Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 561(7722): 258-262, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30135585

RESUMO

Although serum from patients with Parkinson's disease contains elevated levels of numerous pro-inflammatory cytokines including IL-6, TNF, IL-1ß, and IFNγ, whether inflammation contributes to or is a consequence of neuronal loss remains unknown1. Mutations in parkin, an E3 ubiquitin ligase, and PINK1, a ubiquitin kinase, cause early onset Parkinson's disease2,3. Both PINK1 and parkin function within the same biochemical pathway and remove damaged mitochondria from cells in culture and in animal models via mitophagy, a selective form of autophagy4. The in vivo role of mitophagy, however, is unclear, partly because mice that lack either PINK1 or parkin have no substantial Parkinson's-disease-relevant phenotypes5-7. Mitochondrial stress can lead to the release of damage-associated molecular patterns (DAMPs) that can activate innate immunity8-12, suggesting that mitophagy may mitigate inflammation. Here we report a strong inflammatory phenotype in both Prkn-/- and Pink1-/- mice following exhaustive exercise and in Prkn-/-;mutator mice, which accumulate mutations in mitochondrial DNA (mtDNA)13,14. Inflammation resulting from either exhaustive exercise or mtDNA mutation is completely rescued by concurrent loss of STING, a central regulator of the type I interferon response to cytosolic DNA15,16. The loss of dopaminergic neurons from the substantia nigra pars compacta and the motor defect observed in aged Prkn-/-;mutator mice are also rescued by loss of STING, suggesting that inflammation facilitates this phenotype. Humans with mono- and biallelic PRKN mutations also display elevated cytokines. These results support a role for PINK1- and parkin-mediated mitophagy in restraining innate immunity.


Assuntos
Imunidade Inata , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Mitofagia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Alarminas/metabolismo , Animais , DNA Mitocondrial/sangue , DNA Mitocondrial/genética , Humanos , Inflamação/genética , Inflamação/prevenção & controle , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Condicionamento Físico Animal , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/imunologia , Estresse Fisiológico , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
2.
Nat Immunol ; 12(11): 1063-70, 2011 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-21983832

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) has been identified by genome-wide association studies as being encoded by a major susceptibility gene for Crohn's disease. Here we found that LRRK2 deficiency conferred enhanced susceptibility to experimental colitis in mice. Mechanistic studies showed that LRRK2 was a potent negative regulator of the transcription factor NFAT and was a component of a complex that included the large noncoding RNA NRON (an NFAT repressor). Furthermore, the risk-associated allele encoding LRRK2 Met2397 identified by a genome-wide association study for Crohn's disease resulted in less LRRK2 protein post-translationally. Severe colitis in LRRK2-deficient mice was associated with enhanced nuclear localization of NFAT1. Thus, our study defines a new step in the control of NFAT activation that involves an immunoregulatory function of LRRK2 and has important implications for inflammatory bowel disease.


Assuntos
Núcleo Celular/metabolismo , Colite/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA não Traduzido/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Doença de Crohn/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Ativação de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional/imunologia , Proteínas Serina-Treonina Quinases/genética , RNA Longo não Codificante , Transgenes/genética
3.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239960

RESUMO

The degeneration of midbrain dopaminergic (mDA) neurons, particularly in the substantia nigra pars compacta (SNc), is one of the most prominent pathological hallmarks of Parkinson's disease (PD). To uncover the pathogenic mechanisms of mDA neuronal death during PD may provide therapeutic targets to prevent mDA neuronal loss and slow down the disease's progression. Paired-like homeodomain transcription factor 3 (Pitx3) is selectively expressed in the mDA neurons as early as embryonic day 11.5 and plays a critical role in mDA neuron terminal differentiation and subset specification. Moreover, Pitx3-deficient mice exhibit some canonical PD-related features, including the profound loss of SNc mDA neurons, a dramatic decrease in striatal dopamine (DA) levels, and motor abnormalities. However, the precise role of Pitx3 in progressive PD and how this gene contributes to mDA neuronal specification during early stages remains unclear. In this review, we updated the latest findings on Pitx3 by summarizing the crosstalk between Pitx3 and its associated transcription factors in mDA neuron development. We further explored the potential benefits of Pitx3 as a therapeutic target for PD in the future. To better understand the transcriptional network of Pitx3 in mDA neuron development may provide insights into Pitx3-related clinical drug-targeting research and therapeutic approaches.


Assuntos
Neurônios Dopaminérgicos , Proteínas de Homeodomínio , Doença de Parkinson , Fatores de Transcrição , Animais , Camundongos , Dopamina , Neurônios Dopaminérgicos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mesencéfalo/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
FASEB J ; 34(9): 12239-12254, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33000527

RESUMO

α-Synuclein (α-syn)-induced neurotoxicity has been generally accepted as a key step in the pathogenesis of Parkinson's disease (PD). Microtubule-associated protein tau, which is considered second only to α-syn, has been repeatedly linked with PD in association studies. However, the underlying interaction between these two PD-related proteins in vivo remains unclear. To investigate how the expression of tau affects α-syn-induced neurodegeneration in vivo, we generated triple transgenic mice that overexpressed α-syn A53T mutation in the midbrain dopaminergic neurons (mDANs) with different expression levels of tau. Here, we found that tau had no significant effect on the A53T α-syn-mediated mDANs degeneration. However, tau knockout could modestly promote the formation of α-syn aggregates, accelerate the severe and progressive degeneration of parvalbumin-positive (PV+) neurons in substantia nigra pars reticulata (SNR), accompanied with anxiety-like behavior in aged PD-related α-syn A53T mice. The mechanisms may be associated with A53T α-syn-mediated specifically successive impairment of N-methyl-d-aspartate receptor subunit 2B (NR2B), postsynaptic density-95 (PSD-95) and microtubule-associated protein 1A (MAP1A) in PV+ neurons. Our study indicates that MAP1A may play a beneficial role in preserving the survival of PV+ neurons, and that inhibition of the impairment of NR2B/PSD-95/MAP1A pathway, may be a novel and preferential option to ameliorate α-syn-induced neurodegeneration.


Assuntos
Mutação , Degeneração Neural , Doença de Parkinson/etiologia , Parvalbuminas/análise , Substância Negra/patologia , alfa-Sinucleína/genética , Proteínas tau/fisiologia , Animais , Proteína 4 Homóloga a Disks-Large/fisiologia , Proteínas de Homeodomínio/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/fisiologia , Doença de Parkinson/patologia , Fragmentos de Peptídeos/fisiologia , Agregados Proteicos , Receptores de N-Metil-D-Aspartato/fisiologia , Fatores de Transcrição/fisiologia , alfa-Sinucleína/fisiologia , Proteínas tau/química , Proteínas tau/genética
5.
Proc Natl Acad Sci U S A ; 115(45): 11567-11572, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348779

RESUMO

Whole-exome sequencing has been successful in identifying genetic factors contributing to familial or sporadic Parkinson's disease (PD). However, this approach has not been applied to explore the impact of de novo mutations on PD pathogenesis. Here, we sequenced the exomes of 39 early onset patients, their parents, and 20 unaffected siblings to investigate the effects of de novo mutations on PD. We identified 12 genes with de novo mutations (MAD1L1, NUP98, PPP2CB, PKMYT1, TRIM24, CEP131, CTTNBP2, NUS1, SMPD3, MGRN1, IFI35, and RUSC2), which could be functionally relevant to PD pathogenesis. Further analyses of two independent case-control cohorts (1,852 patients and 1,565 controls in one cohort and 3,237 patients and 2,858 controls in the other) revealed that NUS1 harbors significantly more rare nonsynonymous variants (P = 1.01E-5, odds ratio = 11.3) in PD patients than in controls. Functional studies in Drosophila demonstrated that the loss of NUS1 could reduce the climbing ability, dopamine level, and number of dopaminergic neurons in 30-day-old flies and could induce apoptosis in fly brain. Together, our data suggest that de novo mutations could contribute to early onset PD pathogenesis and identify NUS1 as a candidate gene for PD.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Receptores de Superfície Celular/genética , Adulto , Idade de Início , Animais , Apoptose/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/antagonistas & inibidores , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Sequência de Bases , Encéfalo/patologia , Estudos de Casos e Controles , Estudos de Coortes , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Diagnóstico Precoce , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Pais , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/metabolismo , Irmãos
6.
Glia ; 68(10): 2057-2069, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32181533

RESUMO

Nuclear receptor-related 1 protein (NURR1) is essential for the development and maintenance of midbrain dopaminergic (DAergic) neurons. NURR1 also protects DAergic neurons against neuroinflammation. However, it remains to be determined to what extent does NURR1 exerts its protective function through acting autonomously in the microglia. Using Cre/lox gene targeting system, we deleted Nurr1 in the microglia of Nurr1Cd11bcre conditional knockout (cKO) mice. The Nurr1Cd11bcre cKO mice displayed age-dependent motor abnormalities and increased microglial activation, but with no obvious DAergic neurodegeneration. To boost the inflammatory injury, we systemically administered endotoxin lipopolysaccharide (LPS) to Nurr1Cd11bcre mice. As expected, LPS treatment exacerbated the motor phenotypes and inflammatory reactions in Nurr1Cd11bcre cKO mice. More importantly, LPS administration caused DAergic neuron loss and α-synuclein aggregation, two pathological hallmarks of Parkinson's disease (PD). Therefore, our findings provide in vivo evidence supporting a critical protective role of NURR1 in the microglia against inflammation-induced degeneration of DAergic neurons in PD.


Assuntos
Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Degeneração Neural/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Substância Negra/metabolismo , Animais , Animais Recém-Nascidos , Corpo Estriado/patologia , Neurônios Dopaminérgicos/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/induzido quimicamente , Degeneração Neural/genética , Degeneração Neural/patologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Substância Negra/patologia
7.
Proc Natl Acad Sci U S A ; 114(11): E2253-E2262, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28246328

RESUMO

Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.


Assuntos
Dopamina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Gânglios da Base/metabolismo , Biomarcadores , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Deleção de Genes , Expressão Gênica , Humanos , Locomoção , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Nicotina/metabolismo , Nicotina/farmacologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Ligação Proteica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
J Neurosci ; 37(10): 2639-2655, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28159908

RESUMO

Amyloid-ß (Aß) peptides play a key role in synaptic damage and memory deficits in the early pathogenesis of Alzheimer's disease (AD). Abnormal accumulation of Aß at nerve terminals leads to synaptic pathology and ultimately to neurodegeneration. ß-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the major neuronal ß-secretase for Aß generation. However, the mechanisms regulating BACE1 distribution in axons and ß cleavage of APP at synapses remain largely unknown. Here, we reveal that dynein-Snapin-mediated retrograde transport regulates BACE1 trafficking in axons and APP processing at presynaptic terminals. BACE1 is predominantly accumulated within late endosomes at the synapses of AD-related mutant human APP (hAPP) transgenic (Tg) mice and patient brains. Defective retrograde transport by genetic ablation of snapin in mice recapitulates late endocytic retention of BACE1 and increased APP processing at presynaptic sites. Conversely, overexpressing Snapin facilitates BACE1 trafficking and reduces synaptic BACE1 accumulation by enhancing the removal of BACE1 from distal AD axons and presynaptic terminals. Moreover, elevated Snapin expression via stereotactic hippocampal injections of adeno-associated virus particles in mutant hAPP Tg mouse brains decreases synaptic Aß levels and ameliorates synapse loss, thus rescuing cognitive impairments associated with hAPP mice. Altogether, our study provides new mechanistic insights into the complex regulation of BACE1 trafficking and presynaptic localization through Snapin-mediated dynein-driven retrograde axonal transport, thereby suggesting a potential approach of modulating Aß levels and attenuating synaptic deficits in AD.SIGNIFICANCE STATEMENT ß-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) trafficking and synaptic localization significantly influence its ß secretase activity and amyloid-ß (Aß) production. In AD brains, BACE1 is accumulated within dystrophic neurites, which is thought to augment Aß-induced synaptotoxicity by Aß overproduction. However, it remains largely unknown whether axonal transport regulates synaptic APP processing. Here, we demonstrate that Snapin-mediated retrograde transport plays a critical role in removing BACE1 from presynaptic terminals toward the soma, thus reducing synaptic Aß production. Adeno-associated virus-mediated Snapin overexpression in the hippocampus of mutant hAPP mice significantly decreases synaptic Aß levels, attenuates synapse loss, and thus rescues cognitive deficits. Our study uncovers a new pathway that controls synaptic APP processing by enhancing axonal BACE1 trafficking, thereby advancing our fundamental knowledge critical for ameliorating Aß-linked synaptic pathology.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Transporte Axonal , Axônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico/fisiologia
9.
Hum Mol Genet ; 25(2): 211-22, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26503960

RESUMO

Cellular protein homeostasis is achieved by a delicate network of molecular chaperones and various proteolytic processes such as ubiquitin-proteasome system (UPS) to avoid a build-up of misfolded protein aggregates. The latter is a common denominator of neurodegeneration. Neurons are found to be particularly vulnerable to toxic stress from aggregation-prone proteins such as α-synuclein. Induction of heat-shock proteins (HSPs), such as through activated heat shock transcription factor 1 (HSF1) via Hsp90 inhibition, is being investigated as a therapeutic option for proteinopathic diseases. HSF1 is a master stress-protective transcription factor which activates genes encoding protein chaperones (e.g. iHsp70) and anti-apoptotic proteins. However, whether and how HSF1 is dysregulated during neurodegeneration has not been studied. Here, we discover aberrant HSF1 degradation by aggregated α-synuclein (or α-synuclein-induced proteotoxic stress) in transfected neuroblastoma cells. HSF1 dysregulation via α-synuclein was confirmed by in vivo assessment of mouse and in situ studies of human specimens with α-synucleinopathy. We demonstrate that elevated NEDD4 is implicated as the responsible ubiquitin E3 ligase for HSF1 degradation through UPS. Furthermore, pharmacologically induced SIRT1-mediated deacetylation can attenuate aberrant NEDD4-mediated HSF1 degradation. Indeed, we define the acetylation status of the Lys 80 residue located in the DNA-binding domain of HSF1 as a critical factor in modulating HSF1 protein stability in addition to its previously identified role in the transcriptional activity. Together with the finding that preserving HSF1 can alleviate α-synuclein toxicity, this study strongly suggests that aberrant HSF1 degradation is a key neurodegenerative mechanism underlying α-synucleinopathy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Deficiências na Proteostase/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína , Acetilação , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Regulação da Expressão Gênica , Fatores de Transcrição de Choque Térmico , Humanos , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Complexo de Endopeptidases do Proteassoma , Proteólise , Deficiências na Proteostase/patologia , Sirtuína 1/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
10.
Hum Mol Genet ; 25(16): 3515-3523, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27378696

RESUMO

Multiple missense mutations in Leucine-rich repeat kinase 2 (LRRK2) have been linked to Parkinson's disease (PD), the most common degenerative movement disorder. LRRK2 is expressed by both neurons and microglia, the residential immune cells in the brain. Increasing evidence supports a role of LRRK2 in modulating microglial activity, of which Lrrk2-null rodent microglia display less inflammatory response to endotoxin lipopolysaccharide (LPS). The underlying molecular mechanism, however, remains elusive. Chemokine (C-X3-C) receptor 1 (CX3CR1), predominantly expressed by microglia, suppresses microglial inflammation while promotes migration. Using whole-genome microarray screening, we found that Cx3cr1 mRNA levels were substantially higher in microglia derived from Lrrk2 knockout (Lrrk2-/-) mice. The total and cell surface levels of CX3CR1 proteins were also remarkably increased. In correlation with the enhanced CX3CR1 expression, Lrrk2-null microglia migrated faster and travelled longer distance toward the source of fractalkine (CX3CL1), an endogenous ligand of CX3CR1. To investigate the impact of CX3CR1 elevation in vivo, we compared LPS-induced inflammation in the striatum of Lrrk2-/- knockout mice with Cx3cr1 heterozygous and homozygous knockout background. We found that a complete loss of Cx3cr1 restored the responsiveness of Lrrk2-/- microglia to LPS stimulation. In conclusion, our findings reveal a previously unknown regulatory role for LRRK2 in CX3CR1 signalling and suggest that an increase of CX3CR1 activity contributes to the attenuated inflammatory responses in Lrrk2-null microglia.


Assuntos
Inflamação/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Receptores de Quimiocinas/genética , Animais , Receptor 1 de Quimiocina CX3C , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/administração & dosagem , Ativação de Macrófagos/efeitos dos fármacos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/patologia , Receptores de Quimiocinas/biossíntese , Transdução de Sinais/genética
11.
EMBO J ; 33(20): 2314-31, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25201882

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson's disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER-Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES). LRRK2 interacted and co-localized with Sec16A, a key protein in the formation of ERES. Lrrk2 depletion caused a dispersion of Sec16A from ERES and impaired ER export. In neurons, LRRK2 and Sec16A showed extensive co-localization at the dendritic ERES (dERES) that locally regulate the transport of proteins to the dendritic spines. A loss of Lrrk2 affected the association of Sec16A with dERES and impaired the activity-dependent targeting of glutamate receptors onto the cell/synapse surface. Furthermore, the PD-related LRRK2 R1441C missense mutation in the GTPase domain interfered with the interaction of LRRK2 with Sec16A and also affected ER-Golgi transport, while LRRK2 kinase activity was not required for these functions. Therefore, our findings reveal a new physiological function of LRRK2 in ER-Golgi transport, suggesting ERES dysfunction may contribute to the pathogenesis of PD.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Doença de Parkinson/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Linhagem Celular , Células Cultivadas , Espinhas Dendríticas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Modelos Biológicos , Mutação de Sentido Incorreto , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas Recombinantes de Fusão , Proteínas de Transporte Vesicular/genética
12.
FASEB J ; 31(8): 3349-3358, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28424350

RESUMO

Homozygous tau knockout (Mapt-/-) mice develop age-dependent dopaminergic (DA) neuronal loss in the substantia nigra (SN) and ventral tegmental area (VTA), supporting an important function of tau in maintaining the survival of midbrain dopaminergic neurons (mDANs) during aging. However, it remains to be determined whether the microtubule-associated protein tau regulates the differentiation and survival of mDANs during embryonic developmental stages. Here, we show that tau haploinsufficiency in postnatal day 0 (P0) heterozygous (Mapt+/-) pups, but not a complete loss of tau in the Mapt-/- littermates, led to a significant reduction of DA neurons in the VTA. This selective loss of DA neurons correlated with a similar reduction in orthodenticle homeobox 2 (Otx2), which is restricted to VTA neurons at the postmitotic stage and selectively controls the neurogenesis and survival of specific neuronal subtypes of VTA. Moreover, the prenatal developmental cell death in the Mapt+/- VTA specifically increased, and the expression of microtubule-associated protein (MAP)-1A was significantly up-regulated in the P0 Mapt-/- , but not the Mapt+/- , pups. These results suggest that tau haploinsufficiency, without the compensation effect of MAP1A, induces reduction of Otx2 expression, increases prenatal cell death, and accordingly leads to selective loss of VTA DA neurons in the early postnatal stage. Our findings highlight the impact of tau haploinsufficiency on the survival of mDANs and indicate that tau may participate in midbrain development in a dose-dependent way.-Zheng, M., Jiao, L., Tang, X., Xiang, X., Wan, X., Yan, Y., Li, X., Zhang, G., Li, Y., Jiang, B., Cai, H., Lin, X. Tau haploinsufficiency causes prenatal loss of dopaminergic neurons in the ventral tegmental area and reduction of transcription factor orthodenticle homeobox 2 expression.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Haplótipos , Fatores de Transcrição Otx/metabolismo , Área Tegmentar Ventral/citologia , Proteínas tau/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Knockout , Neurogênese , Fatores de Transcrição Otx/genética , Transcriptoma , Proteínas tau/genética
13.
J Neurosci ; 36(16): 4408-14, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27098685

RESUMO

α-Synuclein (α-syn) missense and multiplication mutations have been suggested to cause neurodegenerative diseases, including Parkinson's disease (PD) and dementia with Lewy bodies. Before causing the progressive neuronal loss, α-syn mutations impair exocytosis, which may contribute to eventual neurodegeneration. To understand how α-syn mutations impair exocytosis, we developed a mouse model that selectively expressed PD-related human α-syn A53T (h-α-synA53T) mutation at the calyx of Held terminals, where release mechanisms can be dissected with a patch-clamping technique. With capacitance measurement of endocytosis, we reported that h-α-synA53T, either expressed transgenically or dialyzed in the short term in calyces, inhibited two of the most common forms of endocytosis, the slow and rapid vesicle endocytosis at mammalian central synapses. The expression of h-α-synA53Tin calyces also inhibited vesicle replenishment to the readily releasable pool. These findings may help to understand how α-syn mutations impair neurotransmission before neurodegeneration. SIGNIFICANCE STATEMENT: α-Synuclein (α-syn) missense or multiplication mutations may cause neurodegenerative diseases, such as Parkinson's disease and dementia with Lewy bodies. The initial impact of α-syn mutations before neuronal loss is impairment of exocytosis, which may contribute to eventual neurodegeneration. The mechanism underlying impairment of exocytosis is poorly understood. Here we report that an α-syn mutant, the human α-syn A53T, inhibited two of the most commonly observed forms of endocytosis, slow and rapid endocytosis, at a mammalian central synapse. We also found that α-syn A53T inhibited vesicle replenishment to the readily releasable pool. These results may contribute to accounting for the widely observed early synaptic impairment caused by α-syn mutations in the progression toward neurodegeneration.


Assuntos
Endocitose/genética , Mutação/genética , Terminações Nervosas/fisiologia , Terminações Pré-Sinápticas/fisiologia , alfa-Sinucleína/genética , Animais , Tronco Encefálico/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , alfa-Sinucleína/metabolismo
14.
Hum Mol Genet ; 24(18): 5299-312, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26123485

RESUMO

Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores Etários , Animais , Comportamento Animal , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora , Degeneração Neural/genética , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Proc Natl Acad Sci U S A ; 111(12): E1121-9, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616503

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease that causes motor neuron degeneration, progressive motor dysfunction, paralysis, and death. Although multiple causes have been identified for this disease, >95% of ALS cases show aggregation of transactive response DNA binding protein (TDP-43) accompanied by its nuclear depletion. Therefore, the TDP-43 pathology may be a converging point in the pathogenesis that originates from various initial triggers. The aggregation is thought to result from TDP-43 misfolding, which could generate cellular toxicity. However, the aggregation as well as the nuclear depletion could also lead to a partial loss of TDP-43 function or TDP-43 dysfunction. To investigate the impact of TDP-43 dysfunction, we generated a transgenic mouse model for a partial loss of TDP-43 function using transgenic RNAi. These mice show ubiquitous transgene expression and TDP-43 knockdown in both the periphery and the central nervous system (CNS). Strikingly, these mice develop progressive neurodegeneration prominently in cortical layer V and spinal ventral horn, motor dysfunction, paralysis, and death. Furthermore, examination of splicing patterns of TDP-43 target genes in human ALS revealed changes consistent with TDP-43 dysfunction. These results suggest that the CNS, particularly motor neurons, possess a heightened vulnerability to TDP-43 dysfunction. Additionally, because TDP-43 knockdown predominantly occur in astrocytes in the spinal cord of these mice, our results suggest that TDP-43 dysfunction in astrocytes is an important driver for motor neuron degeneration and clinical phenotypes of ALS.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Esclerose Lateral Amiotrófica/genética , Animais , Animais Geneticamente Modificados , Sistema Nervoso Central/fisiopatologia , Proteínas de Ligação a DNA/genética , Camundongos , Fenótipo
16.
J Neurosci ; 35(30): 10799-814, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26224862

RESUMO

Microglia are resident macrophages in the CNS that scavenge pathogens, dying cells, and molecules using pattern recognition Toll-like receptors (TLRs). Nuclear factor of activated T-cells (NFAT) family transcription factors also regulate inflammatory responses in microglia. However, whether there exists cross talk between TLR and NFAT signaling is unclear. Here we show that chronic activation of murine microglia by prolonged stimulation of Toll-like receptor 4 (TLR4) ligand lipopolysaccharides (LPSs) leads to unexpected translocation of NFAT1 into mitochondria. This mitochondrial import of NFAT1 is independent of calcium/calcineurin signaling. Instead, inhibition of Toll/interleukin 1 receptor domain-containing adapter-inducing interferon-ß (TRIF) pathway blocks the mitochondrial translocation of NFAT1. Functionally, inhibition of NFAT1 reduces the TRIF-mediated expression of interferon-ß and compromises the production of ATP and reactive oxygen species in LPS-treated microglia. Therefore, our findings reveal a new inflammatory signaling pathway that links TLR with NFAT in regulating cytokine production and mitochondrial activity during chronic microglial activation. SIGNIFICANCE STATEMENT: Nuclear factor of activated T-cells (NFAT) family transcription factors are known to undergo nuclear translocation in response to inflammatory stimulation. In this study, we uncovered a surprise transportation of NFATs into mitochondria in microglia after a prolonged treatment with bacteria endotoxin lipopolysaccharides (LPSs). LPSs activated Toll-like receptor 4 and its downstream Toll/interleukin 1 receptor-domain-containing adapter-inducing interferon-ß (TRIF) to regulate the mitochondrial translocation of NFAT in microglia, whereas genetic inhibition of NFAT1 compromised TRIF-mediated cytokine production and reduced ATP and reactive oxygen species generation. These findings reveal a previously undescribed mitochondrial translocation of NFAT in microglia responding to extended activation of Toll-like receptor-mediated signaling transduction pathways.


Assuntos
Microglia/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição NFATC/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Imuno-Histoquímica , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Transporte Proteico/fisiologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Transfecção
17.
Hum Mol Genet ; 23(24): 6567-74, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25051958

RESUMO

Parkinson's disease (PD), the most common degenerative movement disorder, is caused by a preferential loss of midbrain dopaminergic (mDA) neurons. Both α-synuclein (α-syn) missense and multiplication mutations have been linked to PD. However, the underlying intracellular signalling transduction pathways of α-syn-mediated mDA neurodegeneration remain elusive. Here, we show that transgenic expression of PD-related human α-syn A53T missense mutation promoted calcineurin (CN) activity and the subsequent nuclear translocation of nuclear factor of activated T cells (NFATs) in mDA neurons. α-syn enhanced the phosphatase activity of CN in both cell-free assays and cell lines transfected with either human wild-type or A53T α-syn. Furthermore, overexpression of α-syn A53T mutation significantly increased the CN-dependent nuclear import of NFATc3 in the mDA neurons of transgenic mice. More importantly, a pharmacological inhibition of CN by cyclosporine A (CsA) ameliorated the α-syn-induced loss of mDA neurons. These findings demonstrate an active involvement of CN- and NFAT-mediated signalling pathway in α-syn-mediated degeneration of mDA neurons in PD.


Assuntos
Calcineurina/genética , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Fatores de Transcrição NFATC/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Animais , Apoptose/efeitos dos fármacos , Calcineurina/metabolismo , Inibidores de Calcineurina/farmacologia , Ciclosporina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/patologia , Camundongos , Camundongos Transgênicos , Mutação , Fatores de Transcrição NFATC/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Cultura Primária de Células , Transdução de Sinais , alfa-Sinucleína/metabolismo
18.
Am J Hum Genet ; 92(2): 245-51, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23332917

RESUMO

Autosomal-recessive cerebellar ataxia (ARCA) comprises a large and heterogeneous group of neurodegenerative disorders with more than 20 different forms currently recognized, many of which are also associated with increased tone and some of which have limb spasticity. Gaucher disease is a lysosomal storage disease resulting from a defect in the enzyme acid ß-glucosidase 1. ß-glucosidase 2 is an enzyme with similar glucosylceramidase activity but to date has not been associated with a monogenic disorder. We studied four unrelated consanguineous families of Tunisian decent diagnosed with cerebellar ataxia of unknown origin. We performed homozygosity mapping and whole-exome sequencing in an attempt to identify the genetic origin of their disorder. We were able to identify mutations responsible for autosomal-recessive ataxia in these families within the gene encoding ß-glucosidase 2, GBA2. Two nonsense mutations (c.363C>A [p.Tyr121(∗)] and c.1018C>T [p.Arg340(∗)]) and a substitution (c.2618G>A [p.Arg873His]) were identified, probably resulting in nonfunctional enzyme. This study suggests GBA2 mutations are a cause of recessive spastic ataxia and responsible for a form of glucosylceramide storage disease in humans.


Assuntos
Ataxia Cerebelar/complicações , Ataxia Cerebelar/genética , Genes Recessivos/genética , Espasticidade Muscular/complicações , Espasticidade Muscular/genética , Mutação/genética , beta-Glucosidase/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Análise Mutacional de DNA , Família , Feminino , Glucosilceramidase , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Tunísia , beta-Glucosidase/química
19.
J Biol Chem ; 289(2): 895-908, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24275654

RESUMO

Mutations in LRRK2, encoding the multifunctional protein leucine-rich repeat kinase 2 (LRRK2), are a common cause of Parkinson disease. LRRK2 has been suggested to influence the cytoskeleton as LRRK2 mutants reduce neurite outgrowth and cause an accumulation of hyperphosphorylated Tau. This might cause alterations in the dynamic instability of microtubules suggested to contribute to the pathogenesis of Parkinson disease. Here, we describe a direct interaction between LRRK2 and ß-tubulin. This interaction is conferred by the LRRK2 Roc domain and is disrupted by the familial R1441G mutation and artificial Roc domain mutations that mimic autophosphorylation. LRRK2 selectively interacts with three ß-tubulin isoforms: TUBB, TUBB4, and TUBB6, one of which (TUBB4) is mutated in the movement disorder dystonia type 4 (DYT4). Binding specificity is determined by lysine 362 and alanine 364 of ß-tubulin. Molecular modeling was used to map the interaction surface to the luminal face of microtubule protofibrils in close proximity to the lysine 40 acetylation site in α-tubulin. This location is predicted to be poorly accessible within mature stabilized microtubules, but exposed in dynamic microtubule populations. Consistent with this finding, endogenous LRRK2 displays a preferential localization to dynamic microtubules within growth cones, rather than adjacent axonal microtubule bundles. This interaction is functionally relevant to microtubule dynamics, as mouse embryonic fibroblasts derived from LRRK2 knock-out mice display increased microtubule acetylation. Taken together, our data shed light on the nature of the LRRK2-tubulin interaction, and indicate that alterations in microtubule stability caused by changes in LRRK2 might contribute to the pathogenesis of Parkinson disease.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Alanina/química , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lisina/química , Lisina/genética , Lisina/metabolismo , Camundongos , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
20.
Hum Mol Genet ; 22(21): 4293-305, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23771029

RESUMO

The substitution of Proline with Serine at residue 56 (P56S) of vesicle-associated membrane protein-associated protein B (VAPB) has been linked to an atypical autosomal dominant form of familial amyotrophic lateral sclerosis 8 (ALS8). To investigate the pathogenic mechanism of P56S VAPB in ALS, we generated transgenic (Tg) mice that heterologously express human wild-type (WT) and P56S VAPB under the control of a pan-neuronal promoter Thy1.2. While WT VAPB Tg mice did not exhibit any overt motor behavioral phenotypes, P56S VAPB Tg mice developed progressive hyperactivities and other motor abnormalities. VAPB protein was accumulated as large punctate in the soma and proximal dendrites of both corticospinal motor neurons (CSMNs) and spinal motor neurons (SMNs) in P56S VAPB Tg mice. Concomitantly, a significant increase of endoplasmic reticulum stress and unfolded protein response and the resulting up-regulation of pro-apoptotic factor CCAAT/enhancer-binding protein homologous protein expression were observed in the CSMNs and SMNs of P56S VAPB Tg mice. However, only a progressive loss of CSMNs but not SMNs was found in P56S VAPB Tg mice. In SMNs, P56S VAPB promoted a rather selective translocation of VAPB protein onto the postsynaptic site of C-boutons that altered the morphology of C-boutons and impaired the spontaneous rhythmic discharges of SMNs. Therefore, these findings provide new pathophysiological mechanisms of P56S VAPB that differentially affect the function and survival of CSMNs and SMNs in ALS8.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Neurônios Motores/fisiologia , Medula Espinal/fisiopatologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/patologia , Animais , Sobrevivência Celular , Dendritos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora , Neurônios Motores/patologia , Mutação de Sentido Incorreto , Degeneração Neural/fisiopatologia , Terminações Pré-Sinápticas/fisiologia , Prolina/genética , Serina/genética , Medula Espinal/patologia , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA