributed to a complex interplay of factors such as the efficacy of vector control measures, environmental conditions, local immunity levels, and human mobility. Furthermore, our investigation unveiled distinct age and gender trends among affected individuals. Notably, dengue cases were predominantly observed in young adults aged 32, while chikungunya cases were more prevalent among individuals over 41. In contrast, cases of ZIKV were concentrated around the 33-year age group. Intriguingly, females accounted for nearly 60% of the cases, suggesting a potential gender-based difference in infection rates. Interpretation: Our findings underscore the complexity of arbovirus transmission and the need for interventions tailored to different geographical mesoregions. Enhanced surveillance and genomic sequencing will be essential for a deeper, more nuanced understanding of regional arbovirus dynamics. Identifying potential blind spots within the state will be pivotal for developing and implementing more effective public health strategies, specifically designed to address the unique challenges posed by these viruses throughout the state. Funding: This study was supported by the National Institutes of Health USA grant U01 AI151698 for the United World Arbovirus Research Network (UWARN) and the CRP-ICGEB RESEARCH GRANT 2020 Project CRP/BRA20-03.

7.
Sci Rep ; 14(1): 10003, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693192

RESUMO

Zika, a viral disease transmitted to humans by Aedes mosquitoes, emerged in the Americas in 2015, causing large-scale epidemics. Colombia alone reported over 72,000 Zika cases between 2015 and 2016. Using national surveillance data from 1121 municipalities over 70 weeks, we identified sociodemographic and environmental factors associated with Zika's emergence, re-emergence, persistence, and transmission intensity in Colombia. We fitted a zero-state Markov-switching model under the Bayesian framework, assuming Zika switched between periods of presence and absence according to spatially and temporally varying probabilities of emergence/re-emergence (from absence to presence) and persistence (from presence to presence). These probabilities were assumed to follow a series of mixed multiple logistic regressions. When Zika was present, assuming that the cases follow a negative binomial distribution, we estimated the transmission intensity rate. Our results indicate that Zika emerged/re-emerged sooner and that transmission was intensified in municipalities that were more densely populated, at lower altitudes and/or with less vegetation cover. Warmer temperatures and less weekly-accumulated rain were also associated with Zika emergence. Zika cases persisted for longer in more densely populated areas with more cases reported in the previous week. Overall, population density, elevation, and temperature were identified as the main contributors to the first Zika epidemic in Colombia. We also estimated the probability of Zika presence by municipality and week, and the results suggest that the disease circulated undetected by the surveillance system on many occasions. Our results offer insights into priority areas for public health interventions against emerging and re-emerging Aedes-borne diseases.


Assuntos
Aedes , Cadeias de Markov , Infecção por Zika virus , Zika virus , Infecção por Zika virus/transmissão , Infecção por Zika virus/epidemiologia , Colômbia/epidemiologia , Humanos , Animais , Aedes/virologia , Teorema de Bayes , Mosquitos Vetores/virologia , Surtos de Doenças
8.
Proc Natl Acad Sci U S A ; 121(16): e2317978121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593069

RESUMO

Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.


Assuntos
Aedes , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Camundongos , Flavivirus/genética , Zika virus/genética , Ubiquitina/metabolismo , Ligases/metabolismo , Proteínas Virais/metabolismo , Mamíferos
9.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38669573

RESUMO

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Assuntos
Aedes , Vírus da Dengue , Mosquitos Vetores , Simbiose , Zika virus , Animais , Aedes/microbiologia , Aedes/virologia , Vírus da Dengue/fisiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/microbiologia , Zika virus/fisiologia , Dengue/transmissão , Dengue/virologia , Dengue/prevenção & controle , Microbioma Gastrointestinal , Acetobacteraceae/fisiologia , Feminino , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Flavivirus/fisiologia , Flavivirus/genética , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
10.
PLoS Negl Trop Dis ; 18(4): e0012053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557981

RESUMO

BACKGROUND: Mosquito-borne arboviruses are expanding their territory and elevating their infection prevalence due to the rapid climate change, urbanization, and increased international travel and global trade. Various significant arboviruses, including the dengue virus, Zika virus, Chikungunya virus, and yellow fever virus, are all reliant on the same primary vector, Aedes aegypti. Consequently, the occurrence of arbovirus coinfection in mosquitoes is anticipated. Arbovirus coinfection in mosquitoes has two patterns: simultaneous and sequential. Numerous studies have demonstrated that simultaneous coinfection of arboviruses in mosquitoes is unlikely to exert mutual developmental influence on these viruses. However, the viruses' interplay within a mosquito after the sequential coinfection seems intricated and not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We conducted experiments aimed at examining the phenomenon of arbovirus sequential coinfection in both mosquito cell line (C6/36) and A. aegypti, specifically focusing on dengue virus (DENV, serotype 2) and Zika virus (ZIKV). We firstly observed that DENV and ZIKV can sequentially infect mosquito C6/36 cell line, but the replication level of the subsequently infected ZIKV was significantly suppressed. Similarly, A. aegypti mosquitoes can be sequentially coinfected by these two arboviruses, regardless of the order of virus exposure. However, the replication, dissemination, and the transmission potential of the secondary virus were significantly inhibited. We preliminarily explored the underlying mechanisms, revealing that arbovirus-infected mosquitoes exhibited activated innate immunity, disrupted lipid metabolism, and enhanced RNAi pathway, leading to reduced susceptibility to the secondary arbovirus infections. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that, in contrast to simultaneous arbovirus coinfection in mosquitoes that can promote the transmission and co-circulation of these viruses, sequential coinfection appears to have limited influence on arbovirus transmission dynamics. However, it is important to note that more experimental investigations are needed to refine and expand upon this conclusion.


Assuntos
Aedes , Arbovírus , Coinfecção , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Coinfecção/epidemiologia , Mosquitos Vetores , Dengue/epidemiologia
11.
Parasit Vectors ; 17(1): 177, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575981

RESUMO

BACKGROUND: Vertical transmission (VT) of arboviruses (arthropod-borne viruses) can serve as an essential link in the transmission cycle during adverse environmental conditions. The extent of VT among mosquito-borne arboviruses can vary significantly among different virus families and even among different viruses within the same genus. For example, orthobunyaviruses exhibit a higher VT rate than orthoflaviviruses and alphaviruses. Mosquitoes are also the natural hosts of a large number of insect-specific viruses (ISV) that belong to several virus families, including Bunyaviridae, Flaviviridae, and Togaviridae. Cell fusing agent virus (CFAV), an insect-specific orthoflavivirus, displays higher VT rates than other dual-host orthoflaviviruses, such as Zika and dengue viruses. High VT rates require establishment of stabilized infections in the germinal tissues of female vectors. To delve deeper into understanding the mechanisms governing these differences in VT rates and the establishment of stabilized infections, the ovary infection patterns and VT of Zika virus (ZIKV) and CFAV were compared. METHODS: Laboratory colonized Aedes aegypti females were infected with either ZIKV or CFAV by intrathoracic injection. Ovary infection patterns were monitored by in situ hybridization using virus-specific probes, and VT was determined by detecting the presence of the virus among the progeny, using a reverse-transcription quantitative polymerase chain reaction (PCR) assay. RESULTS: Both ZIKV and CFAV infect mosquito ovaries after intrathoracic injection. Infections then become widespread following a non-infectious blood meal. VT rates of ZIKV are similar to previously reported results (3.33%). CFAV, on the contrary transmits vertically very rarely. VT was not observed in the first gonotrophic cycle following intrathoracic injection, and only rarely in the second gonotrophic cycle. VT of CFAV is mosquito population independent, since similar results were obtained with Aedes aegypti collected from two different geographic locations. CONCLUSIONS: Although CFAV infects mosquito ovaries, the occurrence of VT remains infrequent in artificially infected Ae. aegypti, despite the observation of high VT rates in field-collected mosquitoes. These results suggest that infections of insect-specific viruses are stabilized in mosquitoes by some as yet unidentified mechanisms.


Assuntos
Aedes , Arbovírus , Vírus de Insetos , Infecção por Zika virus , Zika virus , Feminino , Animais , Mosquitos Vetores
12.
Rev. Baiana Saúde Pública ; 48(1): 185-196, 20240426.
Artigo em Português | LILACS | ID: biblio-1555818

RESUMO

A microcefalia é uma condição sem tratamento causa alterações de cunho sensorial, cognitivo, motor, auditivo e visual, podendo ser adquirida por meio da infecção congênita pelo vírus Zika. O objetivo desta pesquisa foi avaliar o estado nutricional, o consumo alimentar e os fatores socioeconômicos que implicam na alimentação das crianças com microcefalia oriunda da infecção pelo Zika Vírus. Este estudo é uma pesquisa de campo descritiva, de delineamento transversal, que foi realizada com dez crianças na faixa etária de 2 a 3 anos. O estado nutricional foi avaliado utilizando balança digital e fita métrica, e os questionários sobre o consumo alimentar e condições socioeconômicas foram respondidos pelos cuidadores das crianças. Os resultados encontrados apresentaram inadequações das seguintes maneiras: 60% na estatura por idade, 50% no peso por idade e 40% no peso por estatura. Sobre a alimentação, 70% tinham uma alimentação inadequada e 60% apresentavam condições socioeconômicas de risco. Perante os achados, é possível interligar os fatores pesquisados com um retardo no desenvolvimento infantil. Portanto, ressalta-se que a microcefalia associada à alimentação inadequada e baixa condição social é capaz de agravar o estado nutricional.


Microcephaly is an untreated condition that leads to sensory, cognitive, motor, auditory and visual changes and can be acquired through congenital infection by the Zika Virus. Hence, this study evaluates the nutritional status, food consumption and socioeconomic factors that affect the nutrition of children with microcephaly transmitted by Zika Virus infection. A descriptive, cross-sectional field research was conducted with ten children aged 2 to 3 years. Nutritional status was assessed using a digital scale and measuring tape. Questionnaires on food consumption and socioeconomic conditions were answered by the children's caregivers. The results found presented the following inadequacies: 60% in height for age, 50% in weight for age, and 40% in weight for height. Regarding nutrition, 70% of the children had inadequate nutrition and 60% lived under risky socioeconomic conditions. Given these findings, the factors researched can be linked with a delay in child development. Therefore, microcephaly associated with inadequate nutrition and low social status can worsen nutritional status.


La microcefalia es una afección no tratada que conlleva cambios sensoriales, cognitivos, motores, auditivos y visuales, y puede adquirirse a través de una infección congénita por el virus Zika. El objetivo de este estudio fue evaluar el estado nutricional, el consumo de alimentos y los factores socioeconómicos que afectan la nutrición de niños con microcefalia provocada por la infección por el virus Zika. Se trata de un estudio descriptivo, de enfoque transversal, que se realizó con 10 niños de entre 2 y 3 años. El estado nutricional se evaluó mediante una balanza digital y una cinta métrica, y los cuidadores de los niños respondieron cuestionarios sobre consumo de alimentos y condiciones socioeconómicas. Los resultados encontrados presentaron insuficiencias en los siguientes aspectos: 60% en talla para la edad, 50% en peso para la edad y 40% en peso para la talla. En cuanto a la nutrición, el 70% tenía una nutrición inadecuada y el 60% tenía condiciones socioeconómicas de riesgo. Teniendo en cuenta los hallazgos, es posible relacionar los factores investigados con un retraso en el desarrollo infantil. Por tanto, cabe destacar que la microcefalia asociada a una nutrición inadecuada y un bajo estatus social es capaz de empeorar el estado nutricional.


Assuntos
Humanos , Pré-Escolar
13.
Sci Rep ; 14(1): 7424, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548897

RESUMO

The Zika virus (ZIKV) is a serious global public health crisis. A major control challenge is its multiple transmission modes. This paper aims to simulate the transmission patterns of ZIKV using a dynamic process-based epidemiological model written in ordinary differential equations, which incorporates the human-to-mosquito infection by bites and sewage, mosquito-to-human infection by bites, and human-to-human infection by sex. Mathematical analyses are carried out to calculate the basic reproduction number and backward bifurcation, and prove the existence and stability of the equilibria. The model is validated with infection data by applying it to the 2015-2016 ZIKV epidemic in Brazil. The results indicate that the reproduction number is estimated to be 2.13, in which the contributions by mosquito bite, sex and sewage account for 85.7%, 3.5% and 10.8%, respectively. This number and the morbidity rate are most sensitive to parameters related to mosquito ecology, rather than asymptomatic or human-to-human transmission. Multiple transmission routes and suitable temperature exacerbate ZIKV infection in Brazil, and the vast majority of human infection cases were prevented by the intervention implemented. These findings may provide new insights to improve the risk assessment of ZIKV infection.


Assuntos
Aedes , Epidemias , Infecção por Zika virus , Zika virus , Animais , Humanos , Brasil/epidemiologia , Esgotos
14.
Microorganisms ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543474

RESUMO

Zika virus (ZIKV) can cause neurological issues in infants. To provide protection, neutralizing antibodies should be transferred from the mother to the infant. We conducted a study at the Hospital General de Pochutla, Oaxaca, Mexico. Samples were collected from mothers (blood and breast milk) and infants (saliva and dried blood spots) within the first 12 postnatal hours (December 2017 to February 2018) and tested for ZIKV total and neutralizing antibodies as well as ZIKV-PCR. Microcephaly was evaluated according to INTERGROWTH-21st standards. Maternal IgG seroprevalence was 28.4% with 10.4% active infection, while infant IgG seroprevalence was 5.5% with 2.4% active infection. There were two cases of virolactia, and 6.3% of the infant saliva samples tested positive for ZIKV. Additionally, 18.3% of the infants were in a cephalic perimeter percentile lower than 10 and had an association between microcephaly and serology or a PCR between 8.6 and 60.9%. The infant blood samples had neutralizing antibodies, indicating intrauterine protection. Microcephaly was correlated with serology or PCR, but in our study population, non-ZIKV factors may be involved as well. Low ZIKV infection values in breast milk mean that breastfeeding is safe in most of the mothers and infants of the endemic area studied.

15.
Trop Med Infect Dis ; 9(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38535877

RESUMO

Aedes aegypti and Culex quinquefasciatus mosquitoes are vectors of different arboviruses that cause a large burden of disease in humans worldwide. A key step towards reducing the impact of arboviruses on humans can be achieved through integrated mosquito surveillance and control approaches. We carried out an integrated approach of mosquito surveillance and control actions to reduce populations of these insects along with a viral surveillance in a neighborhood of Recife (Northeastern Brazil) with high mosquito densities and arbovirus transmission. The actions were carried out in 40 different houses in the Nova Descoberta neighborhood. The area was divided into two groups, the control group using tools to monitor the mosquito density (1 OVT; 1 Double BR-ovt; monthly capture of alates) and the experimental group with control actions using surveillance tools in an intensified way (2 OVTs; 2 Double BR-ovts; fortnightly capture of alates; toxic baits). We evaluated the study's impact on the mosquito density via the Egg Density (ED) and Adult Density (AD) over a period of 12 cycles of 28 days each. The collected adult mosquitoes were processed via RT-qPCR for DENV, CHIKV and ZIKV and, subsequently, the Minimum Infection Rate (MIR) was calculated. After 12 cycles, we observed a 91% and 99% reduction in Aedes ED and AD in the monitored properties, as well as a 76% reduction in the AD of Cx. quinquefasciatus in the same properties. Moreover, we detected circulating arboviruses (DENV and ZIKV) in 19.52% of captured adult mosquitoes. We show that enhancing entomological surveillance tools can aid in the early detection of possible risk areas based on vector mosquito population numbers. Additionally, the detection of important arboviruses such as ZIKV and DENV raises awareness and allows for a better selection of risk areas and silent virus spread. It offers supplementary information for guiding emergency mosquito control measures in the target area. The goal is to minimize human-vector interactions and, subsequently, to lower the risk of transmitting circulating arboviruses.

16.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38463973

RESUMO

During major, recent yellow fever (YF) epidemics in Brazil, human cases were attributed only to spillover infections from sylvatic transmission with no evidence of human amplification. Furthermore, the historic absence of YF in Asia, despite abundant peridomestic Aedes aegypti and naive human populations, represents a longstanding enigma. We tested the hypothesis that immunity from dengue (DENV) and Zika (ZIKV) flaviviruses limits YF virus (YFV) viremia and transmission by Ae. aegypti . Prior DENV and ZIKV immunity consistently suppressed YFV viremia in experimentally infected macaques, leading to reductions in Ae. aegypti infection when mosquitoes were fed on infected animals. These results indicate that, in DENV- and ZIKV-endemic regions such as South America and Asia, flavivirus immunity suppresses YFV human amplification potential, reducing the risk of urban outbreaks. One-Sentence Summary: Immunity from dengue and Zika viruses suppresses yellow fever viremia, preventing infection of mosquitoes and reducing the risk of epidemics.

17.
Nat Commun ; 15(1): 2682, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538621

RESUMO

Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.


Assuntos
Aedes , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Viremia
18.
Chaos ; 34(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490187

RESUMO

Viral infections spread by mosquitoes are a growing threat to human health and welfare. Zika virus (ZIKV) is one of them and has become a global worry, particularly for women who are pregnant. To study ZIKV dynamics in the presence of demographic stochasticity, we consider an established ZIKV transmission model that takes into consideration the disease transmission from human to mosquito, mosquito to human, and human to human. In this study, we look at the local stability of the disease-free and endemic equilibriums. By conducting the sensitivity analysis both locally and globally, we assess the effect of the model parameters on the model outcomes. In this work, we use the continuous-time Markov chain (CTMC) process to develop and analyze a stochastic model. The main distinction between deterministic and stochastic models is that, in the absence of any preventive measures such as avoiding travel to infected areas, being careful from mosquito bites, taking precautions to reduce the risk of sexual transmission, and seeking medical care for any acute illness with a rash or fever, the stochastic model shows the possibility of disease extinction in a finite amount of time, unlike the deterministic model shows disease persistence. We found that the numerically estimated disease extinction probability agrees well with the analytical probability obtained from the Galton-Watson branching process approximation. We have discovered that the disease extinction probability is high if the disease emerges from infected mosquitoes rather than infected humans. In the context of the stochastic model, we derive the implicit equation of the mean first passage time, which computes the average amount of time needed for a system to undergo its first state transition.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Animais , Humanos , Feminino , Infecção por Zika virus/epidemiologia , Probabilidade , Cadeias de Markov , Demografia
19.
Viruses ; 16(2)2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38400018

RESUMO

Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Animais , Humanos , Flavivirus/genética , Zika virus/genética , Zika virus/metabolismo , Virulência , Replicação Viral , Proteínas/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Antivirais/metabolismo , Mamíferos
20.
EMBO J ; 43(9): 1690-1721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38378891

RESUMO

Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.


Assuntos
Aedes , Zika virus , Animais , Aedes/virologia , Aedes/metabolismo , Feminino , Zika virus/fisiologia , Camundongos , Vírus da Dengue/fisiologia , Proteínas e Peptídeos Salivares/metabolismo , Mosquitos Vetores/virologia , Proteínas de Insetos/metabolismo , Células Mieloides/virologia , Células Mieloides/metabolismo , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Dengue/transmissão , Dengue/virologia , Dengue/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA