Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 48(3): 353-64, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23022383

RESUMO

MicroRNAs typically function at the level of posttranscriptional gene silencing within the cytoplasm; however, increasing evidence suggests that they may also function in nuclear, Argonaut-containing complexes, to directly repress target gene transcription. We have investigated the role of microRNAs in mediating endoplasmic reticulum (ER) stress responses. ER stress triggers the activation of three signaling molecules: Ire-1α/ß, PERK, and ATF6, whose function is to facilitate adaption to the ensuing stress. We demonstrate that PERK induces miR-211, which in turn attenuates stress-dependent expression of the proapoptotic transcription factor chop/gadd153. MiR-211 directly targets the proximal chop/gadd153 promoter, where it increases histone methylation and represses chop expression. Maximal chop accumulation ultimately correlates with miR-211 downregulation. Our data suggest a model in which PERK-dependent miR-211 induction prevents premature chop accumulation and thereby provides a window of opportunity for the cell to re-establish homeostasis prior to apoptotic commitment.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Fator de Transcrição CHOP/genética , eIF-2 Quinase/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Estresse do Retículo Endoplasmático/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Metilação , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Células NIH 3T3 , Fosforilação , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tapsigargina/farmacologia , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , eIF-2 Quinase/metabolismo
2.
Trends Biochem Sci ; 38(9): 447-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23906563

RESUMO

The endoplasmic reticulum (ER) senses both extracellular and intracellular stresses that can disrupt its ability to facilitate the maturation of proteins destined for secretory pathways. The accumulation of misfolded proteins within the ER triggers an adaptive signaling pathway coined the unfolded protein response (UPR). UPR activation contributes to cell adaptation by reducing the rate of protein translation while increasing the synthesis of chaperones. Although we have gained considerable insight into the mechanisms that regulate gene expression and certain aspects of protein translation, the contribution of miRNAs to UPR-dependent activities has only recently been investigated. Here we highlight recent insights into the contribution of miRNAs to UPR-dependent cellular adaptive responses.


Assuntos
MicroRNAs/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Retículo Endoplasmático/metabolismo , Humanos , MicroRNAs/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Resposta a Proteínas não Dobradas/genética
3.
J Virol ; 85(24): 13144-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21994449

RESUMO

Apoptosis and inhibition of host gene expression are often associated with virus infections. Many viral polypeptides modulate apoptosis by direct interaction with highly conserved apoptotic pathways. Some viruses induce apoptosis during late stages of the infection cycle, while others inhibit apoptosis to facilitate replication or maintain persistent infection. In previous work, we showed that Chilo iridescent virus (CIV) or CIV virion protein extract induces apoptosis in spruce budworm and cotton boll weevil cell cultures. Here, we characterize the product of a CIV gene (iridovirus serine/threonine kinase; istk) with signature sequences for S/T kinase and ATP binding. ISTK appears to belong to the superfamily, vaccinia-related kinases (VRKs). The istk gene was expressed in Pichia pastoris vectors. Purified ISTK (48 kDa) exhibited S/T kinase activity. Treatment with ISTK induced apoptosis in budworm cells. A 35-kDa cleavage product of ISTK retaining key signature sequences was identified during purification. Pichia-expressed 35-kDa polypeptide, designated iridoptin, induced apoptosis and inhibition of host protein synthesis in budworm and boll weevil cells. A mutation in the ATP-binding site eliminated both kinase and apoptosis activity of iridoptin, suggesting that kinase activity is essential for induction of apoptosis. Analysis with custom antibody confirmed that ISTK is a structural component of CIV particles. This is the first demonstration of a viral kinase inducing apoptosis in any virus-host system and the first identification of a factor inducing apoptosis or host protein shutoff for the family Iridoviridae.


Assuntos
Apoptose , Iridovirus/enzimologia , Proteínas Quinases/metabolismo , Vírion/enzimologia , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Expressão Gênica , Lepidópteros , Dados de Sequência Molecular , Peso Molecular , Mutação de Sentido Incorreto , Pichia/genética , Proteínas Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
4.
Hum Immunol ; 82(11): 801-811, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33745759

RESUMO

Since the days of Sanger sequencing, next-generation sequencing technologies have significantly evolved to provide increased data output, efficiencies, and applications. These next generations of technologies can be categorized based on read length. This review provides an overview of these technologies as two paradigms: short-read, or "second-generation," technologies, and long-read, or "third-generation," technologies. Herein, short-read sequencing approaches are represented by the most prevalent technologies, Illumina and Ion Torrent, and long-read sequencing approaches are represented by Pacific Biosciences and Oxford Nanopore technologies. All technologies are reviewed along with reported advantages and disadvantages. Until recently, short-read sequencing was thought to provide high accuracy limited by read-length, while long-read technologies afforded much longer read-lengths at the expense of accuracy. Emerging developments for third-generation technologies hold promise for the next wave of sequencing evolution, with the co-existence of longer read lengths and high accuracy.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Sondas de DNA de HLA , Técnicas de Genotipagem/instrumentação , Técnicas de Genotipagem/métodos , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Análise de Sequência de DNA/instrumentação
5.
Hum Immunol ; 82(7): 478-487, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33551127

RESUMO

The Human Leukocyte Antigen (HLA) system has a critical role in immunorecognition, transplantation, and disease association. Early typing techniques provided the foundation for genotyping methods that revealed HLA as one of the most complex, polymorphic regions of the human genome. Next Generation Sequencing (NGS), the latest molecular technology introduced in clinical tissue typing laboratories, has demonstrated advantages over other established methods. NGS offers high-resolution sequencing of entire genes in time frames and price points considered unthinkable just a few years ago, contributing a wealth of data informing histocompatibility assessment and standards of clinical care. Although the NGS platforms share a high-throughput massively parallel processing model, differing chemistries provide specific strengths and weaknesses. Research-oriented Third Generation Sequencing and related advances in bioengineering continue to broaden the future of NGS in clinical settings. These diverse applications have demanded equally innovative strategies for data management and computational bioinformatics to support and analyze the unprecedented volume and complexity of data generated by NGS. We discuss some of the challenges and opportunities associated with NGS technologies, providing a comprehensive picture of the historical developments that paved the way for the NGS revolution, its current state and future possibilities for HLA typing.


Assuntos
Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Teste de Histocompatibilidade , Alelos , Estudos de Associação Genética , Genômica/métodos , Genótipo , Técnicas de Genotipagem , Teste de Histocompatibilidade/métodos , Humanos , Imunologia de Transplantes
6.
Hum Immunol ; 82(7): 532-540, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32636038

RESUMO

The Major Histocompatibility Complex (MHC) is a 4 Mbp genomic region located on the short arm of chromosome 6. The MHC region contains many key immune-related genes such as Human Leukocyte Antigens (HLAs). There has been a growing realization that, apart from MHC encoded proteins, RNAs derived from noncoding regions of the MHC-specifically microRNAs (miRNAs) and long noncoding RNAs (lncRNAs)-play a significant role in cellular regulation. Furthermore, regulatory noncoding RNAs (ncRNAs) derived from other parts of the genome fine-tune the expression of many immune-related MHC proteins. Although the field of ncRNAs of the MHC is a research area that is still in its infancy, ncRNA regulation of MHC genes has already been shown to be vital for immune function, healthy pregnancy and cellular homeostasis. Dysregulation of this intricate network of ncRNAs can lead to serious perturbations in homeostasis and subsequent disease.


Assuntos
Regulação da Expressão Gênica , Complexo Principal de Histocompatibilidade/genética , RNA Longo não Codificante , Suscetibilidade a Doenças , Feminino , Antígenos HLA/genética , Antígenos HLA/imunologia , Homeostase , Humanos , Fenômenos Imunogenéticos , Imunomodulação , Complexo Principal de Histocompatibilidade/imunologia , Gravidez
7.
Transplantation ; 105(3): 637-647, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32301906

RESUMO

BACKGROUND: HLA molecular mismatch (MM) is a risk factor for de novo donor-specific antibody (dnDSA) development in solid organ transplantation. HLA expression differences have also been associated with adverse outcomes in hematopoietic cell transplantation. We sought to study both MM and expression in assessing dnDSA risk. METHODS: One hundred three HLA-DP-mismatched solid organ transplantation pairs were retrospectively analyzed. MM was computed using amino acids (aa), eplets, and, supplementarily, Grantham/Epstein scores. DPB1 alleles were classified as rs9277534-A (low-expression) or rs9277534-G (high-expression) linked. To determine the associations between risk factors and dnDSA, logistic regression, linkage disequilibrium (LD), and population-based analyses were performed. RESULTS: A high-risk AA:GX (recipient:donor) expression combination (X = A or G) demonstrated strong association with HLA-DP dnDSA (P = 0.001). MM was also associated with HLA-DP dnDSA when evaluated by itself (eplet P = 0.007, aa P = 0.003, Grantham P = 0.005, Epstein P = 0.004). When attempting to determine the relative individual effects of the risk factors in multivariable analysis, only AA:GX expression status retained a strong association (relative risk = 18.6, P = 0.007 with eplet; relative risk = 15.8, P = 0.02 with aa), while MM was no longer significant (eplet P = 0.56, aa P = 0.51). Importantly, these risk factors are correlated, due to LD between the expression-tagging single-nucleotide polymorphism and polymorphisms along HLA-DPB1. CONCLUSIONS: The MM and expression risk factors each appear to be strong predictors of HLA-DP dnDSA and to possess clinical utility; however, these two risk factors are closely correlated. These metrics may represent distinct ways of characterizing a common overlapping dnDSA risk profile, but they are not independent. Further, we demonstrate the importance and detailed implications of LD effects in dnDSA risk assessment and possibly transplantation overall.


Assuntos
Rejeição de Enxerto/imunologia , Cadeias beta de HLA-DP/biossíntese , Isoanticorpos/imunologia , Transplante de Rim/efeitos adversos , Doadores de Tecidos , Seguimentos , Cadeias beta de HLA-DP/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Teste de Histocompatibilidade , Humanos , Desequilíbrio de Ligação , Estudos Retrospectivos
8.
Hum Immunol ; 80(1): 53-61, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30227197

RESUMO

Cell surface expression of HLA-DP is allele specific. SNP rs9277534 (A/G), located in the 3'UTR of the DPB1 gene, has been associated with either low (A) or high (G) expression of DP on the cell surface. Considering the role of miRNAs in the regulation of gene expression, we computationally identified the miRNAs of two BLCLs, PGF and COX, predicted to interact with their corresponding DPB1 transcripts, DPB1 * 04:01:01:01-low expression and DPB1 * 03:01:01:01-high expression. The identified target sequences are located primarily in intron 2 and the 3'UTR. We hypothesize that gene expression may be influenced first by nuclear pre-mRNA events involving intronic regions, followed by the usual 3'UTR-associated events in the cytoplasm. The low DP expression allele was found to interact in silico with a larger number of miRNAs than the high expression allele. This pattern holds when examining either the entire transcript unit or simply the polymorphic sites that differentiate the alleles. Interestingly, the rs9277534 A/G polymorphism appears to be in linkage disequilibrium with polymorphisms targeted by the identified miRNAs. The multiplicity of sites targeted by different miRNAs suggests that the expression of DPB1 may be a dynamic process, influenced by different miRNAs under different states of the cell.


Assuntos
Alelos , Sítios de Ligação , Biologia Computacional , Regulação da Expressão Gênica , Cadeias beta de HLA-DP/genética , MicroRNAs/genética , Interferência de RNA , Linhagem Celular , Biologia Computacional/métodos , Cadeias beta de HLA-DP/química , Humanos , MicroRNAs/química , Anotação de Sequência Molecular
9.
J Mol Diagn ; 21(5): 852-861, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31173929

RESUMO

The technical limitations of current next-generation sequencing technologies, combined with an ever-increasing number of human leukocyte antigen (HLA) alleles, form the basis for the additional ambiguities encountered at an increasing rate in clinical practice. HLA-DPB1 characterization, particularly, generates a significant percentage of ambiguities (25.5%), posing a challenge for accurate and unambiguous HLA-DPB1 genotyping. Phasing of exonic heterozygous positions between exon 2 and all other downstream exons has been the major cause of ambiguities. In this study, the Oxford Nanopore MinION, a third-generation sequencing technology, was used to resolve the phasing. The accurate MiSeq sequencing data, combined with the long reads obtained from the MinION platform, allow for the resolution of the tested ambiguities.


Assuntos
Testes Genéticos/métodos , Cadeias beta de HLA-DP/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Teste de Histocompatibilidade/métodos , Nanoporos , Análise de Sequência de DNA/métodos , Éxons , Humanos
10.
Clin Lab Med ; 38(4): 679-693, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420061

RESUMO

HLA molecules play a significant role in immunity and disease susceptibility. GWAS studies underline the critical role of the MHC region in a wide range of diseases and remind us that the HLA genes, included within the MHC, interact extensively with other genomic regions which influence their functions. Recently, MHC/HLA genomic sequences encoding for miRNAs have been reported to interact with targets within and outside the MHC, influencing the expression of many transcripts. High throughput sequencing technologies provide unique opportunities for complete HLA/MHC sequence characterization, helping to elucidate their interactive relationships in a plethora of physiological and disease processes.


Assuntos
Predisposição Genética para Doença/genética , Antígenos HLA/genética , Testes Genéticos , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , Fenótipo
11.
Nat Cell Biol ; 20(1): 104-115, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29230015

RESUMO

The unfolded protein response (UPR) is a stress-activated signalling pathway that regulates cell proliferation, metabolism and survival. The circadian clock coordinates metabolism and signal transduction with light/dark cycles. We explore how UPR signalling interfaces with the circadian clock. UPR activation induces a 10 h phase shift in circadian oscillations through induction of miR-211, a PERK-inducible microRNA that transiently suppresses both Bmal1 and Clock, core circadian regulators. Molecular investigation reveals that miR-211 directly regulates Bmal1 and Clock via distinct mechanisms. Suppression of Bmal1 and Clock has the anticipated impact on expression of select circadian genes, but we also find that repression of Bmal1 is essential for UPR-dependent inhibition of protein synthesis and cell adaptation to stresses that disrupt endoplasmic reticulum homeostasis. Our data demonstrate that c-Myc-dependent activation of the UPR inhibits Bmal1 in Burkitt's lymphoma, thereby suppressing both circadian oscillation and ongoing protein synthesis to facilitate tumour progression.


Assuntos
Neoplasias Ósseas/genética , Relógios Circadianos/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/genética , eIF-2 Quinase/genética , Fatores de Transcrição ARNTL/antagonistas & inibidores , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas CLOCK/antagonistas & inibidores , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Xenoenxertos , Humanos , Transdução de Sinal Luminoso , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fotoperíodo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
12.
Front Immunol ; 8: 583, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579988

RESUMO

We describe a novel functional role for the HLA-B locus mediated by its intron-encoded microRNA (miRNA), miR-6891-5p. We show that in vitro inhibition of miR-6891-5p impacts the expression of nearly 200 transcripts within the B-lymphoblastoid cell line (B-LCL) COX, affecting a large number of metabolic pathways, including various immune response networks. The top affected transcripts following miR-6891-5p inhibition are those encoding the heavy chain of IgA. We identified a conserved miR-6891-5p target site on the 3'UTR of both immunoglobulin heavy chain alpha 1 and 2 (IGHA1 and IGHA2) transcripts and demonstrated that this miRNA modulates the expression of IGHA1 and IGHA2. B-LCLs from IgA-deficient patients expressed significantly elevated levels of miR-6891-5p when compared with unaffected family members. Upon inhibition of miR-6891-5p, IgA mRNA expression levels were increased, and IgA secretion was restored in the B-LCL of an IgA-deficient patient. These findings indicate that miR-6891-5p regulates IGHA1 and IGHA2 gene expression at the posttranscriptional level and suggest that increase in miR-6891-5p levels may contribute to the etiology of selective IgA deficiency.

13.
Nat Commun ; 7: 11422, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27173017

RESUMO

The ability of the unfolded protein response, UPR, to regulate cell homeostasis through both gene expression and protein synthesis has been well documented. One primary pro-apoptotic protein that responds to both PERK and Ire1 signalling is the CHOP/GADD153 transcription factor. Although CHOP deficiency delays onset of cell death, questions remain regarding how CHOP regulates apoptosis. Here, we provide evidence demonstrating that CHOP/GADD153-dependent apoptosis reflects expression of micro-RNA, miR-216b. MiR-216b accumulation requires PERK-dependent induction of CHOP/GADD153, which then directly regulates miR-216b expression. As maximal expression of miR-216b is antagonized by Ire1, miR-216b accumulation reflects the convergence of PERK and Ire1 activities. Functionally, miR-216b directly targets c-Jun, thereby reducing AP-1-dependent transcription and sensitizing cells to ER stress-dependent apoptosis. These results provide direct insight into the molecular mechanisms of CHOP/GADD153-dependent cell death.


Assuntos
Apoptose , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição CHOP/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Fator de Transcrição CHOP/genética , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
14.
Cancer Discov ; 5(3): 288-303, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25582697

RESUMO

UNLABELLED: Protein arginine methyltransferase 5 (PRMT5) has been implicated as a key modulator of lymphomagenesis. Whether PRMT5 has overt oncogenic function in the context of leukemia/lymphoma and whether it represents a therapeutic target remains to be established. We demonstrate that inactivation of PRMT5 inhibits colony-forming activity by multiple oncogenic drivers, including cyclin D1, c-MYC, NOTCH1, and MLL-AF9. Furthermore, we demonstrate that PRMT5 overexpression specifically cooperates with cyclin D1 to drive lymphomagenesis in a mouse model, revealing inherent neoplastic activity. Molecular analysis of lymphomas revealed that arginine methylation of p53 selectively suppresses expression of crucial proapoptotic and antiproliferative target genes, thereby sustaining tumor cell self-renewal and proliferation and bypassing the need for the acquisition of inactivating p53 mutations. Critically, analysis of human tumor specimens reveals a strong correlation between cyclin D1 overexpression and p53 methylation, supporting the biomedical relevance of this pathway. SIGNIFICANCE: We have identified and functionally validated a crucial role for PRMT5 for the inhibition of p53-dependent tumor suppression in response to oncogenic insults. The requisite role for PRMT5 in the context of multiple lymphoma/leukemia oncogenic drivers suggests a molecular rationale for therapeutic development.


Assuntos
Transformação Celular Neoplásica/genética , Linfoma/genética , Proteína-Arginina N-Metiltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Animais , Apoptose/genética , Arginina/metabolismo , Transformação Celular Neoplásica/metabolismo , Análise por Conglomerados , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Ativação Enzimática , Perfilação da Expressão Gênica , Humanos , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Linfoma/patologia , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Metilação , Camundongos , Mutação , Oncogenes , Fosforilação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
PLoS One ; 10(3): e0119738, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25780921

RESUMO

Endoplasmic reticulum stress plays a critical role to restore the homeostasis of protein production in eukaryotic cells. This vital process is hence involved in many types of diseases including COPD. PERK, one branch in the ER stress signaling pathways, has been reported to activate NRF2 signaling pathway, a known protective response to COPD. Based on this scientific rationale, we aimed to identify PERK activators as a mechanism to achieve NRF2 activation. In this report, we describe a phenotypic screening assay to identify PERK activators. This assay measures phosphorylation of GFP-tagged eIF2α upon PERK activation via a cell-based LanthaScreen technology. To obtain a robust assay with sufficient signal to background and low variation, multiple parameters were optimized including GFP-tagged eIF2α BacMam concentration, cell density and serum concentration. The assay was validated by a tool compound, Thapsigargin, which induces phosphorylation of eIF2α. In our assay, this compound showed maximal signal window of approximately 2.5-fold with a pEC50 of 8.0, consistent with literature reports. To identify novel PERK activators through phosphorylation of eIF2α, a focused set of 8,400 compounds was screened in this assay at 10 µM. A number of hits were identified and validated. The molecular mechanisms for several selected hits were further characterized in terms of PERK activation and effects on PERK downstream components. Specificity of these compounds in activating PERK was demonstrated with a PERK specific inhibitor and in PERK knockout mouse embryonic fibroblast (MEF) cells. In addition, these hits showed NRF2-dependent anti-oxidant gene induction. In summary, our phenotypic screening assay is demonstrated to be able to identify PERK specific activators. The identified PERK activators could potentially be used as chemical probes to further investigate this pathway as well as the link between PERK activation and NRF2 pathway activation.


Assuntos
Estresse do Retículo Endoplasmático , Ensaios de Triagem em Larga Escala/métodos , Fator 2 Relacionado a NF-E2/metabolismo , eIF-2 Quinase/fisiologia , Animais , Células Cultivadas , Fator de Iniciação 2 em Eucariotos/análise , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Fluorescência Verde/análise , Homeostase , Camundongos , Fenótipo , Fosforilação , Biossíntese de Proteínas , Transdução de Sinais , Bibliotecas de Moléculas Pequenas , Tapsigargina/química , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo
16.
Virology ; 370(2): 333-42, 2008 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-17942133

RESUMO

Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV(XS); 400 microg/ml), UV-irradiated virus (CIV(UV); 10 microg/ml) and CVPE (CIV protein extract; 10 microg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 microg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV(UV) or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV(UV) particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV(UV), CIV(XS) or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and endocytosis of virions or virion proteins, (ii) is inhibited under conditions permitting early viral expression, and (iii) requires the JNK signaling pathway. This is the first report of JNK signal requirement during apoptosis induction by an insect virus.


Assuntos
Apoptose/fisiologia , Iridovirus/patogenicidade , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular , Cicloeximida/farmacologia , Endocitose , Expressão Gênica , Genes Virais , Concentração de Íons de Hidrogênio , Iridovirus/genética , Iridovirus/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Mariposas/virologia , Inibidores da Síntese de Proteínas/farmacologia , Gorgulhos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA