Your browser doesn't support javascript.

Portal Regional da BVS

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Using diffusive gradients in thin films (DGT) and DGT-induced fluxes in sediments model to assess the dynamic release of copper in sediment cores from the Three Gorges Reservoir, China.

Sci Total Environ; 672: 192-200, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954818
As one of the largest man-made reservoir, the Three Gorges Reservoir (TGR) brings great uncertainty and challenges regarding trace metal (e.g., Cu) remobilization in the sediment. Therefore, in this study, sediment cores were collected from the mainstream of the Yangtze River and its three tributaries in the TGR, with a focus on evaluating the Cu remobilization risk and release dynamics using conventional methods, diffusive gradients in thin films (DGT), and the DGT-induced fluxes in sediments (DIFS) model. The results showed that although total Cu concentrations were slightly higher than background values, Cu was mainly observed in the unreactive residual fraction. Additionally, assessment of sediment quality guidelines and the risk assessment code indicated low Cu contamination risk for all sampling sites. However, the results of DGT measurements at the sediment-water interface showed efflux of Cu from sediment to the overlying water at most sites, except for the upstream of the Meixi River and the mainstream of the Yangtze River. Interestingly, diffusion fluxes at the three tributaries displayed an increase trend from the upper to lower reaches. The DIFS model simulation further implied that the highest resupply capacity and desorption rate occurred in the Zhuyi River and the upstream of the Meixi River. In fact, the accumulation of Cu from the upper to the lower reaches of the Zhuyi River significantly elevated the Cu resupply capacity. Thus, more attention should be paid to Cu mobilization in the TGR, especially in the Zhuyi River and the upstream of the Meixi River.