Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012360, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935780

RESUMO

The cGMP-dependent protein kinase (PKG) is the sole cGMP sensor in malaria parasites, acting as an essential signalling hub to govern key developmental processes throughout the parasite life cycle. Despite the importance of PKG in the clinically relevant asexual blood stages, many aspects of malarial PKG regulation, including the importance of phosphorylation, remain poorly understood. Here we use genetic and biochemical approaches to show that reduced cGMP binding to cyclic nucleotide binding domain B does not affect in vitro kinase activity but prevents parasite egress. Similarly, we show that phosphorylation of a key threonine residue (T695) in the activation loop is dispensable for kinase activity in vitro but is essential for in vivo PKG function, with loss of T695 phosphorylation leading to aberrant phosphorylation events across the parasite proteome and changes to the substrate specificity of PKG. Our findings indicate that Plasmodium PKG is uniquely regulated to transduce signals crucial for malaria parasite development.

2.
Proc Natl Acad Sci U S A ; 120(30): e2306420120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463201

RESUMO

To ensure their survival in the human bloodstream, malaria parasites degrade up to 80% of the host erythrocyte hemoglobin in an acidified digestive vacuole. Here, we combine conditional reverse genetics and quantitative imaging approaches to demonstrate that the human malaria pathogen Plasmodium falciparum employs a heteromultimeric V-ATPase complex to acidify the digestive vacuole matrix, which is essential for intravacuolar hemoglobin release, heme detoxification, and parasite survival. We reveal an additional function of the membrane-embedded V-ATPase subunits in regulating morphogenesis of the digestive vacuole independent of proton translocation. We further show that intravacuolar accumulation of antimalarial chemotherapeutics is surprisingly resilient to severe deacidification of the vacuole and that modulation of V-ATPase activity does not affect parasite sensitivity toward these drugs.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/metabolismo , Adenosina Trifosfatases/metabolismo , Vacúolos , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo
3.
EMBO J ; 40(11): e107226, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932049

RESUMO

Malaria parasite egress from host erythrocytes (RBCs) is regulated by discharge of a parasite serine protease called SUB1 into the parasitophorous vacuole (PV). There, SUB1 activates a PV-resident cysteine protease called SERA6, enabling host RBC rupture through SERA6-mediated degradation of the RBC cytoskeleton protein ß-spectrin. Here, we show that the activation of Plasmodium falciparum SERA6 involves a second, autocatalytic step that is triggered by SUB1 cleavage. Unexpectedly, autoproteolytic maturation of SERA6 requires interaction in multimolecular complexes with a distinct PV-located protein cofactor, MSA180, that is itself a SUB1 substrate. Genetic ablation of MSA180 mimics SERA6 disruption, producing a fatal block in ß-spectrin cleavage and RBC rupture. Drug-like inhibitors of SERA6 autoprocessing similarly prevent ß-spectrin cleavage and egress in both P. falciparum and the emerging zoonotic pathogen P. knowlesi. Our results elucidate the egress pathway and identify SERA6 as a target for a new class of antimalarial drugs designed to prevent disease progression.


Assuntos
Antimaláricos/farmacologia , Cisteína Proteases/metabolismo , Plasmodium falciparum/metabolismo , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/metabolismo , Células Cultivadas , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Proteólise , Proteínas de Protozoários/antagonistas & inibidores , Serina Proteases/metabolismo , Espectrina/metabolismo
4.
PLoS Pathog ; 19(6): e1011449, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352369

RESUMO

Malaria parasite release (egress) from host red blood cells involves parasite-mediated membrane poration and rupture, thought to involve membrane-lytic effector molecules such as perforin-like proteins and/or phospholipases. With the aim of identifying these effectors, we disrupted the expression of two Plasmodium falciparum perforin-like proteins simultaneously and showed that they have no essential roles during blood stage egress. Proteomic profiling of parasite proteins discharged into the parasitophorous vacuole (PV) just prior to egress detected the presence in the PV of a lecithin:cholesterol acyltransferase (LCAT; PF3D7_0629300). Conditional ablation of LCAT resulted in abnormal egress and a reduced replication rate. Lipidomic profiles of LCAT-null parasites showed drastic changes in several phosphatidylserine and acylphosphatidylglycerol species during egress. We thus show that, in addition to its previously demonstrated role in liver stage merozoite egress, LCAT is required to facilitate efficient egress in asexual blood stage malaria parasites.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Parasitos/metabolismo , Fosfolipases , Perforina , Proteômica , Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia
5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975947

RESUMO

Malaria is a devastating infectious disease, which causes over 400,000 deaths per annum and impacts the lives of nearly half the world's population. The causative agent, a protozoan parasite, replicates within red blood cells (RBCs), eventually destroying the cells in a lytic process called egress to release a new generation of parasites. These invade fresh RBCs to repeat the cycle. Egress is regulated by an essential parasite subtilisin-like serine protease called SUB1. Here, we describe the development and optimization of substrate-based peptidic boronic acids that inhibit Plasmodium falciparum SUB1 with low nanomolar potency. Structural optimization generated membrane-permeable, slow off-rate inhibitors that prevent Pfalciparum egress through direct inhibition of SUB1 activity and block parasite replication in vitro at submicromolar concentrations. Our results validate SUB1 as a potential target for a new class of antimalarial drugs designed to prevent parasite replication and disease progression.


Assuntos
Antimaláricos/farmacologia , Ácidos Borônicos/farmacologia , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Subtilisinas/química , Antimaláricos/síntese química , Sítios de Ligação , Ácidos Borônicos/síntese química , Desenho de Fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Expressão Gênica , Humanos , Cinética , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/fisiologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos/síntese química , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Subtilisinas/antagonistas & inibidores , Subtilisinas/genética , Subtilisinas/metabolismo , Termodinâmica
6.
J Infect Dis ; 227(10): 1121-1126, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36478252

RESUMO

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized Plasmodium cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F. Introduction of this mutation using clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) increased sensitivity to mefloquine, but had no significant effect on sensitivity to chloroquine, amodiaquine, piperaquine, and artesunate. To our knowledge, this is the first reported use of CRISPR-Cas9 in P. cynomolgi, and the first reported integrative genetic manipulation of this species.


Assuntos
Antimaláricos , Plasmodium cynomolgi , Mefloquina/farmacologia , Antimaláricos/farmacologia , Cloroquina/farmacologia , Plasmodium vivax/genética , Resistência a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum
7.
J Cell Sci ; 134(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686010

RESUMO

All intracellular pathogens must escape (egress) from the confines of their host cell to disseminate and proliferate. The malaria parasite only replicates in an intracellular vacuole or in a cyst, and must undergo egress at four distinct phases during its complex life cycle, each time disrupting, in a highly regulated manner, the membranes or cyst wall that entrap the parasites. This Cell Science at a Glance article and accompanying poster summarises our current knowledge of the morphological features of egress across the Plasmodium life cycle, the molecular mechanisms that govern the process, and how researchers are working to exploit this knowledge to develop much-needed new approaches to malaria control.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Eritrócitos , Estágios do Ciclo de Vida , Plasmodium falciparum , Proteínas de Protozoários
8.
Proc Natl Acad Sci U S A ; 117(28): 16546-16556, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601225

RESUMO

During blood-stage development, malaria parasites are challenged with the detoxification of enormous amounts of heme released during the proteolytic catabolism of erythrocytic hemoglobin. They tackle this problem by sequestering heme into bioinert crystals known as hemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control heme crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of hemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multidirectional crystal branching. Although hemoglobin processing remains unaffected, PV5-deficient parasites generate less hemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology, neither the crystalline order nor unit cell of hemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in hemozoin formation and underscore the heme biomineralization pathway as an attractive target for therapeutic exploitation.


Assuntos
Heme/metabolismo , Lipocalinas/metabolismo , Malária/parasitologia , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Hemeproteínas/genética , Hemeproteínas/metabolismo , Humanos , Lipocalinas/química , Lipocalinas/genética , Malária/metabolismo , Camundongos , Plasmodium berghei/química , Plasmodium berghei/genética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
9.
PLoS Biol ; 17(2): e3000154, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30794532

RESUMO

Cyclic nucleotide signalling is a major regulator of malaria parasite differentiation. Phosphodiesterase (PDE) enzymes are known to control cyclic GMP (cGMP) levels in the parasite, but the mechanisms by which cyclic AMP (cAMP) is regulated remain enigmatic. Here, we demonstrate that Plasmodium falciparum phosphodiesterase ß (PDEß) hydrolyses both cAMP and cGMP and is essential for blood stage viability. Conditional gene disruption causes a profound reduction in invasion of erythrocytes and rapid death of those merozoites that invade. We show that this dual phenotype results from elevated cAMP levels and hyperactivation of the cAMP-dependent protein kinase (PKA). Phosphoproteomic analysis of PDEß-null parasites reveals a >2-fold increase in phosphorylation at over 200 phosphosites, more than half of which conform to a PKA substrate consensus sequence. We conclude that PDEß plays a critical role in governing correct temporal activation of PKA required for erythrocyte invasion, whilst suppressing untimely PKA activation during early intra-erythrocytic development.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Transdução de Sinais/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Eritrócitos/parasitologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hidrólise , Merozoítos/enzimologia , Merozoítos/genética , Merozoítos/crescimento & desenvolvimento , Fosfoproteínas/classificação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteoma/classificação , Proteoma/genética , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Esquizontes/enzimologia , Esquizontes/genética , Esquizontes/crescimento & desenvolvimento , Fatores de Tempo
10.
PLoS Biol ; 17(5): e3000264, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31075098

RESUMO

Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACß) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.


Assuntos
AMP Cíclico/metabolismo , Interações Hospedeiro-Parasita , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Parasitos/metabolismo , Transdução de Sinais , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Parasitos/enzimologia , Parasitos/crescimento & desenvolvimento , Parasitos/ultraestrutura , Fosfoproteínas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(28): 14164-14173, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239348

RESUMO

The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/química , Malária/genética , Plasmodium falciparum/química , Conformação Proteica , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/ultraestrutura , Humanos , Cinética , Malária/parasitologia , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Ligação Proteica
12.
PLoS Pathog ; 15(9): e1008049, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491036

RESUMO

The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite.


Assuntos
Eritrócitos/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/imunologia , Humanos , Malária/metabolismo , Malária Falciparum/metabolismo , Proteínas de Membrana/metabolismo , Merozoítos/metabolismo , Organelas/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico/fisiologia
13.
Biochem J ; 477(2): 525-540, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31942933

RESUMO

Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite.


Assuntos
Malária Falciparum/genética , Plasmodium falciparum/genética , Serina Proteases/química , Subtilisina/genética , Sequência de Aminoácidos/genética , Animais , Eritrócitos/parasitologia , Genoma/genética , Humanos , Estágios do Ciclo de Vida/genética , Malária Falciparum/enzimologia , Malária Falciparum/parasitologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Plasmodium falciparum/patogenicidade , Proteólise , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Serina Proteases/genética , Subtilisina/química , Vacúolos/parasitologia
14.
Cell Microbiol ; 21(7): e13028, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30941868

RESUMO

The Plasmodium subtilisin-like serine protease SUB1 is expressed in hepatic and both asexual and sexual blood parasite stages. SUB1 is required for egress of invasive forms of the parasite from both erythrocytes and hepatocytes, but its subcellular localisation, function, and potential substrates in the sexual stages are unknown. Here, we have characterised the expression profile and subcellular localisation of SUB1 in Plasmodium berghei sexual stages. We show that the protease is selectively expressed in mature male gametocytes and localises to secretory organelles known to be involved in gamete egress, called male osmiophilic bodies. We have investigated PbSUB1 function in the sexual stages by generating P. berghei transgenic lines deficient in PbSUB1 expression or enzyme activity in gametocytes. Our results demonstrate that PbSUB1 plays a role in male gamete egress. We also show for the first time that the PbSUB1 substrate PbSERA3 is expressed in gametocytes and processed by PbSUB1 upon gametocyte activation. Taken together, our results strongly suggest that PbSUB1 is not only a promising drug target for asexual stages but could also be an attractive malaria transmission-blocking target.


Assuntos
Malária/genética , Plasmodium berghei/genética , Serina Endopeptidases/genética , Subtilisinas/genética , Animais , Eritrócitos/parasitologia , Células Germinativas/parasitologia , Hepatócitos/parasitologia , Malária/parasitologia , Masculino , Organelas/parasitologia , Plasmodium berghei/patogenicidade , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade
15.
PLoS Genet ; 13(9): e1007008, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28922357

RESUMO

The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.


Assuntos
Interações Hospedeiro-Patógeno/genética , Malária/genética , Organelas/genética , Plasmodium knowlesi/genética , Animais , Culicidae/genética , Culicidae/parasitologia , Genoma , Humanos , Insetos Vetores/genética , Macaca fascicularis/genética , Macaca fascicularis/parasitologia , Macaca nemestrina/genética , Macaca nemestrina/parasitologia , Malária/parasitologia , Malária/transmissão , Organelas/parasitologia , Plasmodium knowlesi/patogenicidade
16.
Proc Natl Acad Sci U S A ; 114(13): 3439-3444, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292906

RESUMO

In the asexual blood stages of malarial infection, merozoites invade erythrocytes and replicate within a parasitophorous vacuole to form daughter cells that eventually exit (egress) by sequential rupture of the vacuole and erythrocyte membranes. The current model is that PKG, a malarial cGMP-dependent protein kinase, triggers egress, activating malarial proteases and other effectors. Using selective inhibitors of either PKG or cysteine proteases to separately inhibit the sequential steps in membrane perforation, combined with video microscopy, electron tomography, electron energy loss spectroscopy, and soft X-ray tomography of mature intracellular Plasmodium falciparum parasites, we resolve intermediate steps in egress. We show that the parasitophorous vacuole membrane (PVM) is permeabilized 10-30 min before its PKG-triggered breakdown into multilayered vesicles. Just before PVM breakdown, the host red cell undergoes an abrupt, dramatic shape change due to the sudden breakdown of the erythrocyte cytoskeleton, before permeabilization and eventual rupture of the erythrocyte membrane to release the parasites. In contrast to the previous view of PKG-triggered initiation of egress and a gradual dismantling of the host erythrocyte cytoskeleton over the course of schizont development, our findings identify an initial step in egress and show that host cell cytoskeleton breakdown is restricted to a narrow time window within the final stages of egress.


Assuntos
Citoesqueleto/metabolismo , Membrana Eritrocítica/parasitologia , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Citoesqueleto/genética , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Malária Falciparum/genética , Malária Falciparum/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
17.
PLoS Pathog ; 13(7): e1006453, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28683142

RESUMO

Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Peptídeo Hidrolases/metabolismo , Plasmodium falciparum/fisiologia , Animais , Antígenos de Protozoários/genética , Membrana Celular/parasitologia , Eritrócitos/química , Humanos , Cinética , Merozoítos/química , Merozoítos/genética , Merozoítos/crescimento & desenvolvimento , Merozoítos/fisiologia , Peptídeo Hidrolases/genética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteólise
18.
Proc Natl Acad Sci U S A ; 113(26): 7231-6, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27303038

RESUMO

The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.


Assuntos
Proteínas de Transporte/genética , Eritrócitos/parasitologia , Plasmodium knowlesi/genética , Plasmodium knowlesi/patogenicidade , Proteínas de Protozoários/genética , Animais , Células Cultivadas , Humanos , Macaca fascicularis , Macaca mulatta , Malária , Polimorfismo de Nucleotídeo Único , Zoonoses
19.
Blood ; 127(3): 343-51, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26637786

RESUMO

Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells.


Assuntos
Eritrócitos/parasitologia , Eritrócitos/ultraestrutura , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestrutura , Eritrócitos/metabolismo , Humanos , Proteínas de Membrana/metabolismo
20.
J Biol Chem ; 291(46): 24280-24292, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27694132

RESUMO

StAR-related lipid transfer (START) domains are phospholipid- or sterol-binding modules that are present in many proteins. START domain-containing proteins (START proteins) play important functions in eukaryotic cells, including the redistribution of phospholipids to subcellular compartments and delivering sterols to the mitochondrion for steroid synthesis. How the activity of the START domain is regulated remains unknown for most of these proteins. The Plasmodium falciparum START protein PFA0210c (PF3D7_0104200) is a broad-spectrum phospholipid transfer protein that is conserved in all sequenced Plasmodium species and is most closely related to the mammalian START proteins STARD2 and STARD7. PFA0210c is unusual in that it contains a signal sequence and a PEXEL export motif that together mediate transfer of the protein from the parasite to the host erythrocyte. The protein also contains a C-terminal extension, which is very uncommon among mammalian START proteins. Whereas the biochemical properties of PFA0210c have been characterized, the function of the protein remains unknown. Here, we provide evidence that the unusual C-terminal extension negatively regulates phospholipid transfer activity. Furthermore, we use the genetically tractable Plasmodium knowlesi model and recently developed genetic technology in P. falciparum to show that the protein is essential for growth of the parasite during the clinically relevant asexual blood stage life cycle. Finally, we show that the regulation of phospholipid transfer by PFA0210c is required in vivo, and we identify a potential second regulatory domain. These findings provide insight into a novel mechanism of regulation of phospholipid transfer in vivo and may have important implications for the interaction of the malaria parasite with its host cell.


Assuntos
Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Transporte Biológico Ativo/fisiologia , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos/genética , Plasmodium falciparum/genética , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Domínios Proteicos , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA